mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-06-30 19:12:48 -05:00
Relegate BignumDblInt to an implementation detail of sshbn.h.
As I mentioned in the previous commit, I'm going to want PuTTY to be able to run sensibly when compiled with 64-bit Visual Studio, including handling bignums in 64-bit chunks for speed. Unfortunately, 64-bit VS does not provide any type we can use as BignumDblInt in that situation (unlike 64-bit gcc and clang, which give us __uint128_t). The only facilities it provides are compiler intrinsics to access an add-with-carry operation and a 64x64->128 multiplication (the latter delivering its product in two separate 64-bit output chunks). Hence, here's a substantial rework of the bignum code to make it implement everything in terms of _those_ primitives, rather than depending throughout on having BignumDblInt available to use ad-hoc. BignumDblInt does still exist, for the moment, but now it's an internal implementation detail of sshbn.h, only declared inside a new set of macros implementing arithmetic primitives, and not accessible to any code outside sshbn.h (which confirms that I really did catch all uses of it and remove them). The resulting code is surprisingly nice-looking, actually. You'd expect more hassle and roundabout circumlocutions when you drop down to using a more basic set of primitive operations, but actually, in many cases it's turned out shorter to write things in terms of the new BignumADC and BignumMUL macros - because almost all my uses of BignumDblInt were implementing those operations anyway, taking several lines at a time, and now they can do each thing in just one line. The biggest headache was Poly1305: I wasn't able to find any sensible way to adapt the existing Python script that generates the various per-int-size implementations of arithmetic mod 2^130-5, and so I had to rewrite it from scratch instead, with nothing in common with the old version beyond a handful of comments. But even that seems to have worked out nicely: the new version has much more legible descriptions of the high-level algorithms, by virtue of having a 'Multiprecision' type which wraps up the division into words, and yet Multiprecision's range analysis allows it to automatically drop out special cases such as multiplication by 5 being much easier than multiplication by another multi-word integer.
This commit is contained in:
@ -1,108 +1,300 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import string
|
||||
from collections import namedtuple
|
||||
|
||||
class Output(object):
|
||||
def __init__(self, bignum_int_bits):
|
||||
self.bignum_int_bits = bignum_int_bits
|
||||
self.text = ""
|
||||
self.vars = []
|
||||
def stmt(self, statement):
|
||||
self.text += " %s;\n" % statement
|
||||
def register_var(self, var):
|
||||
self.vars.append(var)
|
||||
def finalise(self):
|
||||
for var in self.vars:
|
||||
assert var.maxval == 0, "Variable not clear: %s" % var.name
|
||||
return self.text
|
||||
class Multiprecision(object):
|
||||
def __init__(self, target, minval, maxval, words):
|
||||
self.target = target
|
||||
self.minval = minval
|
||||
self.maxval = maxval
|
||||
self.words = words
|
||||
assert 0 <= self.minval
|
||||
assert self.minval <= self.maxval
|
||||
assert self.target.nwords(self.maxval) == len(words)
|
||||
|
||||
class Variable(object):
|
||||
def __init__(self, out, name):
|
||||
self.out = out
|
||||
self.maxval = 0
|
||||
self.name = name
|
||||
self.placeval = None
|
||||
self.out.stmt("BignumDblInt %s" % (self.name))
|
||||
self.out.register_var(self)
|
||||
def clear(self, placeval):
|
||||
self.maxval = 0
|
||||
self.placeval = placeval
|
||||
self.out.stmt("%s = 0" % (self.name))
|
||||
def set_word(self, name, limit=None):
|
||||
if limit is not None:
|
||||
self.maxval = limit-1
|
||||
else:
|
||||
self.maxval = (1 << self.out.bignum_int_bits) - 1
|
||||
assert self.maxval < (1 << 2*self.out.bignum_int_bits)
|
||||
self.out.stmt("%s = %s" % (self.name, name))
|
||||
def add_word(self, name, limit=None):
|
||||
if limit is not None:
|
||||
self.maxval += limit-1
|
||||
else:
|
||||
self.maxval += (1 << self.out.bignum_int_bits) - 1
|
||||
assert self.maxval < (1 << 2*self.out.bignum_int_bits)
|
||||
self.out.stmt("%s += %s" % (self.name, name))
|
||||
def add_input_word(self, fmt, wordpos, limit=None):
|
||||
assert self.placeval == wordpos * self.out.bignum_int_bits
|
||||
self.add_word(fmt % wordpos, limit)
|
||||
def set_to_product(self, a, b, placeval):
|
||||
self.maxval = ((1 << self.out.bignum_int_bits) - 1) ** 2
|
||||
assert self.maxval < (1 << 2*self.out.bignum_int_bits)
|
||||
self.out.stmt("%s = (BignumDblInt)(%s) * (%s)" % (self.name, a, b))
|
||||
self.placeval = placeval
|
||||
def add_bottom_half(self, srcvar):
|
||||
self.add_word("%s & BIGNUM_INT_MASK" % (srcvar.name))
|
||||
def add_top_half(self, srcvar):
|
||||
self.add_word("%s >> %d" % (srcvar.name, self.out.bignum_int_bits))
|
||||
def unload_into(self, topvar, botvar):
|
||||
assert botvar.placeval == self.placeval
|
||||
botvar.add_bottom_half(self)
|
||||
assert topvar.placeval == self.placeval + self.out.bignum_int_bits
|
||||
topvar.add_top_half(self)
|
||||
self.maxval = 0
|
||||
def output_word(self, bitpos, bits, destfmt, destwordpos):
|
||||
assert bitpos == 0
|
||||
assert self.placeval == destwordpos * self.out.bignum_int_bits
|
||||
dest = destfmt % destwordpos
|
||||
if bits == self.out.bignum_int_bits:
|
||||
self.out.stmt("%s = %s" % (dest, self.name))
|
||||
else:
|
||||
self.out.stmt("%s = %s & (((BignumInt)1 << %d)-1)" %
|
||||
(dest, self.name, bits))
|
||||
def transfer_to_next_acc(self, bitpos, bits, pow5, destvar):
|
||||
destbitpos = self.placeval + bitpos - 130 * pow5 - destvar.placeval
|
||||
#print "transfer", "*%d" % 5**pow5, self.name, self.placeval, bitpos, destvar.name, destvar.placeval, destbitpos, bits
|
||||
assert 0 <= bitpos < bitpos+bits <= self.out.bignum_int_bits
|
||||
assert 0 <= destbitpos < destbitpos+bits <= self.out.bignum_int_bits
|
||||
expr = self.name
|
||||
if bitpos > 0:
|
||||
expr = "(%s >> %d)" % (expr, bitpos)
|
||||
expr = "(%s & (((BignumInt)1 << %d)-1))" % (expr, bits)
|
||||
self.out.stmt("%s += %s * ((BignumDblInt)%d << %d)" %
|
||||
(destvar.name, expr, 5**pow5, destbitpos))
|
||||
destvar.maxval += (((1 << bits)-1) << destbitpos) * (5**pow5)
|
||||
def shift_down_from(self, top):
|
||||
if top is not None:
|
||||
self.out.stmt("%s = %s + (%s >> %d)" %
|
||||
(self.name, top.name, self.name,
|
||||
self.out.bignum_int_bits))
|
||||
topmaxval = top.maxval
|
||||
else:
|
||||
self.out.stmt("%s >>= %d" % (self.name, self.out.bignum_int_bits))
|
||||
topmaxval = 0
|
||||
self.maxval = topmaxval + self.maxval >> self.out.bignum_int_bits
|
||||
assert self.maxval < (1 << 2*self.out.bignum_int_bits)
|
||||
if top is not None:
|
||||
assert self.placeval + self.out.bignum_int_bits == top.placeval
|
||||
top.clear(top.placeval + self.out.bignum_int_bits)
|
||||
self.placeval += self.out.bignum_int_bits
|
||||
def getword(self, n):
|
||||
return self.words[n] if n < len(self.words) else "0"
|
||||
|
||||
def gen_add(bignum_int_bits):
|
||||
out = Output(bignum_int_bits)
|
||||
def __add__(self, rhs):
|
||||
newmin = self.minval + rhs.minval
|
||||
newmax = self.maxval + rhs.maxval
|
||||
nwords = self.target.nwords(newmax)
|
||||
words = []
|
||||
|
||||
inbits = 130
|
||||
inwords = (inbits + bignum_int_bits - 1) / bignum_int_bits
|
||||
addfn = self.target.add
|
||||
for i in range(nwords):
|
||||
words.append(addfn(self.getword(i), rhs.getword(i)))
|
||||
addfn = self.target.adc
|
||||
|
||||
return Multiprecision(self.target, newmin, newmax, words)
|
||||
|
||||
def __mul__(self, rhs):
|
||||
newmin = self.minval * rhs.minval
|
||||
newmax = self.maxval * rhs.maxval
|
||||
nwords = self.target.nwords(newmax)
|
||||
words = []
|
||||
|
||||
# There are basically two strategies we could take for
|
||||
# multiplying two multiprecision integers. One is to enumerate
|
||||
# the space of pairs of word indices in lexicographic order,
|
||||
# essentially computing a*b[i] for each i and adding them
|
||||
# together; the other is to enumerate in diagonal order,
|
||||
# computing everything together that belongs at a particular
|
||||
# output word index.
|
||||
#
|
||||
# For the moment, I've gone for the former.
|
||||
|
||||
sprev = []
|
||||
for i, sword in enumerate(self.words):
|
||||
rprev = None
|
||||
sthis = sprev[:i]
|
||||
for j, rword in enumerate(rhs.words):
|
||||
prevwords = []
|
||||
if i+j < len(sprev):
|
||||
prevwords.append(sprev[i+j])
|
||||
if rprev is not None:
|
||||
prevwords.append(rprev)
|
||||
vhi, vlo = self.target.muladd(sword, rword, *prevwords)
|
||||
sthis.append(vlo)
|
||||
rprev = vhi
|
||||
sthis.append(rprev)
|
||||
sprev = sthis
|
||||
|
||||
# Remove unneeded words from the top of the output, if we can
|
||||
# prove by range analysis that they'll always be zero.
|
||||
sprev = sprev[:self.target.nwords(newmax)]
|
||||
|
||||
return Multiprecision(self.target, newmin, newmax, sprev)
|
||||
|
||||
def extract_bits(self, start, bits=None):
|
||||
if bits is None:
|
||||
bits = (self.maxval >> start).bit_length()
|
||||
|
||||
# Overly thorough range analysis: if min and max have the same
|
||||
# *quotient* by 2^bits, then the result of reducing anything
|
||||
# in the range [min,max] mod 2^bits has to fall within the
|
||||
# obvious range. But if they have different quotients, then
|
||||
# you can wrap round the modulus and so any value mod 2^bits
|
||||
# is possible.
|
||||
newmin = self.minval >> start
|
||||
newmax = self.maxval >> start
|
||||
if (newmin >> bits) != (newmax >> bits):
|
||||
newmin = 0
|
||||
newmax = (1 << bits) - 1
|
||||
|
||||
nwords = self.target.nwords(newmax)
|
||||
words = []
|
||||
for i in range(nwords):
|
||||
srcpos = i * self.target.bits + start
|
||||
maxbits = min(self.target.bits, start + bits - srcpos)
|
||||
wordindex = srcpos / self.target.bits
|
||||
if srcpos % self.target.bits == 0:
|
||||
word = self.getword(srcpos / self.target.bits)
|
||||
elif (wordindex+1 >= len(self.words) or
|
||||
srcpos % self.target.bits + maxbits < self.target.bits):
|
||||
word = self.target.new_value(
|
||||
"(%%s) >> %d" % (srcpos % self.target.bits),
|
||||
self.getword(srcpos / self.target.bits))
|
||||
else:
|
||||
word = self.target.new_value(
|
||||
"((%%s) >> %d) | ((%%s) << %d)" % (
|
||||
srcpos % self.target.bits,
|
||||
self.target.bits - (srcpos % self.target.bits)),
|
||||
self.getword(srcpos / self.target.bits),
|
||||
self.getword(srcpos / self.target.bits + 1))
|
||||
if maxbits < self.target.bits and maxbits < bits:
|
||||
word = self.target.new_value(
|
||||
"(%%s) & ((((BignumInt)1) << %d)-1)" % maxbits,
|
||||
word)
|
||||
words.append(word)
|
||||
|
||||
return Multiprecision(self.target, newmin, newmax, words)
|
||||
|
||||
# Each Statement has a list of variables it reads, and a list of ones
|
||||
# it writes. 'forms' is a list of multiple actual C statements it
|
||||
# could be generated as, depending on which of its output variables is
|
||||
# actually used (e.g. no point calling BignumADC if the generated
|
||||
# carry in a particular case is unused, or BignumMUL if nobody needs
|
||||
# the top half). It is indexed by a bitmap whose bits correspond to
|
||||
# the entries in wvars, with wvars[0] the MSB and wvars[-1] the LSB.
|
||||
Statement = namedtuple("Statement", "rvars wvars forms")
|
||||
|
||||
class CodegenTarget(object):
|
||||
def __init__(self, bits):
|
||||
self.bits = bits
|
||||
self.valindex = 0
|
||||
self.stmts = []
|
||||
self.generators = {}
|
||||
self.bv_words = (130 + self.bits - 1) / self.bits
|
||||
self.carry_index = 0
|
||||
|
||||
def nwords(self, maxval):
|
||||
return (maxval.bit_length() + self.bits - 1) / self.bits
|
||||
|
||||
def stmt(self, stmt, needed=False):
|
||||
index = len(self.stmts)
|
||||
self.stmts.append([needed, stmt])
|
||||
for val in stmt.wvars:
|
||||
self.generators[val] = index
|
||||
|
||||
def new_value(self, formatstr=None, *deps):
|
||||
name = "v%d" % self.valindex
|
||||
self.valindex += 1
|
||||
if formatstr is not None:
|
||||
self.stmt(Statement(
|
||||
rvars=deps, wvars=[name],
|
||||
forms=[None, name + " = " + formatstr % deps]))
|
||||
return name
|
||||
|
||||
def bigval_input(self, name, bits):
|
||||
words = (bits + self.bits - 1) / self.bits
|
||||
# Expect not to require an entire extra word
|
||||
assert words == self.bv_words
|
||||
|
||||
return Multiprecision(self, 0, (1<<bits)-1, [
|
||||
self.new_value("%s->w[%d]" % (name, i)) for i in range(words)])
|
||||
|
||||
def const(self, value):
|
||||
# We only support constants small enough to both fit in a
|
||||
# BignumInt (of any size supported) _and_ be expressible in C
|
||||
# with no weird integer literal syntax like a trailing LL.
|
||||
#
|
||||
# Supporting larger constants would be possible - you could
|
||||
# break 'value' up into word-sized pieces on the Python side,
|
||||
# and generate a legal C expression for each piece by
|
||||
# splitting it further into pieces within the
|
||||
# standards-guaranteed 'unsigned long' limit of 32 bits and
|
||||
# then casting those to BignumInt before combining them with
|
||||
# shifts. But it would be a lot of effort, and since the
|
||||
# application for this code doesn't even need it, there's no
|
||||
# point in bothering.
|
||||
assert value < 2**16
|
||||
return Multiprecision(self, value, value, ["%d" % value])
|
||||
|
||||
def current_carry(self):
|
||||
return "carry%d" % self.carry_index
|
||||
|
||||
def add(self, a1, a2):
|
||||
ret = self.new_value()
|
||||
adcform = "BignumADC(%s, carry, %s, %s, 0)" % (ret, a1, a2)
|
||||
plainform = "%s = %s + %s" % (ret, a1, a2)
|
||||
self.carry_index += 1
|
||||
carryout = self.current_carry()
|
||||
self.stmt(Statement(
|
||||
rvars=[a1,a2], wvars=[ret,carryout],
|
||||
forms=[None, adcform, plainform, adcform]))
|
||||
return ret
|
||||
|
||||
def adc(self, a1, a2):
|
||||
ret = self.new_value()
|
||||
adcform = "BignumADC(%s, carry, %s, %s, carry)" % (ret, a1, a2)
|
||||
plainform = "%s = %s + %s + carry" % (ret, a1, a2)
|
||||
carryin = self.current_carry()
|
||||
self.carry_index += 1
|
||||
carryout = self.current_carry()
|
||||
self.stmt(Statement(
|
||||
rvars=[a1,a2,carryin], wvars=[ret,carryout],
|
||||
forms=[None, adcform, plainform, adcform]))
|
||||
return ret
|
||||
|
||||
def muladd(self, m1, m2, *addends):
|
||||
rlo = self.new_value()
|
||||
rhi = self.new_value()
|
||||
wideform = "BignumMUL%s(%s)" % (
|
||||
{ 0:"", 1:"ADD", 2:"ADD2" }[len(addends)],
|
||||
", ".join([rhi, rlo, m1, m2] + list(addends)))
|
||||
narrowform = " + ".join(["%s = %s * %s" % (rlo, m1, m2)] +
|
||||
list(addends))
|
||||
self.stmt(Statement(
|
||||
rvars=[m1,m2]+list(addends), wvars=[rhi,rlo],
|
||||
forms=[None, narrowform, wideform, wideform]))
|
||||
return rhi, rlo
|
||||
|
||||
def write_bigval(self, name, val):
|
||||
for i in range(self.bv_words):
|
||||
word = val.getword(i)
|
||||
self.stmt(Statement(
|
||||
rvars=[word], wvars=[],
|
||||
forms=["%s->w[%d] = %s" % (name, i, word)]),
|
||||
needed=True)
|
||||
|
||||
def compute_needed(self):
|
||||
used_vars = set()
|
||||
|
||||
self.queue = [stmt for (needed,stmt) in self.stmts if needed]
|
||||
while len(self.queue) > 0:
|
||||
stmt = self.queue.pop(0)
|
||||
deps = []
|
||||
for var in stmt.rvars:
|
||||
if var[0] in string.digits:
|
||||
continue # constant
|
||||
deps.append(self.generators[var])
|
||||
used_vars.add(var)
|
||||
for index in deps:
|
||||
if not self.stmts[index][0]:
|
||||
self.stmts[index][0] = True
|
||||
self.queue.append(self.stmts[index][1])
|
||||
|
||||
forms = []
|
||||
for i, (needed, stmt) in enumerate(self.stmts):
|
||||
if needed:
|
||||
formindex = 0
|
||||
for (j, var) in enumerate(stmt.wvars):
|
||||
formindex *= 2
|
||||
if var in used_vars:
|
||||
formindex += 1
|
||||
forms.append(stmt.forms[formindex])
|
||||
|
||||
# Now we must check whether this form of the statement
|
||||
# also writes some variables we _don't_ actually need
|
||||
# (e.g. if you only wanted the top half from a mul, or
|
||||
# only the carry from an adc, you'd be forced to
|
||||
# generate the other output too). Easiest way to do
|
||||
# this is to look for an identical statement form
|
||||
# later in the array.
|
||||
maxindex = max(i for i in range(len(stmt.forms))
|
||||
if stmt.forms[i] == stmt.forms[formindex])
|
||||
extra_vars = maxindex & ~formindex
|
||||
bitpos = 0
|
||||
while extra_vars != 0:
|
||||
if extra_vars & (1 << bitpos):
|
||||
extra_vars &= ~(1 << bitpos)
|
||||
var = stmt.wvars[-1-bitpos]
|
||||
used_vars.add(var)
|
||||
# Also, write out a cast-to-void for each
|
||||
# subsequently unused value, to prevent gcc
|
||||
# warnings when the output code is compiled.
|
||||
forms.append("(void)" + var)
|
||||
bitpos += 1
|
||||
|
||||
used_carry = any(v.startswith("carry") for v in used_vars)
|
||||
used_vars = [v for v in used_vars if v.startswith("v")]
|
||||
used_vars.sort(key=lambda v: int(v[1:]))
|
||||
|
||||
return used_carry, used_vars, forms
|
||||
|
||||
def text(self):
|
||||
used_carry, values, forms = self.compute_needed()
|
||||
|
||||
ret = ""
|
||||
while len(values) > 0:
|
||||
prefix, sep, suffix = " BignumInt ", ", ", ";"
|
||||
currline = values.pop(0)
|
||||
while (len(values) > 0 and
|
||||
len(prefix+currline+sep+values[0]+suffix) < 79):
|
||||
currline += sep + values.pop(0)
|
||||
ret += prefix + currline + suffix + "\n"
|
||||
if used_carry:
|
||||
ret += " BignumCarry carry;\n"
|
||||
if ret != "":
|
||||
ret += "\n"
|
||||
for stmtform in forms:
|
||||
ret += " %s;\n" % stmtform
|
||||
return ret
|
||||
|
||||
def gen_add(target):
|
||||
# This is an addition _without_ reduction mod p, so that it can be
|
||||
# used both during accumulation of the polynomial and for adding
|
||||
# on the encrypted nonce at the end (which is mod 2^128, not mod
|
||||
@ -111,157 +303,66 @@ def gen_add(bignum_int_bits):
|
||||
# Because one of the inputs will have come from our
|
||||
# not-completely-reducing multiplication function, we expect up to
|
||||
# 3 extra bits of input.
|
||||
acclo = Variable(out, "acclo")
|
||||
|
||||
acclo.clear(0)
|
||||
|
||||
for wordpos in range(inwords):
|
||||
limit = min(1 << bignum_int_bits, 1 << (130 - wordpos*bignum_int_bits))
|
||||
acclo.add_input_word("a->w[%d]", wordpos, limit)
|
||||
acclo.add_input_word("b->w[%d]", wordpos, limit)
|
||||
acclo.output_word(0, bignum_int_bits, "r->w[%d]", wordpos)
|
||||
acclo.shift_down_from(None)
|
||||
|
||||
return out.finalise()
|
||||
|
||||
def gen_mul_1305(bignum_int_bits):
|
||||
out = Output(bignum_int_bits)
|
||||
|
||||
inbits = 130
|
||||
inwords = (inbits + bignum_int_bits - 1) / bignum_int_bits
|
||||
a = target.bigval_input("a", 133)
|
||||
b = target.bigval_input("b", 133)
|
||||
ret = a + b
|
||||
target.write_bigval("r", ret)
|
||||
return """\
|
||||
static void bigval_add(bigval *r, const bigval *a, const bigval *b)
|
||||
{
|
||||
%s}
|
||||
\n""" % target.text()
|
||||
|
||||
def gen_mul(target):
|
||||
# The inputs are not 100% reduced mod p. Specifically, we can get
|
||||
# a full 130-bit number from the pow5==0 pass, and then a 130-bit
|
||||
# number times 5 from the pow5==1 pass, plus a possible carry. The
|
||||
# total of that can be easily bounded above by 2^130 * 8, so we
|
||||
# need to assume we're multiplying two 133-bit numbers.
|
||||
outbits = (inbits + 3) * 2
|
||||
outwords = (outbits + bignum_int_bits - 1) / bignum_int_bits + 1
|
||||
|
||||
tmp = Variable(out, "tmp")
|
||||
acclo = Variable(out, "acclo")
|
||||
acchi = Variable(out, "acchi")
|
||||
acc2lo = Variable(out, "acc2lo")
|
||||
a = target.bigval_input("a", 133)
|
||||
b = target.bigval_input("b", 133)
|
||||
ab = a * b
|
||||
ab0 = ab.extract_bits(0, 130)
|
||||
ab1 = ab.extract_bits(130, 130)
|
||||
ab2 = ab.extract_bits(260)
|
||||
ab1_5 = target.const(5) * ab1
|
||||
ab2_25 = target.const(25) * ab2
|
||||
ret = ab0 + ab1_5 + ab2_25
|
||||
target.write_bigval("r", ret)
|
||||
return """\
|
||||
static void bigval_mul_mod_p(bigval *r, const bigval *a, const bigval *b)
|
||||
{
|
||||
%s}
|
||||
\n""" % target.text()
|
||||
|
||||
pow5, bits_at_pow5 = 0, inbits
|
||||
|
||||
acclo.clear(0)
|
||||
acchi.clear(bignum_int_bits)
|
||||
bits_needed_in_acc2 = bignum_int_bits
|
||||
|
||||
for outwordpos in range(outwords):
|
||||
for a in range(inwords):
|
||||
b = outwordpos - a
|
||||
if 0 <= b < inwords:
|
||||
tmp.set_to_product("a->w[%d]" % a, "b->w[%d]" % b,
|
||||
outwordpos * bignum_int_bits)
|
||||
tmp.unload_into(acchi, acclo)
|
||||
|
||||
bits_in_word = bignum_int_bits
|
||||
bitpos = 0
|
||||
#print "begin output"
|
||||
while bits_in_word > 0:
|
||||
chunk = min(bits_in_word, bits_at_pow5)
|
||||
if pow5 > 0:
|
||||
chunk = min(chunk, bits_needed_in_acc2)
|
||||
if pow5 == 0:
|
||||
acclo.output_word(bitpos, chunk, "r->w[%d]", outwordpos)
|
||||
else:
|
||||
acclo.transfer_to_next_acc(bitpos, chunk, pow5, acc2lo)
|
||||
bits_needed_in_acc2 -= chunk
|
||||
if bits_needed_in_acc2 == 0:
|
||||
assert acc2lo.placeval % bignum_int_bits == 0
|
||||
other_outwordpos = acc2lo.placeval / bignum_int_bits
|
||||
acc2lo.add_input_word("r->w[%d]", other_outwordpos)
|
||||
acc2lo.output_word(bitpos, bignum_int_bits, "r->w[%d]",
|
||||
other_outwordpos)
|
||||
acc2lo.shift_down_from(None)
|
||||
bits_needed_in_acc2 = bignum_int_bits
|
||||
bits_in_word -= chunk
|
||||
bits_at_pow5 -= chunk
|
||||
bitpos += chunk
|
||||
if bits_at_pow5 == 0:
|
||||
if pow5 > 0:
|
||||
assert acc2lo.placeval % bignum_int_bits == 0
|
||||
other_outwordpos = acc2lo.placeval / bignum_int_bits
|
||||
acc2lo.add_input_word("r->w[%d]", other_outwordpos)
|
||||
acc2lo.output_word(0, bignum_int_bits, "r->w[%d]",
|
||||
other_outwordpos)
|
||||
pow5 += 1
|
||||
bits_at_pow5 = inbits
|
||||
acc2lo.clear(0)
|
||||
bits_needed_in_acc2 = bignum_int_bits
|
||||
acclo.shift_down_from(acchi)
|
||||
|
||||
while acc2lo.maxval > 0:
|
||||
other_outwordpos = acc2lo.placeval / bignum_int_bits
|
||||
bitsleft = inbits - other_outwordpos * bignum_int_bits
|
||||
limit = 1<<bitsleft if bitsleft < bignum_int_bits else None
|
||||
acc2lo.add_input_word("r->w[%d]", other_outwordpos, limit=limit)
|
||||
acc2lo.output_word(0, bignum_int_bits, "r->w[%d]", other_outwordpos)
|
||||
acc2lo.shift_down_from(None)
|
||||
|
||||
return out.finalise()
|
||||
|
||||
def gen_final_reduce_1305(bignum_int_bits):
|
||||
out = Output(bignum_int_bits)
|
||||
|
||||
inbits = 130
|
||||
inwords = (inbits + bignum_int_bits - 1) / bignum_int_bits
|
||||
|
||||
# We take our input number n, and compute k = 5 + 5*(n >> 130).
|
||||
def gen_final_reduce(target):
|
||||
# We take our input number n, and compute k = n + 5*(n >> 130).
|
||||
# Then k >> 130 is precisely the multiple of p that needs to be
|
||||
# subtracted from n to reduce it to strictly less than p.
|
||||
|
||||
acclo = Variable(out, "acclo")
|
||||
a = target.bigval_input("n", 133)
|
||||
a1 = a.extract_bits(130, 130)
|
||||
k = a + target.const(5) * a1
|
||||
q = k.extract_bits(130)
|
||||
adjusted = a + target.const(5) * q
|
||||
ret = adjusted.extract_bits(0, 130)
|
||||
target.write_bigval("n", ret)
|
||||
return """\
|
||||
static void bigval_final_reduce(bigval *n)
|
||||
{
|
||||
%s}
|
||||
\n""" % target.text()
|
||||
|
||||
acclo.clear(0)
|
||||
# Hopefully all the bits we're shifting down fit in the same word.
|
||||
assert 130 / bignum_int_bits == (130 + 3 - 1) / bignum_int_bits
|
||||
acclo.add_word("5 * ((n->w[%d] >> %d) + 1)" %
|
||||
(130 / bignum_int_bits, 130 % bignum_int_bits),
|
||||
limit = 5 * (7 + 1))
|
||||
for wordpos in range(inwords):
|
||||
acclo.add_input_word("n->w[%d]", wordpos)
|
||||
# Notionally, we could call acclo.output_word here to store
|
||||
# our adjusted value k. But we don't need to, because all we
|
||||
# actually want is the very top word of it.
|
||||
if wordpos == 130 / bignum_int_bits:
|
||||
break
|
||||
acclo.shift_down_from(None)
|
||||
|
||||
# Now we can find the right multiple of p to subtract. We actually
|
||||
# subtract it by adding 5 times it, and then finally discarding
|
||||
# the top bits of the output.
|
||||
|
||||
# Hopefully all the bits we're shifting down fit in the same word.
|
||||
assert 130 / bignum_int_bits == (130 + 3 - 1) / bignum_int_bits
|
||||
acclo.set_word("5 * (acclo >> %d)" % (130 % bignum_int_bits),
|
||||
limit = 5 * (7 + 1))
|
||||
acclo.placeval = 0
|
||||
for wordpos in range(inwords):
|
||||
acclo.add_input_word("n->w[%d]", wordpos)
|
||||
acclo.output_word(0, bignum_int_bits, "n->w[%d]", wordpos)
|
||||
acclo.shift_down_from(None)
|
||||
|
||||
out.stmt("n->w[%d] &= (1 << %d) - 1" %
|
||||
(130 / bignum_int_bits, 130 % bignum_int_bits))
|
||||
|
||||
# Here we don't call out.finalise(), because that will complain
|
||||
# that there are bits of output we never dealt with. This is true,
|
||||
# but all the bits in question are above 2^130, so they're bits
|
||||
# we're discarding anyway.
|
||||
return out.text # not out.finalise()
|
||||
|
||||
ops = { "mul" : gen_mul_1305,
|
||||
"add" : gen_add,
|
||||
"final_reduce" : gen_final_reduce_1305 }
|
||||
|
||||
args = sys.argv[1:]
|
||||
if len(args) != 2 or args[0] not in ops:
|
||||
sys.stderr.write("usage: make1305.py (%s) <bits>\n" % (" | ".join(sorted(ops))))
|
||||
sys.exit(1)
|
||||
|
||||
sys.stdout.write(" /* ./contrib/make1305.py %s %s */\n" % tuple(args))
|
||||
s = ops[args[0]](int(args[1]))
|
||||
sys.stdout.write(s)
|
||||
pp_keyword = "#if"
|
||||
for bits in [16, 32, 64]:
|
||||
sys.stdout.write("%s BIGNUM_INT_BITS == %d\n\n" % (pp_keyword, bits))
|
||||
pp_keyword = "#elif"
|
||||
sys.stdout.write(gen_add(CodegenTarget(bits)))
|
||||
sys.stdout.write(gen_mul(CodegenTarget(bits)))
|
||||
sys.stdout.write(gen_final_reduce(CodegenTarget(bits)))
|
||||
sys.stdout.write("""#else
|
||||
#error Add another bit count to contrib/make1305.py and rerun it
|
||||
#endif
|
||||
""")
|
||||
|
Reference in New Issue
Block a user