mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 01:48:00 +00:00
Implement the Karatsuba technique for recursive divide-and-conquer
optimisation of large multiplies. [originally from svn r9093]
This commit is contained in:
parent
8b4c50be45
commit
d9c3353176
185
sshbn.c
185
sshbn.c
@ -159,29 +159,192 @@ Bignum bn_power_2(int n)
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
|
||||
* big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
|
||||
* off the top.
|
||||
*/
|
||||
static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
|
||||
BignumInt *c, int len)
|
||||
{
|
||||
int i;
|
||||
BignumDblInt carry = 0;
|
||||
|
||||
for (i = len-1; i >= 0; i--) {
|
||||
carry += (BignumDblInt)a[i] + b[i];
|
||||
c[i] = (BignumInt)carry;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
}
|
||||
|
||||
return (BignumInt)carry;
|
||||
}
|
||||
|
||||
/*
|
||||
* Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
|
||||
* all big-endian arrays of 'len' BignumInts. Any borrow from the top
|
||||
* is ignored.
|
||||
*/
|
||||
static void internal_sub(const BignumInt *a, const BignumInt *b,
|
||||
BignumInt *c, int len)
|
||||
{
|
||||
int i;
|
||||
BignumDblInt carry = 1;
|
||||
|
||||
for (i = len-1; i >= 0; i--) {
|
||||
carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
|
||||
c[i] = (BignumInt)carry;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute c = a * b.
|
||||
* Input is in the first len words of a and b.
|
||||
* Result is returned in the first 2*len words of c.
|
||||
*/
|
||||
#define KARATSUBA_THRESHOLD 50
|
||||
static void internal_mul(BignumInt *a, BignumInt *b,
|
||||
BignumInt *c, int len)
|
||||
{
|
||||
int i, j;
|
||||
BignumDblInt t;
|
||||
|
||||
for (j = 0; j < 2 * len; j++)
|
||||
c[j] = 0;
|
||||
if (len > KARATSUBA_THRESHOLD) {
|
||||
|
||||
for (i = len - 1; i >= 0; i--) {
|
||||
t = 0;
|
||||
for (j = len - 1; j >= 0; j--) {
|
||||
t += MUL_WORD(a[i], (BignumDblInt) b[j]);
|
||||
t += (BignumDblInt) c[i + j + 1];
|
||||
c[i + j + 1] = (BignumInt) t;
|
||||
t = t >> BIGNUM_INT_BITS;
|
||||
}
|
||||
c[i] = (BignumInt) t;
|
||||
/*
|
||||
* Karatsuba divide-and-conquer algorithm. Cut each input in
|
||||
* half, so that it's expressed as two big 'digits' in a giant
|
||||
* base D:
|
||||
*
|
||||
* a = a_1 D + a_0
|
||||
* b = b_1 D + b_0
|
||||
*
|
||||
* Then the product is of course
|
||||
*
|
||||
* ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
|
||||
*
|
||||
* and we compute the three coefficients by recursively
|
||||
* calling ourself to do half-length multiplications.
|
||||
*
|
||||
* The clever bit that makes this worth doing is that we only
|
||||
* need _one_ half-length multiplication for the central
|
||||
* coefficient rather than the two that it obviouly looks
|
||||
* like, because we can use a single multiplication to compute
|
||||
*
|
||||
* (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
|
||||
*
|
||||
* and then we subtract the other two coefficients (a_1 b_1
|
||||
* and a_0 b_0) which we were computing anyway.
|
||||
*
|
||||
* Hence we get to multiply two numbers of length N in about
|
||||
* three times as much work as it takes to multiply numbers of
|
||||
* length N/2, which is obviously better than the four times
|
||||
* as much work it would take if we just did a long
|
||||
* conventional multiply.
|
||||
*/
|
||||
|
||||
int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
|
||||
int midlen = botlen + 1;
|
||||
BignumInt *scratch;
|
||||
BignumDblInt carry;
|
||||
|
||||
/*
|
||||
* The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
|
||||
* in the output array, so we can compute them immediately in
|
||||
* place.
|
||||
*/
|
||||
|
||||
/* a_1 b_1 */
|
||||
internal_mul(a, b, c, toplen);
|
||||
|
||||
/* a_0 b_0 */
|
||||
internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen);
|
||||
|
||||
/*
|
||||
* We must allocate scratch space for the central coefficient,
|
||||
* and also for the two input values that we multiply when
|
||||
* computing it. Since either or both may carry into the
|
||||
* (botlen+1)th word, we must use a slightly longer length
|
||||
* 'midlen'.
|
||||
*/
|
||||
scratch = snewn(4 * midlen, BignumInt);
|
||||
|
||||
/* Zero padding. midlen exceeds toplen by at most 2, so just
|
||||
* zero the first two words of each input and the rest will be
|
||||
* copied over. */
|
||||
scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
|
||||
|
||||
for (j = 0; j < toplen; j++) {
|
||||
scratch[midlen - toplen + j] = a[j]; /* a_1 */
|
||||
scratch[2*midlen - toplen + j] = b[j]; /* b_1 */
|
||||
}
|
||||
|
||||
/* compute a_1 + a_0 */
|
||||
scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
|
||||
/* compute b_1 + b_0 */
|
||||
scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
|
||||
scratch+midlen+1, botlen);
|
||||
|
||||
/*
|
||||
* Now we can do the third multiplication.
|
||||
*/
|
||||
internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen);
|
||||
|
||||
/*
|
||||
* Now we can reuse the first half of 'scratch' to compute the
|
||||
* sum of the outer two coefficients, to subtract from that
|
||||
* product to obtain the middle one.
|
||||
*/
|
||||
scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
|
||||
for (j = 0; j < 2*toplen; j++)
|
||||
scratch[2*midlen - 2*toplen + j] = c[j];
|
||||
scratch[1] = internal_add(scratch+2, c + 2*toplen,
|
||||
scratch+2, 2*botlen);
|
||||
|
||||
internal_sub(scratch + 2*midlen, scratch,
|
||||
scratch + 2*midlen, 2*midlen);
|
||||
|
||||
/*
|
||||
* And now all we need to do is to add that middle coefficient
|
||||
* back into the output. We may have to propagate a carry
|
||||
* further up the output, but we can be sure it won't
|
||||
* propagate right the way off the top.
|
||||
*/
|
||||
carry = internal_add(c + 2*len - botlen - 2*midlen,
|
||||
scratch + 2*midlen,
|
||||
c + 2*len - botlen - 2*midlen, 2*midlen);
|
||||
j = 2*len - botlen - 2*midlen - 1;
|
||||
while (carry) {
|
||||
assert(j >= 0);
|
||||
carry += c[j];
|
||||
c[j] = (BignumInt)carry;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
}
|
||||
|
||||
/* Free scratch. */
|
||||
for (j = 0; j < 4 * midlen; j++)
|
||||
scratch[j] = 0;
|
||||
sfree(scratch);
|
||||
|
||||
} else {
|
||||
|
||||
/*
|
||||
* Multiply in the ordinary O(N^2) way.
|
||||
*/
|
||||
|
||||
for (j = 0; j < 2 * len; j++)
|
||||
c[j] = 0;
|
||||
|
||||
for (i = len - 1; i >= 0; i--) {
|
||||
t = 0;
|
||||
for (j = len - 1; j >= 0; j--) {
|
||||
t += MUL_WORD(a[i], (BignumDblInt) b[j]);
|
||||
t += (BignumDblInt) c[i + j + 1];
|
||||
c[i + j + 1] = (BignumInt) t;
|
||||
t = t >> BIGNUM_INT_BITS;
|
||||
}
|
||||
c[i] = (BignumInt) t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user