mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-07-01 11:32:48 -05:00
Add support for DSA authentication in SSH2, following clever ideas
on how to get round the problem of generating a good k. [originally from svn r1284]
This commit is contained in:
317
sshdss.c
317
sshdss.c
@ -3,6 +3,7 @@
|
||||
#include <assert.h>
|
||||
|
||||
#include "ssh.h"
|
||||
#include "misc.h"
|
||||
|
||||
#define GET_32BIT(cp) \
|
||||
(((unsigned long)(unsigned char)(cp)[0] << 24) | \
|
||||
@ -16,11 +17,35 @@
|
||||
(cp)[2] = (unsigned char)((value) >> 8); \
|
||||
(cp)[3] = (unsigned char)(value); }
|
||||
|
||||
#if 0
|
||||
#define DEBUG_DSS
|
||||
#else
|
||||
#define diagbn(x,y)
|
||||
#endif
|
||||
static void sha_mpint(SHA_State * s, Bignum b)
|
||||
{
|
||||
unsigned char *p;
|
||||
unsigned char lenbuf[4];
|
||||
int len;
|
||||
len = (bignum_bitcount(b) + 8) / 8;
|
||||
PUT_32BIT(lenbuf, len);
|
||||
SHA_Bytes(s, lenbuf, 4);
|
||||
while (len-- > 0) {
|
||||
lenbuf[0] = bignum_byte(b, len);
|
||||
SHA_Bytes(s, lenbuf, 1);
|
||||
}
|
||||
memset(lenbuf, 0, sizeof(lenbuf));
|
||||
}
|
||||
|
||||
static void sha512_mpint(SHA512_State * s, Bignum b)
|
||||
{
|
||||
unsigned char *p;
|
||||
unsigned char lenbuf[4];
|
||||
int len;
|
||||
len = (bignum_bitcount(b) + 8) / 8;
|
||||
PUT_32BIT(lenbuf, len);
|
||||
SHA512_Bytes(s, lenbuf, 4);
|
||||
while (len-- > 0) {
|
||||
lenbuf[0] = bignum_byte(b, len);
|
||||
SHA512_Bytes(s, lenbuf, 1);
|
||||
}
|
||||
memset(lenbuf, 0, sizeof(lenbuf));
|
||||
}
|
||||
|
||||
static void getstring(char **data, int *datalen, char **p, int *length)
|
||||
{
|
||||
@ -62,10 +87,6 @@ static Bignum get160(char **data, int *datalen)
|
||||
return b;
|
||||
}
|
||||
|
||||
struct dss_key {
|
||||
Bignum p, q, g, y;
|
||||
};
|
||||
|
||||
static void *dss_newkey(char *data, int len)
|
||||
{
|
||||
char *p;
|
||||
@ -236,14 +257,8 @@ static int dss_verifysig(void *key, char *sig, int siglen,
|
||||
}
|
||||
sig += 4, siglen -= 4; /* skip yet another length field */
|
||||
}
|
||||
diagbn("p=", dss->p);
|
||||
diagbn("q=", dss->q);
|
||||
diagbn("g=", dss->g);
|
||||
diagbn("y=", dss->y);
|
||||
r = get160(&sig, &siglen);
|
||||
diagbn("r=", r);
|
||||
s = get160(&sig, &siglen);
|
||||
diagbn("s=", s);
|
||||
if (!r || !s)
|
||||
return 0;
|
||||
|
||||
@ -251,7 +266,6 @@ static int dss_verifysig(void *key, char *sig, int siglen,
|
||||
* Step 1. w <- s^-1 mod q.
|
||||
*/
|
||||
w = modinv(s, dss->q);
|
||||
diagbn("w=", w);
|
||||
|
||||
/*
|
||||
* Step 2. u1 <- SHA(message) * w mod q.
|
||||
@ -260,28 +274,20 @@ static int dss_verifysig(void *key, char *sig, int siglen,
|
||||
p = hash;
|
||||
slen = 20;
|
||||
sha = get160(&p, &slen);
|
||||
diagbn("sha=", sha);
|
||||
u1 = modmul(sha, w, dss->q);
|
||||
diagbn("u1=", u1);
|
||||
|
||||
/*
|
||||
* Step 3. u2 <- r * w mod q.
|
||||
*/
|
||||
u2 = modmul(r, w, dss->q);
|
||||
diagbn("u2=", u2);
|
||||
|
||||
/*
|
||||
* Step 4. v <- (g^u1 * y^u2 mod p) mod q.
|
||||
*/
|
||||
gu1p = modpow(dss->g, u1, dss->p);
|
||||
diagbn("gu1p=", gu1p);
|
||||
yu2p = modpow(dss->y, u2, dss->p);
|
||||
diagbn("yu2p=", yu2p);
|
||||
gu1yu2p = modmul(gu1p, yu2p, dss->p);
|
||||
diagbn("gu1yu2p=", gu1yu2p);
|
||||
v = modmul(gu1yu2p, One, dss->q);
|
||||
diagbn("gu1yu2q=v=", v);
|
||||
diagbn("r=", r);
|
||||
|
||||
/*
|
||||
* Step 5. v should now be equal to r.
|
||||
@ -347,28 +353,281 @@ static unsigned char *dss_public_blob(void *key, int *len)
|
||||
|
||||
static unsigned char *dss_private_blob(void *key, int *len)
|
||||
{
|
||||
return NULL; /* can't handle DSS private keys */
|
||||
struct dss_key *dss = (struct dss_key *) key;
|
||||
int xlen, bloblen;
|
||||
int i;
|
||||
unsigned char *blob, *p;
|
||||
SHA_State s;
|
||||
unsigned char digest[20];
|
||||
|
||||
xlen = (bignum_bitcount(dss->x) + 8) / 8;
|
||||
|
||||
/*
|
||||
* mpint x, string[20] the SHA of p||q||g. Total 28 + xlen.
|
||||
* (two length fields and twenty bytes, 20+8=28).
|
||||
*/
|
||||
bloblen = 28 + xlen;
|
||||
blob = smalloc(bloblen);
|
||||
p = blob;
|
||||
PUT_32BIT(p, xlen);
|
||||
p += 4;
|
||||
for (i = xlen; i--;)
|
||||
*p++ = bignum_byte(dss->x, i);
|
||||
PUT_32BIT(p, 20);
|
||||
SHA_Init(&s);
|
||||
sha_mpint(&s, dss->p);
|
||||
sha_mpint(&s, dss->q);
|
||||
sha_mpint(&s, dss->g);
|
||||
SHA_Final(&s, digest);
|
||||
p += 4;
|
||||
for (i = 0; i < 20; i++)
|
||||
*p++ = digest[i];
|
||||
assert(p == blob + bloblen);
|
||||
*len = bloblen;
|
||||
return blob;
|
||||
}
|
||||
|
||||
static void *dss_createkey(unsigned char *pub_blob, int pub_len,
|
||||
unsigned char *priv_blob, int priv_len)
|
||||
{
|
||||
return NULL; /* can't handle DSS private keys */
|
||||
struct dss_key *dss;
|
||||
char *pb = (char *) priv_blob;
|
||||
char *hash;
|
||||
int hashlen;
|
||||
SHA_State s;
|
||||
unsigned char digest[20];
|
||||
Bignum ytest;
|
||||
|
||||
dss = dss_newkey((char *) pub_blob, pub_len);
|
||||
dss->x = getmp(&pb, &priv_len);
|
||||
getstring(&pb, &priv_len, &hash, &hashlen);
|
||||
|
||||
/*
|
||||
* Verify details of the key. First check that the hash is
|
||||
* indeed a hash of p||q||g.
|
||||
*/
|
||||
if (hashlen != 20) {
|
||||
dss_freekey(dss);
|
||||
return NULL;
|
||||
}
|
||||
SHA_Init(&s);
|
||||
sha_mpint(&s, dss->p);
|
||||
sha_mpint(&s, dss->q);
|
||||
sha_mpint(&s, dss->g);
|
||||
SHA_Final(&s, digest);
|
||||
if (0 != memcmp(hash, digest, 20)) {
|
||||
dss_freekey(dss);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now ensure g^x mod p really is y.
|
||||
*/
|
||||
ytest = modpow(dss->g, dss->x, dss->p);
|
||||
if (0 != bignum_cmp(ytest, dss->y)) {
|
||||
dss_freekey(dss);
|
||||
return NULL;
|
||||
}
|
||||
freebn(ytest);
|
||||
|
||||
return dss;
|
||||
}
|
||||
|
||||
static void *dss_openssh_createkey(unsigned char **blob, int *len)
|
||||
{
|
||||
return NULL; /* can't handle DSS private keys */
|
||||
char **b = (char **) blob;
|
||||
struct dss_key *dss;
|
||||
|
||||
dss = smalloc(sizeof(struct dss_key));
|
||||
if (!dss)
|
||||
return NULL;
|
||||
|
||||
dss->p = getmp(b, len);
|
||||
dss->q = getmp(b, len);
|
||||
dss->g = getmp(b, len);
|
||||
dss->y = getmp(b, len);
|
||||
dss->x = getmp(b, len);
|
||||
|
||||
if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
|
||||
sfree(dss->p);
|
||||
sfree(dss->q);
|
||||
sfree(dss->g);
|
||||
sfree(dss->y);
|
||||
sfree(dss->x);
|
||||
sfree(dss);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return dss;
|
||||
}
|
||||
|
||||
static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
|
||||
{
|
||||
return -1; /* can't handle DSS private keys */
|
||||
struct dss_key *dss = (struct dss_key *) key;
|
||||
int bloblen, i;
|
||||
|
||||
bloblen =
|
||||
ssh2_bignum_length(dss->p) +
|
||||
ssh2_bignum_length(dss->q) +
|
||||
ssh2_bignum_length(dss->g) +
|
||||
ssh2_bignum_length(dss->y) +
|
||||
ssh2_bignum_length(dss->x);
|
||||
|
||||
if (bloblen > len)
|
||||
return bloblen;
|
||||
|
||||
bloblen = 0;
|
||||
#define ENC(x) \
|
||||
PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
|
||||
for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
|
||||
ENC(dss->p);
|
||||
ENC(dss->q);
|
||||
ENC(dss->g);
|
||||
ENC(dss->y);
|
||||
ENC(dss->x);
|
||||
|
||||
return bloblen;
|
||||
}
|
||||
|
||||
unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
|
||||
{
|
||||
return NULL; /* can't handle DSS private keys */
|
||||
/*
|
||||
* The basic DSS signing algorithm is:
|
||||
*
|
||||
* - invent a random k between 1 and q-1 (exclusive).
|
||||
* - Compute r = (g^k mod p) mod q.
|
||||
* - Compute s = k^-1 * (hash + x*r) mod q.
|
||||
*
|
||||
* This has the dangerous properties that:
|
||||
*
|
||||
* - if an attacker in possession of the public key _and_ the
|
||||
* signature (for example, the host you just authenticated
|
||||
* to) can guess your k, he can reverse the computation of s
|
||||
* and work out x = r^-1 * (s*k - hash) mod q. That is, he
|
||||
* can deduce the private half of your key, and masquerade
|
||||
* as you for as long as the key is still valid.
|
||||
*
|
||||
* - since r is a function purely of k and the public key, if
|
||||
* the attacker only has a _range of possibilities_ for k
|
||||
* it's easy for him to work through them all and check each
|
||||
* one against r; he'll never be unsure of whether he's got
|
||||
* the right one.
|
||||
*
|
||||
* - if you ever sign two different hashes with the same k, it
|
||||
* will be immediately obvious because the two signatures
|
||||
* will have the same r, and moreover an attacker in
|
||||
* possession of both signatures (and the public key of
|
||||
* course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
|
||||
* and from there deduce x as before.
|
||||
*
|
||||
* - the Bleichenbacher attack on DSA makes use of methods of
|
||||
* generating k which are significantly non-uniformly
|
||||
* distributed; in particular, generating a 160-bit random
|
||||
* number and reducing it mod q is right out.
|
||||
*
|
||||
* For this reason we must be pretty careful about how we
|
||||
* generate our k. Since this code runs on Windows, with no
|
||||
* particularly good system entropy sources, we can't trust our
|
||||
* RNG itself to produce properly unpredictable data. Hence, we
|
||||
* use a totally different scheme instead.
|
||||
*
|
||||
* What we do is to take a SHA-512 (_big_) hash of the private
|
||||
* key x, and then feed this into another SHA-512 hash that
|
||||
* also includes the message hash being signed. That is:
|
||||
*
|
||||
* proto_k = SHA512 ( SHA512(x) || SHA160(message) )
|
||||
*
|
||||
* This number is 512 bits long, so reducing it mod q won't be
|
||||
* noticeably non-uniform. So
|
||||
*
|
||||
* k = proto_k mod q
|
||||
*
|
||||
* This has the interesting property that it's _deterministic_:
|
||||
* signing the same hash twice with the same key yields the
|
||||
* same signature.
|
||||
*
|
||||
* (It doesn't, _per se_, protect against reuse of k. Reuse of
|
||||
* k is left to chance; all it does is prevent _excessively
|
||||
* high_ chances of reuse of k due to entropy problems.)
|
||||
*
|
||||
* Thanks to Colin Plumb for the general idea of using x to
|
||||
* ensure k is hard to guess, and to the Cambridge University
|
||||
* Computer Security Group for helping to argue out all the
|
||||
* fine details.
|
||||
*/
|
||||
struct dss_key *dss = (struct dss_key *) key;
|
||||
SHA512_State ss;
|
||||
unsigned char digest[20], digest512[64];
|
||||
Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
|
||||
unsigned char *bytes;
|
||||
int nbytes, i;
|
||||
|
||||
SHA_Simple(data, datalen, digest);
|
||||
|
||||
/*
|
||||
* Hash some identifying text plus x.
|
||||
*/
|
||||
SHA512_Init(&ss);
|
||||
SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
|
||||
sha512_mpint(&ss, dss->x);
|
||||
SHA512_Final(&ss, digest512);
|
||||
|
||||
/*
|
||||
* Now hash that digest plus the message hash.
|
||||
*/
|
||||
SHA512_Init(&ss);
|
||||
SHA512_Bytes(&ss, digest512, sizeof(digest512));
|
||||
SHA512_Bytes(&ss, digest, sizeof(digest));
|
||||
SHA512_Final(&ss, digest512);
|
||||
|
||||
memset(&ss, 0, sizeof(ss));
|
||||
|
||||
/*
|
||||
* Now convert the result into a bignum, and reduce it mod q.
|
||||
*/
|
||||
proto_k = bignum_from_bytes(digest512, 64);
|
||||
k = bigmod(proto_k, dss->q);
|
||||
freebn(proto_k);
|
||||
|
||||
memset(digest512, 0, sizeof(digest512));
|
||||
|
||||
/*
|
||||
* Now we have k, so just go ahead and compute the signature.
|
||||
*/
|
||||
gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
|
||||
r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
|
||||
freebn(gkp);
|
||||
|
||||
hash = bignum_from_bytes(digest, 20);
|
||||
kinv = modinv(k, dss->q); /* k^-1 mod q */
|
||||
hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
|
||||
s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
|
||||
freebn(hxr);
|
||||
freebn(kinv);
|
||||
freebn(hash);
|
||||
|
||||
/*
|
||||
* Signature blob is
|
||||
*
|
||||
* string "ssh-dss"
|
||||
* string two 20-byte numbers r and s, end to end
|
||||
*
|
||||
* i.e. 4+7 + 4+40 bytes.
|
||||
*/
|
||||
nbytes = 4 + 7 + 4 + 40;
|
||||
bytes = smalloc(nbytes);
|
||||
PUT_32BIT(bytes, 7);
|
||||
memcpy(bytes + 4, "ssh-dss", 7);
|
||||
PUT_32BIT(bytes + 4 + 7, 40);
|
||||
for (i = 0; i < 20; i++) {
|
||||
bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
|
||||
bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
|
||||
}
|
||||
freebn(r);
|
||||
freebn(s);
|
||||
|
||||
*siglen = nbytes;
|
||||
return bytes;
|
||||
}
|
||||
|
||||
const struct ssh_signkey ssh_dss = {
|
||||
|
Reference in New Issue
Block a user