1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00

Rewrite the SHA-256 and SHA-1 hash function modules.

The new structure of those modules is along similar lines to the
recent rewrite of AES, with selection of HW vs SW implementation being
done by the main vtable instead of a subsidiary function pointer
within it, freedom for each implementation to define its state
structure however is most convenient, and space to drop in other
hardware-accelerated implementations.

I've removed the centralised test for compiler SHA-NI support in
ssh.h, and instead duplicated it between the two SHA modules, on the
grounds that once you start considering an open-ended set of hardware
accelerators, the two hashes _need_ not go together.

I've also added an extra test in cryptsuite that checks the point at
which the end-of-hash padding switches to adding an extra cipher
block. That was just because I was rewriting that padding code, was
briefly worried that I might have got an off-by-one error in that part
of it, and couldn't see any existing test that gave me confidence I
hadn't.
This commit is contained in:
Simon Tatham 2019-01-20 18:44:26 +00:00
parent 320bf8479f
commit cbbd464fd7
4 changed files with 1214 additions and 939 deletions

29
ssh.h
View File

@ -558,8 +558,6 @@ struct ssh_cipher {
const ssh_cipheralg *vt; const ssh_cipheralg *vt;
}; };
bool supports_sha_ni(void);
struct ssh_cipheralg { struct ssh_cipheralg {
ssh_cipher *(*new)(const ssh_cipheralg *alg); ssh_cipher *(*new)(const ssh_cipheralg *alg);
void (*free)(ssh_cipher *); void (*free)(ssh_cipher *);
@ -819,7 +817,11 @@ extern const ssh2_ciphers ssh2_arcfour;
extern const ssh2_ciphers ssh2_ccp; extern const ssh2_ciphers ssh2_ccp;
extern const ssh_hashalg ssh_md5; extern const ssh_hashalg ssh_md5;
extern const ssh_hashalg ssh_sha1; extern const ssh_hashalg ssh_sha1;
extern const ssh_hashalg ssh_sha1_hw;
extern const ssh_hashalg ssh_sha1_sw;
extern const ssh_hashalg ssh_sha256; extern const ssh_hashalg ssh_sha256;
extern const ssh_hashalg ssh_sha256_hw;
extern const ssh_hashalg ssh_sha256_sw;
extern const ssh_hashalg ssh_sha384; extern const ssh_hashalg ssh_sha384;
extern const ssh_hashalg ssh_sha512; extern const ssh_hashalg ssh_sha512;
extern const ssh_kexes ssh_diffiehellman_group1; extern const ssh_kexes ssh_diffiehellman_group1;
@ -867,29 +869,6 @@ extern const char sshver[];
*/ */
extern bool ssh_fallback_cmd(Backend *backend); extern bool ssh_fallback_cmd(Backend *backend);
/*
* Check of compiler version
*/
#ifdef _FORCE_SHA_NI
# define COMPILER_SUPPORTS_SHA_NI
#elif defined(__clang__)
# if __has_attribute(target) && __has_include(<shaintrin.h>) && (defined(__x86_64__) || defined(__i386))
# define COMPILER_SUPPORTS_SHA_NI
# endif
#elif defined(__GNUC__)
# if ((__GNUC__ >= 5) && (defined(__x86_64__) || defined(__i386)))
# define COMPILER_SUPPORTS_SHA_NI
# endif
#elif defined (_MSC_VER)
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_VER >= 1900
# define COMPILER_SUPPORTS_SHA_NI
# endif
#endif
#ifdef _FORCE_SOFTWARE_SHA
# undef COMPILER_SUPPORTS_SHA_NI
#endif
/* /*
* The PRNG type, defined in sshprng.c. Visible data fields are * The PRNG type, defined in sshprng.c. Visible data fields are
* 'savesize', which suggests how many random bytes you should request * 'savesize', which suggests how many random bytes you should request

View File

@ -7,46 +7,79 @@
#include "ssh.h" #include "ssh.h"
#include <assert.h> #include <assert.h>
/* ---------------------------------------------------------------------- /*
* Core SHA256 algorithm: processes 16-word blocks into a message digest. * Start by deciding whether we can support hardware SHA at all.
*/ */
#define HW_SHA256_NONE 0
#define HW_SHA256_NI 1
#define ror(x,y) ( ((x) << (32-y)) | (((uint32_t)(x)) >> (y)) ) #ifdef _FORCE_SHA_NI
#define shr(x,y) ( (((uint32_t)(x)) >> (y)) ) # define HW_SHA256 HW_SHA256_NI
#define Ch(x,y,z) ( ((x) & (y)) ^ (~(x) & (z)) ) #elif defined(__clang__)
#define Maj(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) # if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
#define bigsigma0(x) ( ror((x),2) ^ ror((x),13) ^ ror((x),22) ) (defined(__x86_64__) || defined(__i386))
#define bigsigma1(x) ( ror((x),6) ^ ror((x),11) ^ ror((x),25) ) # define HW_SHA256 HW_SHA256_NI
#define smallsigma0(x) ( ror((x),7) ^ ror((x),18) ^ shr((x),3) ) # endif
#define smallsigma1(x) ( ror((x),17) ^ ror((x),19) ^ shr((x),10) ) #elif defined(__GNUC__)
# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
(defined(__x86_64__) || defined(__i386))
# define HW_SHA256 HW_SHA256_NI
# endif
#elif defined (_MSC_VER)
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
# define HW_SHA256 HW_SHA256_NI
# endif
#endif
typedef struct SHA256_State { #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA256
uint32_t h[8]; # undef HW_SHA256
unsigned char block[64]; # define HW_SHA256 HW_SHA256_NONE
int blkused; #endif
uint64_t len;
void (*sha256)(struct SHA256_State * s, const unsigned char *p, int len);
BinarySink_IMPLEMENTATION;
} SHA256_State;
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len); /*
static void SHA256_ni(SHA256_State *s, const unsigned char *q, int len); * The actual query function that asks if hardware acceleration is
* available.
*/
static bool sha256_hw_available(void);
void SHA256_Core_Init(SHA256_State *s) { /*
s->h[0] = 0x6a09e667; * The top-level selection function, caching the results of
s->h[1] = 0xbb67ae85; * sha256_hw_available() so it only has to run once.
s->h[2] = 0x3c6ef372; */
s->h[3] = 0xa54ff53a; static bool sha256_hw_available_cached(void)
s->h[4] = 0x510e527f; {
s->h[5] = 0x9b05688c; static bool initialised = false;
s->h[6] = 0x1f83d9ab; static bool hw_available;
s->h[7] = 0x5be0cd19; if (!initialised) {
hw_available = sha256_hw_available();
initialised = true;
}
return hw_available;
} }
void SHA256_Block(SHA256_State *s, uint32_t *block) { static ssh_hash *sha256_select(const ssh_hashalg *alg)
uint32_t w[80]; {
uint32_t a,b,c,d,e,f,g,h; const ssh_hashalg *real_alg =
static const int k[] = { sha256_hw_available_cached() ? &ssh_sha256_hw : &ssh_sha256_sw;
return ssh_hash_new(real_alg);
}
const ssh_hashalg ssh_sha256 = {
sha256_select, NULL, NULL, NULL,
32, 64, "SHA-256",
};
/* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
static const uint32_t sha256_initial_state[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
};
static const uint32_t sha256_round_constants[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
@ -63,203 +96,213 @@ void SHA256_Block(SHA256_State *s, uint32_t *block) {
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
}; };
int t; #define SHA256_ROUNDS 64
for (t = 0; t < 16; t++) typedef struct sha256_block sha256_block;
w[t] = block[t]; struct sha256_block {
uint8_t block[64];
size_t used;
uint64_t len;
};
for (t = 16; t < 64; t++) static inline void sha256_block_setup(sha256_block *blk)
w[t] = smallsigma1(w[t-2]) + w[t-7] + smallsigma0(w[t-15]) + w[t-16]; {
blk->used = 0;
blk->len = 0;
}
a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3]; static inline bool sha256_block_write(
e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7]; sha256_block *blk, const void **vdata, size_t *len)
{
size_t blkleft = sizeof(blk->block) - blk->used;
size_t chunk = *len < blkleft ? *len : blkleft;
for (t = 0; t < 64; t+=8) { const uint8_t *p = *vdata;
uint32_t t1, t2; memcpy(blk->block + blk->used, p, chunk);
*vdata = p + chunk;
*len -= chunk;
blk->used += chunk;
blk->len += chunk;
#define ROUND(j,a,b,c,d,e,f,g,h) \ if (blk->used == sizeof(blk->block)) {
t1 = h + bigsigma1(e) + Ch(e,f,g) + k[j] + w[j]; \ blk->used = 0;
t2 = bigsigma0(a) + Maj(a,b,c); \ return true;
d = d + t1; h = t1 + t2;
ROUND(t+0, a,b,c,d,e,f,g,h);
ROUND(t+1, h,a,b,c,d,e,f,g);
ROUND(t+2, g,h,a,b,c,d,e,f);
ROUND(t+3, f,g,h,a,b,c,d,e);
ROUND(t+4, e,f,g,h,a,b,c,d);
ROUND(t+5, d,e,f,g,h,a,b,c);
ROUND(t+6, c,d,e,f,g,h,a,b);
ROUND(t+7, b,c,d,e,f,g,h,a);
} }
s->h[0] += a; s->h[1] += b; s->h[2] += c; s->h[3] += d; return false;
s->h[4] += e; s->h[5] += f; s->h[6] += g; s->h[7] += h; }
static inline void sha256_block_pad(sha256_block *blk, BinarySink *bs)
{
uint64_t final_len = blk->len << 3;
size_t pad = 1 + (63 & (55 - blk->used));
put_byte(bs, 0x80);
for (size_t i = 1; i < pad; i++)
put_byte(bs, 0);
put_uint64(bs, final_len);
assert(blk->used == 0 && "Should have exactly hit a block boundary");
} }
/* ---------------------------------------------------------------------- /* ----------------------------------------------------------------------
* Outer SHA256 algorithm: take an arbitrary length byte string, * Software implementation of SHA-256.
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA256 algorithm.
*/ */
#define BLKSIZE 64 static inline uint32_t ror(uint32_t x, unsigned y)
static void SHA256_BinarySink_write(BinarySink *bs,
const void *p, size_t len);
void SHA256_Init(SHA256_State *s) {
SHA256_Core_Init(s);
s->blkused = 0;
s->len = 0;
if (supports_sha_ni())
s->sha256 = &SHA256_ni;
else
s->sha256 = &SHA256_sw;
BinarySink_INIT(s, SHA256_BinarySink_write);
}
static void SHA256_BinarySink_write(BinarySink *bs,
const void *p, size_t len)
{ {
struct SHA256_State *s = BinarySink_DOWNCAST(bs, struct SHA256_State); return (x << (31 & -y)) | (x >> (31 & y));
unsigned char *q = (unsigned char *)p;
/*
* Update the length field.
*/
s->len += len;
(*(s->sha256))(s, q, len);
} }
static void SHA256_sw(SHA256_State *s, const unsigned char *q, int len) { static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
uint32_t wordblock[16]; {
int i; return if0 ^ (ctrl & (if1 ^ if0));
if (s->blkused && s->blkused+len < BLKSIZE) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= BLKSIZE) {
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
q += BLKSIZE - s->blkused;
len -= BLKSIZE - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
( ((uint32_t)s->block[i*4+0]) << 24 ) |
( ((uint32_t)s->block[i*4+1]) << 16 ) |
( ((uint32_t)s->block[i*4+2]) << 8 ) |
( ((uint32_t)s->block[i*4+3]) << 0 );
}
SHA256_Block(s, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
} }
void SHA256_Final(SHA256_State *s, unsigned char *digest) { static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
int i; {
int pad; return (x & y) | (z & (x | y));
unsigned char c[64]; }
uint64_t len;
if (s->blkused >= 56) static inline uint32_t Sigma_0(uint32_t x)
pad = 56 + 64 - s->blkused; {
else return ror(x,2) ^ ror(x,13) ^ ror(x,22);
pad = 56 - s->blkused; }
len = (s->len << 3); static inline uint32_t Sigma_1(uint32_t x)
{
return ror(x,6) ^ ror(x,11) ^ ror(x,25);
}
memset(c, 0, pad); static inline uint32_t sigma_0(uint32_t x)
c[0] = 0x80; {
put_data(s, &c, pad); return ror(x,7) ^ ror(x,18) ^ (x >> 3);
}
put_uint64(s, len); static inline uint32_t sigma_1(uint32_t x)
{
return ror(x,17) ^ ror(x,19) ^ (x >> 10);
}
for (i = 0; i < 8; i++) { static inline void sha256_sw_round(
digest[i*4+0] = (s->h[i] >> 24) & 0xFF; unsigned round_index, const uint32_t *schedule,
digest[i*4+1] = (s->h[i] >> 16) & 0xFF; uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d,
digest[i*4+2] = (s->h[i] >> 8) & 0xFF; uint32_t *e, uint32_t *f, uint32_t *g, uint32_t *h)
digest[i*4+3] = (s->h[i] >> 0) & 0xFF; {
uint32_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) +
sha256_round_constants[round_index] + schedule[round_index];
uint32_t t2 = Sigma_0(*a) + Maj(*a,*b,*c);
*d += t1;
*h = t1 + t2;
}
static void sha256_sw_block(uint32_t *core, const uint8_t *block)
{
uint32_t w[SHA256_ROUNDS];
uint32_t a,b,c,d,e,f,g,h;
for (size_t t = 0; t < 16; t++)
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
for (size_t t = 16; t < SHA256_ROUNDS; t++)
w[t] = sigma_1(w[t-2]) + w[t-7] + sigma_0(w[t-15]) + w[t-16];
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4]; f = core[5]; g = core[6]; h = core[7];
for (size_t t = 0; t < SHA256_ROUNDS; t += 8) {
sha256_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h);
sha256_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g);
sha256_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f);
sha256_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e);
sha256_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d);
sha256_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c);
sha256_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b);
sha256_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a);
} }
core[0] += a; core[1] += b; core[2] += c; core[3] += d;
core[4] += e; core[5] += f; core[6] += g; core[7] += h;
smemclr(w, sizeof(w));
} }
void SHA256_Simple(const void *p, int len, unsigned char *output) { typedef struct sha256_sw {
SHA256_State s; uint32_t core[8];
sha256_block blk;
SHA256_Init(&s); BinarySink_IMPLEMENTATION;
put_data(&s, p, len);
SHA256_Final(&s, output);
smemclr(&s, sizeof(s));
}
/*
* Thin abstraction for things where hashes are pluggable.
*/
struct sha256_hash {
SHA256_State state;
ssh_hash hash; ssh_hash hash;
} sha256_sw;
static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha256_sw_new(const ssh_hashalg *alg)
{
sha256_sw *s = snew(sha256_sw);
memcpy(s->core, sha256_initial_state, sizeof(s->core));
sha256_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha256_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha256_sw_copy(ssh_hash *hash)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
sha256_sw *copy = snew(sha256_sw);
memcpy(copy, s, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha256_sw_free(ssh_hash *hash)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha256_sw *s = BinarySink_DOWNCAST(bs, sha256_sw);
while (len > 0)
if (sha256_block_write(&s->blk, &vp, &len))
sha256_sw_block(s->core, s->blk.block);
}
static void sha256_sw_final(ssh_hash *hash, uint8_t *digest)
{
sha256_sw *s = container_of(hash, sha256_sw, hash);
sha256_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < 8; i++)
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
sha256_sw_free(hash);
}
const ssh_hashalg ssh_sha256_sw = {
sha256_sw_new, sha256_sw_copy, sha256_sw_final, sha256_sw_free,
32, 64, "SHA-256",
}; };
static ssh_hash *sha256_new(const ssh_hashalg *alg) /* ----------------------------------------------------------------------
{ * Hardware-accelerated implementation of SHA-256 using x86 SHA-NI.
struct sha256_hash *h = snew(struct sha256_hash); */
SHA256_Init(&h->state);
h->hash.vt = alg;
BinarySink_DELEGATE_INIT(&h->hash, &h->state);
return &h->hash;
}
static ssh_hash *sha256_copy(ssh_hash *hashold) #if HW_SHA256 == HW_SHA256_NI
{
struct sha256_hash *hold, *hnew;
ssh_hash *hashnew = sha256_new(hashold->vt);
hold = container_of(hashold, struct sha256_hash, hash);
hnew = container_of(hashnew, struct sha256_hash, hash);
hnew->state = hold->state;
BinarySink_COPIED(&hnew->state);
return hashnew;
}
static void sha256_free(ssh_hash *hash)
{
struct sha256_hash *h = container_of(hash, struct sha256_hash, hash);
smemclr(h, sizeof(*h));
sfree(h);
}
static void sha256_final(ssh_hash *hash, unsigned char *output)
{
struct sha256_hash *h = container_of(hash, struct sha256_hash, hash);
SHA256_Final(&h->state, output);
sha256_free(hash);
}
const ssh_hashalg ssh_sha256 = {
sha256_new, sha256_copy, sha256_final, sha256_free, 32, 64, "SHA-256"
};
#ifdef COMPILER_SUPPORTS_SHA_NI
#if defined _MSC_VER && defined _M_AMD64
# include <intrin.h>
#endif
/* /*
* Set target architecture for Clang and GCC * Set target architecture for Clang and GCC
@ -269,7 +312,7 @@ const ssh_hashalg ssh_sha256 = {
# pragma GCC target("sse4.1") # pragma GCC target("sse4.1")
#endif #endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5)) #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha"))) # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else #else
# define FUNC_ISA # define FUNC_ISA
@ -278,80 +321,84 @@ const ssh_hashalg ssh_sha256 = {
#include <wmmintrin.h> #include <wmmintrin.h>
#include <smmintrin.h> #include <smmintrin.h>
#include <immintrin.h> #include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__) #if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h> #include <shaintrin.h>
#endif #endif
#if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h>
#define GET_CPU_ID_0(out) \
__cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
#define GET_CPU_ID_7(out) \
__cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
#else
#define GET_CPU_ID_0(out) __cpuid(out, 0)
#define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
#endif
static bool sha256_hw_available(void)
{
unsigned int CPUInfo[4];
GET_CPU_ID_0(CPUInfo);
if (CPUInfo[0] < 7)
return false;
GET_CPU_ID_7(CPUInfo);
return CPUInfo[1] & (1 << 29); /* Check SHA */
}
/* SHA256 implementation using new instructions /* SHA256 implementation using new instructions
The code is based on Jeffrey Walton's SHA256 implementation: The code is based on Jeffrey Walton's SHA256 implementation:
https://github.com/noloader/SHA-Intrinsics https://github.com/noloader/SHA-Intrinsics
*/ */
FUNC_ISA FUNC_ISA
static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) { static inline void sha256_ni_block(__m128i *core, const uint8_t *p)
if (s->blkused && s->blkused+len < BLKSIZE) { {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
__m128i STATE0, STATE1; __m128i STATE0, STATE1;
__m128i MSG, TMP; __m128i MSG, TMP;
__m128i MSG0, MSG1, MSG2, MSG3; __m128i MSG0, MSG1, MSG2, MSG3;
__m128i ABEF_SAVE, CDGH_SAVE; const __m128i *block = (const __m128i *)p;
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL); const __m128i MASK = _mm_set_epi64x(
0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
/* Load initial values */ /* Load initial values */
TMP = _mm_loadu_si128((const __m128i*) &s->h[0]); STATE0 = core[0];
STATE1 = _mm_loadu_si128((const __m128i*) &s->h[4]); STATE1 = core[1];
TMP = _mm_shuffle_epi32(TMP, 0xB1); /* CDAB */
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); /* EFGH */
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); /* ABEF */
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); /* CDGH */
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= BLKSIZE) {
memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
q += BLKSIZE - s->blkused;
len -= BLKSIZE - s->blkused;
/* Save current state */
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
/* Rounds 0-3 */ /* Rounds 0-3 */
MSG = _mm_loadu_si128((const __m128i*) (s->block + 0)); MSG = _mm_loadu_si128(block);
MSG0 = _mm_shuffle_epi8(MSG, MASK); MSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL)); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E); MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 4-7 */ /* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*) (s->block + 16)); MSG1 = _mm_loadu_si128(block + 1);
MSG1 = _mm_shuffle_epi8(MSG1, MASK); MSG1 = _mm_shuffle_epi8(MSG1, MASK);
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL)); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E); MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */ /* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*) (s->block + 32)); MSG2 = _mm_loadu_si128(block + 2);
MSG2 = _mm_shuffle_epi8(MSG2, MASK); MSG2 = _mm_shuffle_epi8(MSG2, MASK);
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL)); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E); MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 12-15 */ /* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*) (s->block + 48)); MSG3 = _mm_loadu_si128(block + 3);
MSG3 = _mm_shuffle_epi8(MSG3, MASK); MSG3 = _mm_shuffle_epi8(MSG3, MASK);
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL)); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4); TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_add_epi32(MSG0, TMP);
@ -361,7 +408,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 16-19 */ /* Rounds 16-19 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL)); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4); TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_add_epi32(MSG1, TMP);
@ -371,7 +419,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 20-23 */ /* Rounds 20-23 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL)); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4); TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_add_epi32(MSG2, TMP);
@ -381,7 +430,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 24-27 */ /* Rounds 24-27 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL)); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4); TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_add_epi32(MSG3, TMP);
@ -391,7 +441,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 28-31 */ /* Rounds 28-31 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL)); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4); TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_add_epi32(MSG0, TMP);
@ -401,7 +452,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 32-35 */ /* Rounds 32-35 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL)); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4); TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_add_epi32(MSG1, TMP);
@ -411,7 +463,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 36-39 */ /* Rounds 36-39 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL)); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4); TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_add_epi32(MSG2, TMP);
@ -421,7 +474,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1);
/* Rounds 40-43 */ /* Rounds 40-43 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL)); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4); TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_add_epi32(MSG3, TMP);
@ -431,7 +485,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2);
/* Rounds 44-47 */ /* Rounds 44-47 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL)); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG3, MSG2, 4); TMP = _mm_alignr_epi8(MSG3, MSG2, 4);
MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_add_epi32(MSG0, TMP);
@ -441,7 +496,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3);
/* Rounds 48-51 */ /* Rounds 48-51 */
MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL)); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x(
0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG0, MSG3, 4); TMP = _mm_alignr_epi8(MSG0, MSG3, 4);
MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_add_epi32(MSG1, TMP);
@ -451,7 +507,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0);
/* Rounds 52-55 */ /* Rounds 52-55 */
MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL)); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x(
0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG1, MSG0, 4); TMP = _mm_alignr_epi8(MSG1, MSG0, 4);
MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_add_epi32(MSG2, TMP);
@ -460,7 +517,8 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 56-59 */ /* Rounds 56-59 */
MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL)); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x(
0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(MSG2, MSG1, 4); TMP = _mm_alignr_epi8(MSG2, MSG1, 4);
MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_add_epi32(MSG3, TMP);
@ -469,45 +527,163 @@ static void SHA256_ni_(SHA256_State * s, const unsigned char *q, int len) {
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Rounds 60-63 */ /* Rounds 60-63 */
MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL)); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x(
0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E); MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
/* Combine state */ /* Combine state */
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE); core[0] = _mm_add_epi32(STATE0, core[0]);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE); core[1] = _mm_add_epi32(STATE1, core[1]);
s->blkused = 0;
}
TMP = _mm_shuffle_epi32(STATE0, 0x1B); /* FEBA */
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); /* DCHG */
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); /* DCBA */
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); /* ABEF */
/* Save state */
_mm_storeu_si128((__m128i*) &s->h[0], STATE0);
_mm_storeu_si128((__m128i*) &s->h[4], STATE1);
memcpy(s->block, q, len);
s->blkused = len;
}
} }
/* typedef struct sha256_ni {
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980 /*
* These two vectors store the 8 words of the SHA-256 state, but
* not in the same order they appear in the spec: the first word
* holds A,B,E,F and the second word C,D,G,H.
*/ */
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len) __m128i core[2];
sha256_block blk;
void *pointer_to_free;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha256_ni;
static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len);
static sha256_ni *sha256_ni_alloc(void)
{ {
SHA256_ni_(s, q, len); /*
* The __m128i variables in the context structure need to be
* 16-byte aligned, but not all malloc implementations that this
* code has to work with will guarantee to return a 16-byte
* aligned pointer. So we over-allocate, manually realign the
* pointer ourselves, and store the original one inside the
* context so we know how to free it later.
*/
void *allocation = smalloc(sizeof(sha256_ni) + 15);
uintptr_t alloc_address = (uintptr_t)allocation;
uintptr_t aligned_address = (alloc_address + 15) & ~15;
sha256_ni *s = (sha256_ni *)aligned_address;
s->pointer_to_free = allocation;
return s;
} }
#else /* COMPILER_SUPPORTS_AES_NI */ FUNC_ISA static ssh_hash *sha256_ni_new(const ssh_hashalg *alg)
static void SHA256_ni(SHA256_State * s, const unsigned char *q, int len)
{ {
unreachable("SHA256_ni not compiled in"); if (!sha256_hw_available_cached())
return NULL;
sha256_ni *s = sha256_ni_alloc();
/* Initialise the core vectors in their storage order */
s->core[0] = _mm_set_epi64x(
0x6a09e667bb67ae85ULL, 0x510e527f9b05688cULL);
s->core[1] = _mm_set_epi64x(
0x3c6ef372a54ff53aULL, 0x1f83d9ab5be0cd19ULL);
sha256_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha256_ni_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
} }
#endif /* COMPILER_SUPPORTS_AES_NI */ static ssh_hash *sha256_ni_copy(ssh_hash *hash)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
sha256_ni *copy = sha256_ni_alloc();
void *ptf_save = copy->pointer_to_free;
*copy = *s; /* structure copy */
copy->pointer_to_free = ptf_save;
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha256_ni_free(ssh_hash *hash)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
void *ptf = s->pointer_to_free;
smemclr(s, sizeof(*s));
sfree(ptf);
}
static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len)
{
sha256_ni *s = BinarySink_DOWNCAST(bs, sha256_ni);
while (len > 0)
if (sha256_block_write(&s->blk, &vp, &len))
sha256_ni_block(s->core, s->blk.block);
}
FUNC_ISA static void sha256_ni_final(ssh_hash *hash, uint8_t *digest)
{
sha256_ni *s = container_of(hash, sha256_ni, hash);
sha256_block_pad(&s->blk, BinarySink_UPCAST(s));
/* Rearrange the words into the output order */
__m128i feba = _mm_shuffle_epi32(s->core[0], 0x1B);
__m128i dchg = _mm_shuffle_epi32(s->core[1], 0xB1);
__m128i dcba = _mm_blend_epi16(feba, dchg, 0xF0);
__m128i hgfe = _mm_alignr_epi8(dchg, feba, 8);
/* Byte-swap them into the output endianness */
const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
dcba = _mm_shuffle_epi8(dcba, mask);
hgfe = _mm_shuffle_epi8(hgfe, mask);
/* And store them */
__m128i *output = (__m128i *)digest;
_mm_storeu_si128(output, dcba);
_mm_storeu_si128(output+1, hgfe);
sha256_ni_free(hash);
}
const ssh_hashalg ssh_sha256_hw = {
sha256_ni_new, sha256_ni_copy, sha256_ni_final, sha256_ni_free,
32, 64, "SHA-256",
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-256. In this
* case, sha256_hw_new returns NULL (though it should also never be
* selected by sha256_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA256 == HW_SHA256_NONE
static bool sha256_hw_available(void)
{
return false;
}
static ssh_hash *sha256_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static ssh_hash *sha256_stub_copy(ssh_hash *hash) STUB_BODY
static void sha256_stub_free(ssh_hash *hash) STUB_BODY
static void sha256_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha256_hw = {
sha256_stub_new, sha256_stub_copy, sha256_stub_final, sha256_stub_free,
32, 64, "SHA-256",
};
#endif /* HW_SHA256 */

768
sshsha.c
View File

@ -1,294 +1,291 @@
/* /*
* SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is * SHA-1 algorithm as described at
* also used as a `stirring' function for the PuTTY random number *
* pool. Implemented directly from the specification by Simon * http://csrc.nist.gov/cryptval/shs.html
* Tatham.
*/ */
#include "ssh.h" #include "ssh.h"
#include <assert.h> #include <assert.h>
typedef struct SHA_State { /*
uint32_t h[5]; * Start by deciding whether we can support hardware SHA at all.
unsigned char block[64];
int blkused;
uint64_t len;
void (*sha1)(struct SHA_State * s, const unsigned char *p, int len);
BinarySink_IMPLEMENTATION;
} SHA_State;
/* ----------------------------------------------------------------------
* Core SHA algorithm: processes 16-word blocks into a message digest.
*/ */
#define HW_SHA1_NONE 0
#define HW_SHA1_NI 1
#define rol(x,y) ( ((x) << (y)) | (((uint32_t)x) >> (32-y)) ) #ifdef _FORCE_SHA_NI
# define HW_SHA1 HW_SHA1_NI
static void sha1_sw(SHA_State * s, const unsigned char *q, int len); #elif defined(__clang__)
static void sha1_ni(SHA_State * s, const unsigned char *q, int len); # if __has_attribute(target) && __has_include(<wmmintrin.h>) && \
(defined(__x86_64__) || defined(__i386))
static void SHA_Core_Init(uint32_t h[5]) # define HW_SHA1 HW_SHA1_NI
{ # endif
h[0] = 0x67452301; #elif defined(__GNUC__)
h[1] = 0xefcdab89; # if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \
h[2] = 0x98badcfe; (defined(__x86_64__) || defined(__i386))
h[3] = 0x10325476; # define HW_SHA1 HW_SHA1_NI
h[4] = 0xc3d2e1f0; # endif
} #elif defined (_MSC_VER)
# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729
void SHATransform(uint32_t * digest, uint32_t * block) # define HW_SHA1 HW_SHA1_NI
{ # endif
uint32_t w[80];
uint32_t a, b, c, d, e;
int t;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf("SHATransform:");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf(" +");
for (i = 0; i < 16; i++)
printf(" %08x", block[i]);
}
}
#endif #endif
for (t = 0; t < 16; t++) #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA1
w[t] = block[t]; # undef HW_SHA1
# define HW_SHA1 HW_SHA1_NONE
for (t = 16; t < 80; t++) {
uint32_t tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = rol(tmp, 1);
}
a = digest[0];
b = digest[1];
c = digest[2];
d = digest[3];
e = digest[4];
for (t = 0; t < 20; t++) {
uint32_t tmp =
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 20; t < 40; t++) {
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 40; t < 60; t++) {
uint32_t tmp = rol(a,
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
0x8f1bbcdc;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 60; t < 80; t++) {
uint32_t tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
#ifdef RANDOM_DIAGNOSTICS
{
extern int random_diagnostics;
if (random_diagnostics) {
int i;
printf(" =");
for (i = 0; i < 5; i++)
printf(" %08x", digest[i]);
printf("\n");
}
}
#endif #endif
}
/* ----------------------------------------------------------------------
* Outer SHA algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA algorithm.
*/
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
void SHA_Init(SHA_State * s)
{
SHA_Core_Init(s->h);
s->blkused = 0;
s->len = 0;
if (supports_sha_ni())
s->sha1 = &sha1_ni;
else
s->sha1 = &sha1_sw;
BinarySink_INIT(s, SHA_BinarySink_write);
}
static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
{
struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
const unsigned char *q = (const unsigned char *) p;
/*
* Update the length field.
*/
s->len += len;
(*(s->sha1))(s, q, len);
}
static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
{
uint32_t wordblock[16];
int i;
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64) {
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32_t) s->block[i * 4 + 0]) << 24) |
(((uint32_t) s->block[i * 4 + 1]) << 16) |
(((uint32_t) s->block[i * 4 + 2]) << 8) |
(((uint32_t) s->block[i * 4 + 3]) << 0);
}
SHATransform(s->h, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
void SHA_Final(SHA_State * s, unsigned char *output)
{
int i;
int pad;
unsigned char c[64];
uint64_t len;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
len = (s->len << 3);
memset(c, 0, pad);
c[0] = 0x80;
put_data(s, &c, pad);
put_uint64(s, len);
for (i = 0; i < 5; i++) {
output[i * 4] = (s->h[i] >> 24) & 0xFF;
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
output[i * 4 + 3] = (s->h[i]) & 0xFF;
}
}
void SHA_Simple(const void *p, int len, unsigned char *output)
{
SHA_State s;
SHA_Init(&s);
put_data(&s, p, len);
SHA_Final(&s, output);
smemclr(&s, sizeof(s));
}
/* /*
* Thin abstraction for things where hashes are pluggable. * The actual query function that asks if hardware acceleration is
* available.
*/ */
static bool sha1_hw_available(void);
struct sha1_hash { /*
SHA_State state; * The top-level selection function, caching the results of
ssh_hash hash; * sha1_hw_available() so it only has to run once.
}; */
static bool sha1_hw_available_cached(void)
static ssh_hash *sha1_new(const ssh_hashalg *alg)
{ {
struct sha1_hash *h = snew(struct sha1_hash); static bool initialised = false;
SHA_Init(&h->state); static bool hw_available;
h->hash.vt = alg; if (!initialised) {
BinarySink_DELEGATE_INIT(&h->hash, &h->state); hw_available = sha1_hw_available();
return &h->hash; initialised = true;
}
return hw_available;
} }
static ssh_hash *sha1_copy(ssh_hash *hashold) static ssh_hash *sha1_select(const ssh_hashalg *alg)
{ {
struct sha1_hash *hold, *hnew; const ssh_hashalg *real_alg =
ssh_hash *hashnew = sha1_new(hashold->vt); sha1_hw_available_cached() ? &ssh_sha1_hw : &ssh_sha1_sw;
hold = container_of(hashold, struct sha1_hash, hash); return ssh_hash_new(real_alg);
hnew = container_of(hashnew, struct sha1_hash, hash);
hnew->state = hold->state;
BinarySink_COPIED(&hnew->state);
return hashnew;
}
static void sha1_free(ssh_hash *hash)
{
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
smemclr(h, sizeof(*h));
sfree(h);
}
static void sha1_final(ssh_hash *hash, unsigned char *output)
{
struct sha1_hash *h = container_of(hash, struct sha1_hash, hash);
SHA_Final(&h->state, output);
sha1_free(hash);
} }
const ssh_hashalg ssh_sha1 = { const ssh_hashalg ssh_sha1 = {
sha1_new, sha1_copy, sha1_final, sha1_free, 20, 64, "SHA-1" sha1_select, NULL, NULL, NULL,
20, 64, "SHA-1",
}; };
#ifdef COMPILER_SUPPORTS_SHA_NI /* ----------------------------------------------------------------------
* Definitions likely to be helpful to multiple implementations.
*/
#if defined _MSC_VER && defined _M_AMD64 static const uint32_t sha1_initial_state[] = {
# include <intrin.h> 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0,
#endif };
#define SHA1_ROUNDS_PER_STAGE 20
#define SHA1_STAGE0_CONSTANT 0x5a827999
#define SHA1_STAGE1_CONSTANT 0x6ed9eba1
#define SHA1_STAGE2_CONSTANT 0x8f1bbcdc
#define SHA1_STAGE3_CONSTANT 0xca62c1d6
#define SHA1_ROUNDS (4 * SHA1_ROUNDS_PER_STAGE)
typedef struct sha1_block sha1_block;
struct sha1_block {
uint8_t block[64];
size_t used;
uint64_t len;
};
static inline void sha1_block_setup(sha1_block *blk)
{
blk->used = 0;
blk->len = 0;
}
static inline bool sha1_block_write(
sha1_block *blk, const void **vdata, size_t *len)
{
size_t blkleft = sizeof(blk->block) - blk->used;
size_t chunk = *len < blkleft ? *len : blkleft;
const uint8_t *p = *vdata;
memcpy(blk->block + blk->used, p, chunk);
*vdata = p + chunk;
*len -= chunk;
blk->used += chunk;
blk->len += chunk;
if (blk->used == sizeof(blk->block)) {
blk->used = 0;
return true;
}
return false;
}
static inline void sha1_block_pad(sha1_block *blk, BinarySink *bs)
{
uint64_t final_len = blk->len << 3;
size_t pad = 1 + (63 & (55 - blk->used));
put_byte(bs, 0x80);
for (size_t i = 1; i < pad; i++)
put_byte(bs, 0);
put_uint64(bs, final_len);
assert(blk->used == 0 && "Should have exactly hit a block boundary");
}
/* ----------------------------------------------------------------------
* Software implementation of SHA-1.
*/
static inline uint32_t rol(uint32_t x, unsigned y)
{
return (x << (31 & y)) | (x >> (31 & -y));
}
static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0)
{
return if0 ^ (ctrl & (if1 ^ if0));
}
static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z)
{
return (x ^ y ^ z);
}
static inline void sha1_sw_round(
unsigned round_index, const uint32_t *schedule,
uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e,
uint32_t f, uint32_t constant)
{
*e = rol(*a, 5) + f + *e + schedule[round_index] + constant;
*b = rol(*b, 30);
}
static void sha1_sw_block(uint32_t *core, const uint8_t *block)
{
uint32_t w[SHA1_ROUNDS];
uint32_t a,b,c,d,e;
for (size_t t = 0; t < 16; t++)
w[t] = GET_32BIT_MSB_FIRST(block + 4*t);
for (size_t t = 16; t < SHA1_ROUNDS; t++)
w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1);
a = core[0]; b = core[1]; c = core[2]; d = core[3];
e = core[4];
size_t t = 0;
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT);
}
for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) {
sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT);
sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT);
}
core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e;
smemclr(w, sizeof(w));
}
typedef struct sha1_sw {
uint32_t core[5];
sha1_block blk;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_sw;
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len);
static ssh_hash *sha1_sw_new(const ssh_hashalg *alg)
{
sha1_sw *s = snew(sha1_sw);
memcpy(s->core, sha1_initial_state, sizeof(s->core));
sha1_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_sw_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
}
static ssh_hash *sha1_sw_copy(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
sha1_sw *copy = snew(sha1_sw);
memcpy(copy, s, sizeof(*copy));
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha1_sw_free(ssh_hash *hash)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
smemclr(s, sizeof(*s));
sfree(s);
}
static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_sw_block(s->core, s->blk.block);
}
static void sha1_sw_final(ssh_hash *hash, uint8_t *digest)
{
sha1_sw *s = container_of(hash, sha1_sw, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
for (size_t i = 0; i < 5; i++)
PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]);
sha1_sw_free(hash);
}
const ssh_hashalg ssh_sha1_sw = {
sha1_sw_new, sha1_sw_copy, sha1_sw_final, sha1_sw_free,
20, 64, "SHA-1",
};
/* ----------------------------------------------------------------------
* Hardware-accelerated implementation of SHA-1 using x86 SHA-NI.
*/
#if HW_SHA1 == HW_SHA1_NI
/* /*
* Set target architecture for Clang and GCC * Set target architecture for Clang and GCC
@ -298,7 +295,7 @@ const ssh_hashalg ssh_sha1 = {
# pragma GCC target("sse4.1") # pragma GCC target("sse4.1")
#endif #endif
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5)) #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
# define FUNC_ISA __attribute__ ((target("sse4.1,sha"))) # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
#else #else
# define FUNC_ISA # define FUNC_ISA
@ -307,87 +304,58 @@ const ssh_hashalg ssh_sha1 = {
#include <wmmintrin.h> #include <wmmintrin.h>
#include <smmintrin.h> #include <smmintrin.h>
#include <immintrin.h> #include <immintrin.h>
#if defined(__clang__) || defined(__GNUC__) #if defined(__clang__) || defined(__GNUC__)
#include <shaintrin.h> #include <shaintrin.h>
#endif #endif
/*
* Determinators of CPU type
*/
#if defined(__clang__) || defined(__GNUC__) #if defined(__clang__) || defined(__GNUC__)
#include <cpuid.h> #include <cpuid.h>
bool supports_sha_ni(void) #define GET_CPU_ID_0(out) \
__cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3])
#define GET_CPU_ID_7(out) \
__cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3])
#else
#define GET_CPU_ID_0(out) __cpuid(out, 0)
#define GET_CPU_ID_7(out) __cpuidex(out, 7, 0)
#endif
static bool sha1_hw_available(void)
{ {
unsigned int CPUInfo[4]; unsigned int CPUInfo[4];
__cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]); GET_CPU_ID_0(CPUInfo);
if (CPUInfo[0] < 7) if (CPUInfo[0] < 7)
return false; return false;
__cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]); GET_CPU_ID_7(CPUInfo);
return CPUInfo[1] & (1 << 29); /* SHA */
}
#else /* defined(__clang__) || defined(__GNUC__) */
bool supports_sha_ni(void)
{
unsigned int CPUInfo[4];
__cpuid(CPUInfo, 0);
if (CPUInfo[0] < 7)
return false;
__cpuidex(CPUInfo, 7, 0);
return CPUInfo[1] & (1 << 29); /* Check SHA */ return CPUInfo[1] & (1 << 29); /* Check SHA */
} }
#endif /* defined(__clang__) || defined(__GNUC__) */
/* SHA1 implementation using new instructions /* SHA1 implementation using new instructions
The code is based on Jeffrey Walton's SHA1 implementation: The code is based on Jeffrey Walton's SHA1 implementation:
https://github.com/noloader/SHA-Intrinsics https://github.com/noloader/SHA-Intrinsics
*/ */
FUNC_ISA FUNC_ISA
static void sha1_ni_(SHA_State * s, const unsigned char *q, int len) static inline void sha1_ni_block(__m128i *core, const uint8_t *p)
{ {
if (s->blkused && s->blkused + len < 64) { __m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3;
/* const __m128i MASK = _mm_set_epi64x(
* Trivial case: just add to the block. 0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
ABCD = _mm_loadu_si128((const __m128i*) s->h); const __m128i *block = (const __m128i *)p;
E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/* /* Load initial values */
* We must complete and process at least one block. ABCD = core[0];
*/ E0 = core[1];
while (s->blkused + len >= 64)
{
__m128i MSG0, MSG1, MSG2, MSG3;
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Save current state */
ABCD_SAVE = ABCD;
E0_SAVE = E0;
/* Rounds 0-3 */ /* Rounds 0-3 */
MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0)); MSG0 = _mm_loadu_si128(block);
MSG0 = _mm_shuffle_epi8(MSG0, MASK); MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0); E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD; E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
/* Rounds 4-7 */ /* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16)); MSG1 = _mm_loadu_si128(block + 1);
MSG1 = _mm_shuffle_epi8(MSG1, MASK); MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1); E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD; E0 = ABCD;
@ -395,7 +363,7 @@ static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */ /* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32)); MSG2 = _mm_loadu_si128(block + 2);
MSG2 = _mm_shuffle_epi8(MSG2, MASK); MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2); E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD; E1 = ABCD;
@ -404,7 +372,7 @@ static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
MSG0 = _mm_xor_si128(MSG0, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 12-15 */ /* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48)); MSG3 = _mm_loadu_si128(block + 3);
MSG3 = _mm_shuffle_epi8(MSG3, MASK); MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3); E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD; E0 = ABCD;
@ -536,41 +504,153 @@ static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
/* Combine state */ /* Combine state */
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE); core[0] = _mm_add_epi32(ABCD, core[0]);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE); core[1] = _mm_sha1nexte_epu32(E0, core[1]);
s->blkused = 0;
}
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/* Save state */
_mm_storeu_si128((__m128i*) s->h, ABCD);
s->h[4] = _mm_extract_epi32(E0, 3);
memcpy(s->block, q, len);
s->blkused = len;
}
} }
/* typedef struct sha1_ni {
* Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980 /*
* core[0] stores the first four words of the SHA-1 state. core[1]
* stores just the fifth word, in the vector lane at the highest
* address.
*/ */
static void sha1_ni(SHA_State * s, const unsigned char *q, int len) __m128i core[2];
sha1_block blk;
void *pointer_to_free;
BinarySink_IMPLEMENTATION;
ssh_hash hash;
} sha1_ni;
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len);
static sha1_ni *sha1_ni_alloc(void)
{ {
sha1_ni_(s, q, len); /*
* The __m128i variables in the context structure need to be
* 16-byte aligned, but not all malloc implementations that this
* code has to work with will guarantee to return a 16-byte
* aligned pointer. So we over-allocate, manually realign the
* pointer ourselves, and store the original one inside the
* context so we know how to free it later.
*/
void *allocation = smalloc(sizeof(sha1_ni) + 15);
uintptr_t alloc_address = (uintptr_t)allocation;
uintptr_t aligned_address = (alloc_address + 15) & ~15;
sha1_ni *s = (sha1_ni *)aligned_address;
s->pointer_to_free = allocation;
return s;
} }
#else /* COMPILER_SUPPORTS_AES_NI */ FUNC_ISA static ssh_hash *sha1_ni_new(const ssh_hashalg *alg)
static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
{ {
unreachable("sha1_ni not compiled in"); if (!sha1_hw_available_cached())
return NULL;
sha1_ni *s = sha1_ni_alloc();
/* Initialise the core vectors in their storage order */
s->core[0] = _mm_set_epi64x(
0x67452301efcdab89ULL, 0x98badcfe10325476ULL);
s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0);
sha1_block_setup(&s->blk);
s->hash.vt = alg;
BinarySink_INIT(s, sha1_ni_write);
BinarySink_DELEGATE_INIT(&s->hash, s);
return &s->hash;
} }
bool supports_sha_ni(void) static ssh_hash *sha1_ni_copy(ssh_hash *hash)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
sha1_ni *copy = sha1_ni_alloc();
void *ptf_save = copy->pointer_to_free;
*copy = *s; /* structure copy */
copy->pointer_to_free = ptf_save;
BinarySink_COPIED(copy);
BinarySink_DELEGATE_INIT(&copy->hash, copy);
return &copy->hash;
}
static void sha1_ni_free(ssh_hash *hash)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
void *ptf = s->pointer_to_free;
smemclr(s, sizeof(*s));
sfree(ptf);
}
static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len)
{
sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni);
while (len > 0)
if (sha1_block_write(&s->blk, &vp, &len))
sha1_ni_block(s->core, s->blk.block);
}
FUNC_ISA static void sha1_ni_final(ssh_hash *hash, uint8_t *digest)
{
sha1_ni *s = container_of(hash, sha1_ni, hash);
sha1_block_pad(&s->blk, BinarySink_UPCAST(s));
/* Rearrange the first vector into its output order */
__m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B);
/* Byte-swap it into the output endianness */
const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
abcd = _mm_shuffle_epi8(abcd, mask);
/* And store it */
_mm_storeu_si128((__m128i *)digest, abcd);
/* Finally, store the leftover word */
uint32_t e = _mm_extract_epi32(s->core[1], 3);
PUT_32BIT_MSB_FIRST(digest + 16, e);
sha1_ni_free(hash);
}
const ssh_hashalg ssh_sha1_hw = {
sha1_ni_new, sha1_ni_copy, sha1_ni_final, sha1_ni_free,
20, 64, "SHA-1",
};
/* ----------------------------------------------------------------------
* Stub functions if we have no hardware-accelerated SHA-1. In this
* case, sha1_hw_new returns NULL (though it should also never be
* selected by sha1_select, so the only thing that should even be
* _able_ to call it is testcrypt). As a result, the remaining vtable
* functions should never be called at all.
*/
#elif HW_SHA1 == HW_SHA1_NONE
static bool sha1_hw_available(void)
{ {
return false; return false;
} }
#endif /* COMPILER_SUPPORTS_AES_NI */ static ssh_hash *sha1_stub_new(const ssh_hashalg *alg)
{
return NULL;
}
#define STUB_BODY { unreachable("Should never be called"); }
static ssh_hash *sha1_stub_copy(ssh_hash *hash) STUB_BODY
static void sha1_stub_free(ssh_hash *hash) STUB_BODY
static void sha1_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY
const ssh_hashalg ssh_sha1_hw = {
sha1_stub_new, sha1_stub_copy, sha1_stub_final, sha1_stub_free,
20, 64, "SHA-1",
};
#endif /* HW_SHA1 */

View File

@ -1172,6 +1172,46 @@ class crypt(MyTestBase):
self.assertEqualBin(data2, expected_data2[:127]) self.assertEqualBin(data2, expected_data2[:127])
self.assertEqualBin(data3, expected_data3) self.assertEqualBin(data3, expected_data3)
def testHashPadding(self):
# A consistency test for hashes that use MD5/SHA-1/SHA-2 style
# padding of the message into a whole number of fixed-size
# blocks. We test-hash a message of every length up to twice
# the block length, to make sure there's no off-by-1 error in
# the code that decides how much padding to put on.
# Source: generated using Python hashlib as an independent
# implementation. The function below will do it, called with
# parameters such as (hashlib.sha256,128).
#
# def gen_testcase(hashclass, maxlen):
# return hashclass(b''.join(hashclass(text[:i]).digest()
# for i in range(maxlen))).hexdigest()
text = """
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
""".replace('\n', ' ').strip()
def test(hashname, maxlen, expected):
assert len(text) >= maxlen
buf = b''.join(hash_str(hashname, text[:i])
for i in range(maxlen))
self.assertEqualBin(hash_str(hashname, buf), unhex(expected))
test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15')
test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259')
test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232'
'35d4eed3368d876fdf10c9df27396640')
test('sha512', 256,
'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578'
'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055'
)
class standard_test_vectors(MyTestBase): class standard_test_vectors(MyTestBase):
def testAES(self): def testAES(self):
def vector(cipher, key, plaintext, ciphertext): def vector(cipher, key, plaintext, ciphertext):