diff --git a/mpint_i.h b/mpint_i.h index 72b4fa31..e5bd8894 100644 --- a/mpint_i.h +++ b/mpint_i.h @@ -187,6 +187,29 @@ #define BIGNUM_TOP_BIT (((BignumInt)1) << (BIGNUM_INT_BITS-1)) #define BIGNUM_INT_MASK (BIGNUM_TOP_BIT | (BIGNUM_TOP_BIT-1)) +/* + * Just occasionally, we might need a GET_nnBIT_xSB_FIRST macro to + * operate on whatever BignumInt is. + */ +#if BIGNUM_INT_BITS_BITS == 4 +#define GET_BIGNUMINT_MSB_FIRST GET_16BIT_MSB_FIRST +#define GET_BIGNUMINT_LSB_FIRST GET_16BIT_LSB_FIRST +#define PUT_BIGNUMINT_MSB_FIRST PUT_16BIT_MSB_FIRST +#define PUT_BIGNUMINT_LSB_FIRST PUT_16BIT_LSB_FIRST +#elif BIGNUM_INT_BITS_BITS == 5 +#define GET_BIGNUMINT_MSB_FIRST GET_32BIT_MSB_FIRST +#define GET_BIGNUMINT_LSB_FIRST GET_32BIT_LSB_FIRST +#define PUT_BIGNUMINT_MSB_FIRST PUT_32BIT_MSB_FIRST +#define PUT_BIGNUMINT_LSB_FIRST PUT_32BIT_LSB_FIRST +#elif BIGNUM_INT_BITS_BITS == 6 +#define GET_BIGNUMINT_MSB_FIRST GET_64BIT_MSB_FIRST +#define GET_BIGNUMINT_LSB_FIRST GET_64BIT_LSB_FIRST +#define PUT_BIGNUMINT_MSB_FIRST PUT_64BIT_MSB_FIRST +#define PUT_BIGNUMINT_LSB_FIRST PUT_64BIT_LSB_FIRST +#else + #error Ran out of options for GET_BIGNUMINT_xSB_FIRST +#endif + /* * Common code across _most_ branches of the ifdef: define a set of * statement macros in terms of the BignumDblInt type provided. In diff --git a/ssh.h b/ssh.h index 0a52b8c1..03c3294f 100644 --- a/ssh.h +++ b/ssh.h @@ -676,6 +676,9 @@ struct ssh2_cipheralg { const char *text_name; /* If set, this takes priority over other MAC. */ const ssh2_macalg *required_mac; + + /* Pointer to any extra data used by a particular implementation. */ + const void *extra; }; #define ssh2_cipher_new(alg) ((alg)->new(alg)) diff --git a/sshaes.c b/sshaes.c index 801aa15f..346e4805 100644 --- a/sshaes.c +++ b/sshaes.c @@ -1,1028 +1,1485 @@ /* - * sshaes.c - implementation of AES / Rijndael - * - * AES is a flexible algorithm as regards endianness: it has no - * inherent preference as to which way round you should form words - * from the input byte stream. It talks endlessly of four-byte - * _vectors_, but never of 32-bit _words_ - there's no 32-bit - * addition at all, which would force an endianness by means of - * which way the carries went. So it would be possible to write a - * working AES that read words big-endian, and another working one - * that read them little-endian, just by computing a different set - * of tables - with no speed drop. - * - * It's therefore tempting to do just that, and remove the overhead - * of GET_32BIT_MSB_FIRST() et al, allowing every system to use its - * own endianness-native code; but I decided not to, partly for - * ease of testing, and mostly because I like the flexibility that - * allows you to encrypt a non-word-aligned block of memory (which - * many systems would stop being able to do if I went the - * endianness-dependent route). - * - * This implementation reads and stores words big-endian, but - * that's a minor implementation detail. By flipping the endianness - * of everything in the E0..E3, D0..D3 tables, and substituting - * GET_32BIT_LSB_FIRST for GET_32BIT_MSB_FIRST, I could create an - * implementation that worked internally little-endian and gave the - * same answers at the same speed. + * sshaes.c - implementation of AES */ #include #include #include "ssh.h" - -#define MAX_NR 14 /* max no of rounds */ -#define NB 4 /* no of words in cipher blk */ - -#define mulby2(x) ( ((x&0x7F) << 1) ^ (x & 0x80 ? 0x1B : 0) ) +#include "mpint_i.h" /* we reuse the BignumInt system */ /* - * Select appropriate inline keyword for the compiler + * Start by deciding whether we can support hardware AES at all. */ -#if defined __GNUC__ || defined __clang__ -# define INLINE __inline__ +#define HW_AES_NONE 0 +#define HW_AES_NI 1 + +#ifdef _FORCE_AES_NI +# define HW_AES HW_AES_NI +#elif defined(__clang__) +# if __has_attribute(target) && __has_include() && \ + (defined(__x86_64__) || defined(__i386)) +# define HW_AES HW_AES_NI +# endif +#elif defined(__GNUC__) +# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \ + (defined(__x86_64__) || defined(__i386)) +# define HW_AES HW_AES_NI +# endif #elif defined (_MSC_VER) -# define INLINE __forceinline -#else -# define INLINE +# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729 +# define HW_AES HW_AES_NI +# endif #endif -typedef struct AESContext AESContext; -struct AESContext { - uint32_t keysched_buf[(MAX_NR + 1) * NB + 3]; - uint32_t invkeysched_buf[(MAX_NR + 1) * NB + 3]; - uint32_t *keysched, *invkeysched; - uint32_t iv[NB]; - int Nr; /* number of rounds */ - void (*encrypt_cbc)(unsigned char*, int, AESContext*); - void (*decrypt_cbc)(unsigned char*, int, AESContext*); - void (*sdctr)(unsigned char*, int, AESContext*); - bool isNI; -}; +#if defined _FORCE_SOFTWARE_AES || !defined HW_AES +# undef HW_AES +# define HW_AES HW_AES_NONE +#endif -static void aes_encrypt_cbc_sw(unsigned char*, int, AESContext*); -static void aes_decrypt_cbc_sw(unsigned char*, int, AESContext*); -static void aes_sdctr_sw(unsigned char*, int, AESContext*); - -INLINE static bool supports_aes_ni(); -static void aes_setup_ni(AESContext * ctx, - const unsigned char *key, int keylen); - -INLINE static void aes_encrypt_cbc(unsigned char *blk, int len, AESContext * ctx) -{ - ctx->encrypt_cbc(blk, len, ctx); -} - -INLINE static void aes_decrypt_cbc(unsigned char *blk, int len, AESContext * ctx) -{ - ctx->decrypt_cbc(blk, len, ctx); -} - -INLINE static void aes_sdctr(unsigned char *blk, int len, AESContext * ctx) -{ - ctx->sdctr(blk, len, ctx); -} +#if HW_AES == HW_AES_NI +#define HW_NAME_SUFFIX " (AES-NI accelerated)" +#else +#define HW_NAME_SUFFIX " (!NONEXISTENT ACCELERATED VERSION!)" +#endif /* - * SW AES lookup tables + * Vtable collection for AES. For each SSH-level cipher id (i.e. + * combination of key length and cipher mode), we provide three + * vtables: one for the pure software implementation, one using + * hardware acceleration (if available), and a top-level one which is + * never actually instantiated, and only contains a new() method whose + * job is to decide whihc of the other two to return an actual + * instance of. */ -static const unsigned char Sbox[256] = { - 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, - 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, - 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, - 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, - 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, - 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, - 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, - 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, - 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, - 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, - 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, - 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, - 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, - 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, - 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, - 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, - 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, - 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, - 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, - 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, - 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, - 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, - 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, - 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, - 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, - 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, - 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, - 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, - 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, - 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, - 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, - 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 + +static ssh2_cipher *aes_select(const ssh2_cipheralg *alg); +static ssh2_cipher *aes_sw_new(const ssh2_cipheralg *alg); +static void aes_sw_free(ssh2_cipher *); +static void aes_sw_setiv_cbc(ssh2_cipher *, const void *iv); +static void aes_sw_setiv_sdctr(ssh2_cipher *, const void *iv); +static void aes_sw_setkey(ssh2_cipher *, const void *key); +static ssh2_cipher *aes_hw_new(const ssh2_cipheralg *alg); +static void aes_hw_free(ssh2_cipher *); +static void aes_hw_setiv_cbc(ssh2_cipher *, const void *iv); +static void aes_hw_setiv_sdctr(ssh2_cipher *, const void *iv); +static void aes_hw_setkey(ssh2_cipher *, const void *key); + +struct aes_extra { + const ssh2_cipheralg *sw, *hw; }; -static const unsigned char Sboxinv[256] = { - 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, - 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, - 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, - 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, - 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, - 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, - 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, - 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, - 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, - 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, - 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, - 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, - 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, - 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, - 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, - 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, - 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, - 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, - 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, - 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, - 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, - 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, - 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, - 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, - 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, - 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, - 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, - 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, - 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, - 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, - 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, - 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d +#define VTABLES(cid, pid, bits, name, encsuffix, decsuffix, setiv) \ + static void cid##_sw##encsuffix(ssh2_cipher *, void *blk, int len); \ + static void cid##_sw##decsuffix(ssh2_cipher *, void *blk, int len); \ + const ssh2_cipheralg ssh_##cid##_sw = { \ + aes_sw_new, aes_sw_free, aes_sw_##setiv, aes_sw_setkey, \ + cid##_sw##encsuffix, cid##_sw##decsuffix, NULL, NULL, \ + pid, 16, bits, bits/8, 0, name " (unaccelerated)", \ + NULL, NULL }; \ + \ + static void cid##_hw##encsuffix(ssh2_cipher *, void *blk, int len); \ + static void cid##_hw##decsuffix(ssh2_cipher *, void *blk, int len); \ + const ssh2_cipheralg ssh_##cid##_hw = { \ + aes_hw_new, aes_hw_free, aes_hw_##setiv, aes_hw_setkey, \ + cid##_hw##encsuffix, cid##_hw##decsuffix, NULL, NULL, \ + pid, 16, bits, bits/8, 0, name HW_NAME_SUFFIX, \ + NULL, NULL }; \ + \ + const struct aes_extra extra_##cid = { \ + &ssh_##cid##_sw, &ssh_##cid##_hw }; \ + \ + const ssh2_cipheralg ssh_##cid = { \ + aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL, \ + pid, 16, bits, bits/8, 0, name " (dummy selector vtable)", \ + NULL, &extra_##cid }; \ + +VTABLES(aes128_cbc, "aes128", 128, "AES-128 CBC", _encrypt,_decrypt,setiv_cbc) +VTABLES(aes192_cbc, "aes192", 192, "AES-192 CBC", _encrypt,_decrypt,setiv_cbc) +VTABLES(aes256_cbc, "aes256", 256, "AES-256 CBC", _encrypt,_decrypt,setiv_cbc) +VTABLES(aes128_sdctr, "aes128-ctr", 128, "AES-128 SDCTR",,, setiv_sdctr) +VTABLES(aes192_sdctr, "aes192-ctr", 192, "AES-192 SDCTR",,, setiv_sdctr) +VTABLES(aes256_sdctr, "aes256-ctr", 256, "AES-256 SDCTR",,, setiv_sdctr) + +static const ssh2_cipheralg ssh_rijndael_lysator = { + /* Same as aes256_cbc, but with a different protocol ID */ + aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL, + "rijndael-cbc@lysator.liu.se", 16, 256, 256/8, 0, + "AES-256 CBC (dummy selector vtable)", NULL, &extra_aes256_cbc }; -static const uint32_t E0[256] = { - 0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, - 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, - 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, - 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, - 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, - 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, - 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, - 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, - 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, - 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, - 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, - 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f, - 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, - 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, - 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, - 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, - 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, - 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, - 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, - 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, - 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, - 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, - 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, - 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, - 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, - 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, - 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, - 0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, - 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, - 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, - 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, - 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d, - 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, - 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, - 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, - 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, - 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, - 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, - 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, - 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, - 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, - 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, - 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, - 0x399191a8, 0x319595a4, 0xd3e4e437, 0xf279798b, - 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, - 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, - 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, - 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818, - 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, - 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, - 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, - 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, - 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, - 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, - 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, - 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, - 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, - 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, - 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, - 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a, - 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, - 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, - 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, - 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a, -}; -static const uint32_t E1[256] = { - 0xa5c66363, 0x84f87c7c, 0x99ee7777, 0x8df67b7b, - 0x0dfff2f2, 0xbdd66b6b, 0xb1de6f6f, 0x5491c5c5, - 0x50603030, 0x03020101, 0xa9ce6767, 0x7d562b2b, - 0x19e7fefe, 0x62b5d7d7, 0xe64dabab, 0x9aec7676, - 0x458fcaca, 0x9d1f8282, 0x4089c9c9, 0x87fa7d7d, - 0x15effafa, 0xebb25959, 0xc98e4747, 0x0bfbf0f0, - 0xec41adad, 0x67b3d4d4, 0xfd5fa2a2, 0xea45afaf, - 0xbf239c9c, 0xf753a4a4, 0x96e47272, 0x5b9bc0c0, - 0xc275b7b7, 0x1ce1fdfd, 0xae3d9393, 0x6a4c2626, - 0x5a6c3636, 0x417e3f3f, 0x02f5f7f7, 0x4f83cccc, - 0x5c683434, 0xf451a5a5, 0x34d1e5e5, 0x08f9f1f1, - 0x93e27171, 0x73abd8d8, 0x53623131, 0x3f2a1515, - 0x0c080404, 0x5295c7c7, 0x65462323, 0x5e9dc3c3, - 0x28301818, 0xa1379696, 0x0f0a0505, 0xb52f9a9a, - 0x090e0707, 0x36241212, 0x9b1b8080, 0x3ddfe2e2, - 0x26cdebeb, 0x694e2727, 0xcd7fb2b2, 0x9fea7575, - 0x1b120909, 0x9e1d8383, 0x74582c2c, 0x2e341a1a, - 0x2d361b1b, 0xb2dc6e6e, 0xeeb45a5a, 0xfb5ba0a0, - 0xf6a45252, 0x4d763b3b, 0x61b7d6d6, 0xce7db3b3, - 0x7b522929, 0x3edde3e3, 0x715e2f2f, 0x97138484, - 0xf5a65353, 0x68b9d1d1, 0x00000000, 0x2cc1eded, - 0x60402020, 0x1fe3fcfc, 0xc879b1b1, 0xedb65b5b, - 0xbed46a6a, 0x468dcbcb, 0xd967bebe, 0x4b723939, - 0xde944a4a, 0xd4984c4c, 0xe8b05858, 0x4a85cfcf, - 0x6bbbd0d0, 0x2ac5efef, 0xe54faaaa, 0x16edfbfb, - 0xc5864343, 0xd79a4d4d, 0x55663333, 0x94118585, - 0xcf8a4545, 0x10e9f9f9, 0x06040202, 0x81fe7f7f, - 0xf0a05050, 0x44783c3c, 0xba259f9f, 0xe34ba8a8, - 0xf3a25151, 0xfe5da3a3, 0xc0804040, 0x8a058f8f, - 0xad3f9292, 0xbc219d9d, 0x48703838, 0x04f1f5f5, - 0xdf63bcbc, 0xc177b6b6, 0x75afdada, 0x63422121, - 0x30201010, 0x1ae5ffff, 0x0efdf3f3, 0x6dbfd2d2, - 0x4c81cdcd, 0x14180c0c, 0x35261313, 0x2fc3ecec, - 0xe1be5f5f, 0xa2359797, 0xcc884444, 0x392e1717, - 0x5793c4c4, 0xf255a7a7, 0x82fc7e7e, 0x477a3d3d, - 0xacc86464, 0xe7ba5d5d, 0x2b321919, 0x95e67373, - 0xa0c06060, 0x98198181, 0xd19e4f4f, 0x7fa3dcdc, - 0x66442222, 0x7e542a2a, 0xab3b9090, 0x830b8888, - 0xca8c4646, 0x29c7eeee, 0xd36bb8b8, 0x3c281414, - 0x79a7dede, 0xe2bc5e5e, 0x1d160b0b, 0x76addbdb, - 0x3bdbe0e0, 0x56643232, 0x4e743a3a, 0x1e140a0a, - 0xdb924949, 0x0a0c0606, 0x6c482424, 0xe4b85c5c, - 0x5d9fc2c2, 0x6ebdd3d3, 0xef43acac, 0xa6c46262, - 0xa8399191, 0xa4319595, 0x37d3e4e4, 0x8bf27979, - 0x32d5e7e7, 0x438bc8c8, 0x596e3737, 0xb7da6d6d, - 0x8c018d8d, 0x64b1d5d5, 0xd29c4e4e, 0xe049a9a9, - 0xb4d86c6c, 0xfaac5656, 0x07f3f4f4, 0x25cfeaea, - 0xafca6565, 0x8ef47a7a, 0xe947aeae, 0x18100808, - 0xd56fbaba, 0x88f07878, 0x6f4a2525, 0x725c2e2e, - 0x24381c1c, 0xf157a6a6, 0xc773b4b4, 0x5197c6c6, - 0x23cbe8e8, 0x7ca1dddd, 0x9ce87474, 0x213e1f1f, - 0xdd964b4b, 0xdc61bdbd, 0x860d8b8b, 0x850f8a8a, - 0x90e07070, 0x427c3e3e, 0xc471b5b5, 0xaacc6666, - 0xd8904848, 0x05060303, 0x01f7f6f6, 0x121c0e0e, - 0xa3c26161, 0x5f6a3535, 0xf9ae5757, 0xd069b9b9, - 0x91178686, 0x5899c1c1, 0x273a1d1d, 0xb9279e9e, - 0x38d9e1e1, 0x13ebf8f8, 0xb32b9898, 0x33221111, - 0xbbd26969, 0x70a9d9d9, 0x89078e8e, 0xa7339494, - 0xb62d9b9b, 0x223c1e1e, 0x92158787, 0x20c9e9e9, - 0x4987cece, 0xffaa5555, 0x78502828, 0x7aa5dfdf, - 0x8f038c8c, 0xf859a1a1, 0x80098989, 0x171a0d0d, - 0xda65bfbf, 0x31d7e6e6, 0xc6844242, 0xb8d06868, - 0xc3824141, 0xb0299999, 0x775a2d2d, 0x111e0f0f, - 0xcb7bb0b0, 0xfca85454, 0xd66dbbbb, 0x3a2c1616, -}; -static const uint32_t E2[256] = { - 0x63a5c663, 0x7c84f87c, 0x7799ee77, 0x7b8df67b, - 0xf20dfff2, 0x6bbdd66b, 0x6fb1de6f, 0xc55491c5, - 0x30506030, 0x01030201, 0x67a9ce67, 0x2b7d562b, - 0xfe19e7fe, 0xd762b5d7, 0xabe64dab, 0x769aec76, - 0xca458fca, 0x829d1f82, 0xc94089c9, 0x7d87fa7d, - 0xfa15effa, 0x59ebb259, 0x47c98e47, 0xf00bfbf0, - 0xadec41ad, 0xd467b3d4, 0xa2fd5fa2, 0xafea45af, - 0x9cbf239c, 0xa4f753a4, 0x7296e472, 0xc05b9bc0, - 0xb7c275b7, 0xfd1ce1fd, 0x93ae3d93, 0x266a4c26, - 0x365a6c36, 0x3f417e3f, 0xf702f5f7, 0xcc4f83cc, - 0x345c6834, 0xa5f451a5, 0xe534d1e5, 0xf108f9f1, - 0x7193e271, 0xd873abd8, 0x31536231, 0x153f2a15, - 0x040c0804, 0xc75295c7, 0x23654623, 0xc35e9dc3, - 0x18283018, 0x96a13796, 0x050f0a05, 0x9ab52f9a, - 0x07090e07, 0x12362412, 0x809b1b80, 0xe23ddfe2, - 0xeb26cdeb, 0x27694e27, 0xb2cd7fb2, 0x759fea75, - 0x091b1209, 0x839e1d83, 0x2c74582c, 0x1a2e341a, - 0x1b2d361b, 0x6eb2dc6e, 0x5aeeb45a, 0xa0fb5ba0, - 0x52f6a452, 0x3b4d763b, 0xd661b7d6, 0xb3ce7db3, - 0x297b5229, 0xe33edde3, 0x2f715e2f, 0x84971384, - 0x53f5a653, 0xd168b9d1, 0x00000000, 0xed2cc1ed, - 0x20604020, 0xfc1fe3fc, 0xb1c879b1, 0x5bedb65b, - 0x6abed46a, 0xcb468dcb, 0xbed967be, 0x394b7239, - 0x4ade944a, 0x4cd4984c, 0x58e8b058, 0xcf4a85cf, - 0xd06bbbd0, 0xef2ac5ef, 0xaae54faa, 0xfb16edfb, - 0x43c58643, 0x4dd79a4d, 0x33556633, 0x85941185, - 0x45cf8a45, 0xf910e9f9, 0x02060402, 0x7f81fe7f, - 0x50f0a050, 0x3c44783c, 0x9fba259f, 0xa8e34ba8, - 0x51f3a251, 0xa3fe5da3, 0x40c08040, 0x8f8a058f, - 0x92ad3f92, 0x9dbc219d, 0x38487038, 0xf504f1f5, - 0xbcdf63bc, 0xb6c177b6, 0xda75afda, 0x21634221, - 0x10302010, 0xff1ae5ff, 0xf30efdf3, 0xd26dbfd2, - 0xcd4c81cd, 0x0c14180c, 0x13352613, 0xec2fc3ec, - 0x5fe1be5f, 0x97a23597, 0x44cc8844, 0x17392e17, - 0xc45793c4, 0xa7f255a7, 0x7e82fc7e, 0x3d477a3d, - 0x64acc864, 0x5de7ba5d, 0x192b3219, 0x7395e673, - 0x60a0c060, 0x81981981, 0x4fd19e4f, 0xdc7fa3dc, - 0x22664422, 0x2a7e542a, 0x90ab3b90, 0x88830b88, - 0x46ca8c46, 0xee29c7ee, 0xb8d36bb8, 0x143c2814, - 0xde79a7de, 0x5ee2bc5e, 0x0b1d160b, 0xdb76addb, - 0xe03bdbe0, 0x32566432, 0x3a4e743a, 0x0a1e140a, - 0x49db9249, 0x060a0c06, 0x246c4824, 0x5ce4b85c, - 0xc25d9fc2, 0xd36ebdd3, 0xacef43ac, 0x62a6c462, - 0x91a83991, 0x95a43195, 0xe437d3e4, 0x798bf279, - 0xe732d5e7, 0xc8438bc8, 0x37596e37, 0x6db7da6d, - 0x8d8c018d, 0xd564b1d5, 0x4ed29c4e, 0xa9e049a9, - 0x6cb4d86c, 0x56faac56, 0xf407f3f4, 0xea25cfea, - 0x65afca65, 0x7a8ef47a, 0xaee947ae, 0x08181008, - 0xbad56fba, 0x7888f078, 0x256f4a25, 0x2e725c2e, - 0x1c24381c, 0xa6f157a6, 0xb4c773b4, 0xc65197c6, - 0xe823cbe8, 0xdd7ca1dd, 0x749ce874, 0x1f213e1f, - 0x4bdd964b, 0xbddc61bd, 0x8b860d8b, 0x8a850f8a, - 0x7090e070, 0x3e427c3e, 0xb5c471b5, 0x66aacc66, - 0x48d89048, 0x03050603, 0xf601f7f6, 0x0e121c0e, - 0x61a3c261, 0x355f6a35, 0x57f9ae57, 0xb9d069b9, - 0x86911786, 0xc15899c1, 0x1d273a1d, 0x9eb9279e, - 0xe138d9e1, 0xf813ebf8, 0x98b32b98, 0x11332211, - 0x69bbd269, 0xd970a9d9, 0x8e89078e, 0x94a73394, - 0x9bb62d9b, 0x1e223c1e, 0x87921587, 0xe920c9e9, - 0xce4987ce, 0x55ffaa55, 0x28785028, 0xdf7aa5df, - 0x8c8f038c, 0xa1f859a1, 0x89800989, 0x0d171a0d, - 0xbfda65bf, 0xe631d7e6, 0x42c68442, 0x68b8d068, - 0x41c38241, 0x99b02999, 0x2d775a2d, 0x0f111e0f, - 0xb0cb7bb0, 0x54fca854, 0xbbd66dbb, 0x163a2c16, -}; -static const uint32_t E3[256] = { - 0x6363a5c6, 0x7c7c84f8, 0x777799ee, 0x7b7b8df6, - 0xf2f20dff, 0x6b6bbdd6, 0x6f6fb1de, 0xc5c55491, - 0x30305060, 0x01010302, 0x6767a9ce, 0x2b2b7d56, - 0xfefe19e7, 0xd7d762b5, 0xababe64d, 0x76769aec, - 0xcaca458f, 0x82829d1f, 0xc9c94089, 0x7d7d87fa, - 0xfafa15ef, 0x5959ebb2, 0x4747c98e, 0xf0f00bfb, - 0xadadec41, 0xd4d467b3, 0xa2a2fd5f, 0xafafea45, - 0x9c9cbf23, 0xa4a4f753, 0x727296e4, 0xc0c05b9b, - 0xb7b7c275, 0xfdfd1ce1, 0x9393ae3d, 0x26266a4c, - 0x36365a6c, 0x3f3f417e, 0xf7f702f5, 0xcccc4f83, - 0x34345c68, 0xa5a5f451, 0xe5e534d1, 0xf1f108f9, - 0x717193e2, 0xd8d873ab, 0x31315362, 0x15153f2a, - 0x04040c08, 0xc7c75295, 0x23236546, 0xc3c35e9d, - 0x18182830, 0x9696a137, 0x05050f0a, 0x9a9ab52f, - 0x0707090e, 0x12123624, 0x80809b1b, 0xe2e23ddf, - 0xebeb26cd, 0x2727694e, 0xb2b2cd7f, 0x75759fea, - 0x09091b12, 0x83839e1d, 0x2c2c7458, 0x1a1a2e34, - 0x1b1b2d36, 0x6e6eb2dc, 0x5a5aeeb4, 0xa0a0fb5b, - 0x5252f6a4, 0x3b3b4d76, 0xd6d661b7, 0xb3b3ce7d, - 0x29297b52, 0xe3e33edd, 0x2f2f715e, 0x84849713, - 0x5353f5a6, 0xd1d168b9, 0x00000000, 0xeded2cc1, - 0x20206040, 0xfcfc1fe3, 0xb1b1c879, 0x5b5bedb6, - 0x6a6abed4, 0xcbcb468d, 0xbebed967, 0x39394b72, - 0x4a4ade94, 0x4c4cd498, 0x5858e8b0, 0xcfcf4a85, - 0xd0d06bbb, 0xefef2ac5, 0xaaaae54f, 0xfbfb16ed, - 0x4343c586, 0x4d4dd79a, 0x33335566, 0x85859411, - 0x4545cf8a, 0xf9f910e9, 0x02020604, 0x7f7f81fe, - 0x5050f0a0, 0x3c3c4478, 0x9f9fba25, 0xa8a8e34b, - 0x5151f3a2, 0xa3a3fe5d, 0x4040c080, 0x8f8f8a05, - 0x9292ad3f, 0x9d9dbc21, 0x38384870, 0xf5f504f1, - 0xbcbcdf63, 0xb6b6c177, 0xdada75af, 0x21216342, - 0x10103020, 0xffff1ae5, 0xf3f30efd, 0xd2d26dbf, - 0xcdcd4c81, 0x0c0c1418, 0x13133526, 0xecec2fc3, - 0x5f5fe1be, 0x9797a235, 0x4444cc88, 0x1717392e, - 0xc4c45793, 0xa7a7f255, 0x7e7e82fc, 0x3d3d477a, - 0x6464acc8, 0x5d5de7ba, 0x19192b32, 0x737395e6, - 0x6060a0c0, 0x81819819, 0x4f4fd19e, 0xdcdc7fa3, - 0x22226644, 0x2a2a7e54, 0x9090ab3b, 0x8888830b, - 0x4646ca8c, 0xeeee29c7, 0xb8b8d36b, 0x14143c28, - 0xdede79a7, 0x5e5ee2bc, 0x0b0b1d16, 0xdbdb76ad, - 0xe0e03bdb, 0x32325664, 0x3a3a4e74, 0x0a0a1e14, - 0x4949db92, 0x06060a0c, 0x24246c48, 0x5c5ce4b8, - 0xc2c25d9f, 0xd3d36ebd, 0xacacef43, 0x6262a6c4, - 0x9191a839, 0x9595a431, 0xe4e437d3, 0x79798bf2, - 0xe7e732d5, 0xc8c8438b, 0x3737596e, 0x6d6db7da, - 0x8d8d8c01, 0xd5d564b1, 0x4e4ed29c, 0xa9a9e049, - 0x6c6cb4d8, 0x5656faac, 0xf4f407f3, 0xeaea25cf, - 0x6565afca, 0x7a7a8ef4, 0xaeaee947, 0x08081810, - 0xbabad56f, 0x787888f0, 0x25256f4a, 0x2e2e725c, - 0x1c1c2438, 0xa6a6f157, 0xb4b4c773, 0xc6c65197, - 0xe8e823cb, 0xdddd7ca1, 0x74749ce8, 0x1f1f213e, - 0x4b4bdd96, 0xbdbddc61, 0x8b8b860d, 0x8a8a850f, - 0x707090e0, 0x3e3e427c, 0xb5b5c471, 0x6666aacc, - 0x4848d890, 0x03030506, 0xf6f601f7, 0x0e0e121c, - 0x6161a3c2, 0x35355f6a, 0x5757f9ae, 0xb9b9d069, - 0x86869117, 0xc1c15899, 0x1d1d273a, 0x9e9eb927, - 0xe1e138d9, 0xf8f813eb, 0x9898b32b, 0x11113322, - 0x6969bbd2, 0xd9d970a9, 0x8e8e8907, 0x9494a733, - 0x9b9bb62d, 0x1e1e223c, 0x87879215, 0xe9e920c9, - 0xcece4987, 0x5555ffaa, 0x28287850, 0xdfdf7aa5, - 0x8c8c8f03, 0xa1a1f859, 0x89898009, 0x0d0d171a, - 0xbfbfda65, 0xe6e631d7, 0x4242c684, 0x6868b8d0, - 0x4141c382, 0x9999b029, 0x2d2d775a, 0x0f0f111e, - 0xb0b0cb7b, 0x5454fca8, 0xbbbbd66d, 0x16163a2c, -}; -static const uint32_t D0[256] = { - 0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, - 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, - 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, - 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, - 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, - 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, - 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, - 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, - 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, - 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, - 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, - 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94, - 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, - 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, - 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, - 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, - 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, - 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, - 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, - 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, - 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, - 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, - 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, - 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, - 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, - 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, - 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, - 0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, - 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, - 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, - 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, - 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8, - 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, - 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, - 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, - 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, - 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, - 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, - 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, - 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, - 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, - 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, - 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, - 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e, 0x82c3aff5, - 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, - 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, - 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, - 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6, - 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, - 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, - 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, - 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, - 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, - 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, - 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, - 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, - 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, - 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, - 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, - 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86, - 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, - 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, - 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, - 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742, -}; -static const uint32_t D1[256] = { - 0x5051f4a7, 0x537e4165, 0xc31a17a4, 0x963a275e, - 0xcb3bab6b, 0xf11f9d45, 0xabacfa58, 0x934be303, - 0x552030fa, 0xf6ad766d, 0x9188cc76, 0x25f5024c, - 0xfc4fe5d7, 0xd7c52acb, 0x80263544, 0x8fb562a3, - 0x49deb15a, 0x6725ba1b, 0x9845ea0e, 0xe15dfec0, - 0x02c32f75, 0x12814cf0, 0xa38d4697, 0xc66bd3f9, - 0xe7038f5f, 0x9515929c, 0xebbf6d7a, 0xda955259, - 0x2dd4be83, 0xd3587421, 0x2949e069, 0x448ec9c8, - 0x6a75c289, 0x78f48e79, 0x6b99583e, 0xdd27b971, - 0xb6bee14f, 0x17f088ad, 0x66c920ac, 0xb47dce3a, - 0x1863df4a, 0x82e51a31, 0x60975133, 0x4562537f, - 0xe0b16477, 0x84bb6bae, 0x1cfe81a0, 0x94f9082b, - 0x58704868, 0x198f45fd, 0x8794de6c, 0xb7527bf8, - 0x23ab73d3, 0xe2724b02, 0x57e31f8f, 0x2a6655ab, - 0x07b2eb28, 0x032fb5c2, 0x9a86c57b, 0xa5d33708, - 0xf2302887, 0xb223bfa5, 0xba02036a, 0x5ced1682, - 0x2b8acf1c, 0x92a779b4, 0xf0f307f2, 0xa14e69e2, - 0xcd65daf4, 0xd50605be, 0x1fd13462, 0x8ac4a6fe, - 0x9d342e53, 0xa0a2f355, 0x32058ae1, 0x75a4f6eb, - 0x390b83ec, 0xaa4060ef, 0x065e719f, 0x51bd6e10, - 0xf93e218a, 0x3d96dd06, 0xaedd3e05, 0x464de6bd, - 0xb591548d, 0x0571c45d, 0x6f0406d4, 0xff605015, - 0x241998fb, 0x97d6bde9, 0xcc894043, 0x7767d99e, - 0xbdb0e842, 0x8807898b, 0x38e7195b, 0xdb79c8ee, - 0x47a17c0a, 0xe97c420f, 0xc9f8841e, 0x00000000, - 0x83098086, 0x48322bed, 0xac1e1170, 0x4e6c5a72, - 0xfbfd0eff, 0x560f8538, 0x1e3daed5, 0x27362d39, - 0x640a0fd9, 0x21685ca6, 0xd19b5b54, 0x3a24362e, - 0xb10c0a67, 0x0f9357e7, 0xd2b4ee96, 0x9e1b9b91, - 0x4f80c0c5, 0xa261dc20, 0x695a774b, 0x161c121a, - 0x0ae293ba, 0xe5c0a02a, 0x433c22e0, 0x1d121b17, - 0x0b0e090d, 0xadf28bc7, 0xb92db6a8, 0xc8141ea9, - 0x8557f119, 0x4caf7507, 0xbbee99dd, 0xfda37f60, - 0x9ff70126, 0xbc5c72f5, 0xc544663b, 0x345bfb7e, - 0x768b4329, 0xdccb23c6, 0x68b6edfc, 0x63b8e4f1, - 0xcad731dc, 0x10426385, 0x40139722, 0x2084c611, - 0x7d854a24, 0xf8d2bb3d, 0x11aef932, 0x6dc729a1, - 0x4b1d9e2f, 0xf3dcb230, 0xec0d8652, 0xd077c1e3, - 0x6c2bb316, 0x99a970b9, 0xfa119448, 0x2247e964, - 0xc4a8fc8c, 0x1aa0f03f, 0xd8567d2c, 0xef223390, - 0xc787494e, 0xc1d938d1, 0xfe8ccaa2, 0x3698d40b, - 0xcfa6f581, 0x28a57ade, 0x26dab78e, 0xa43fadbf, - 0xe42c3a9d, 0x0d507892, 0x9b6a5fcc, 0x62547e46, - 0xc2f68d13, 0xe890d8b8, 0x5e2e39f7, 0xf582c3af, - 0xbe9f5d80, 0x7c69d093, 0xa96fd52d, 0xb3cf2512, - 0x3bc8ac99, 0xa710187d, 0x6ee89c63, 0x7bdb3bbb, - 0x09cd2678, 0xf46e5918, 0x01ec9ab7, 0xa8834f9a, - 0x65e6956e, 0x7eaaffe6, 0x0821bccf, 0xe6ef15e8, - 0xd9bae79b, 0xce4a6f36, 0xd4ea9f09, 0xd629b07c, - 0xaf31a4b2, 0x312a3f23, 0x30c6a594, 0xc035a266, - 0x37744ebc, 0xa6fc82ca, 0xb0e090d0, 0x1533a7d8, - 0x4af10498, 0xf741ecda, 0x0e7fcd50, 0x2f1791f6, - 0x8d764dd6, 0x4d43efb0, 0x54ccaa4d, 0xdfe49604, - 0xe39ed1b5, 0x1b4c6a88, 0xb8c12c1f, 0x7f466551, - 0x049d5eea, 0x5d018c35, 0x73fa8774, 0x2efb0b41, - 0x5ab3671d, 0x5292dbd2, 0x33e91056, 0x136dd647, - 0x8c9ad761, 0x7a37a10c, 0x8e59f814, 0x89eb133c, - 0xeecea927, 0x35b761c9, 0xede11ce5, 0x3c7a47b1, - 0x599cd2df, 0x3f55f273, 0x791814ce, 0xbf73c737, - 0xea53f7cd, 0x5b5ffdaa, 0x14df3d6f, 0x867844db, - 0x81caaff3, 0x3eb968c4, 0x2c382434, 0x5fc2a340, - 0x72161dc3, 0x0cbce225, 0x8b283c49, 0x41ff0d95, - 0x7139a801, 0xde080cb3, 0x9cd8b4e4, 0x906456c1, - 0x617bcb84, 0x70d532b6, 0x74486c5c, 0x42d0b857, -}; -static const uint32_t D2[256] = { - 0xa75051f4, 0x65537e41, 0xa4c31a17, 0x5e963a27, - 0x6bcb3bab, 0x45f11f9d, 0x58abacfa, 0x03934be3, - 0xfa552030, 0x6df6ad76, 0x769188cc, 0x4c25f502, - 0xd7fc4fe5, 0xcbd7c52a, 0x44802635, 0xa38fb562, - 0x5a49deb1, 0x1b6725ba, 0x0e9845ea, 0xc0e15dfe, - 0x7502c32f, 0xf012814c, 0x97a38d46, 0xf9c66bd3, - 0x5fe7038f, 0x9c951592, 0x7aebbf6d, 0x59da9552, - 0x832dd4be, 0x21d35874, 0x692949e0, 0xc8448ec9, - 0x896a75c2, 0x7978f48e, 0x3e6b9958, 0x71dd27b9, - 0x4fb6bee1, 0xad17f088, 0xac66c920, 0x3ab47dce, - 0x4a1863df, 0x3182e51a, 0x33609751, 0x7f456253, - 0x77e0b164, 0xae84bb6b, 0xa01cfe81, 0x2b94f908, - 0x68587048, 0xfd198f45, 0x6c8794de, 0xf8b7527b, - 0xd323ab73, 0x02e2724b, 0x8f57e31f, 0xab2a6655, - 0x2807b2eb, 0xc2032fb5, 0x7b9a86c5, 0x08a5d337, - 0x87f23028, 0xa5b223bf, 0x6aba0203, 0x825ced16, - 0x1c2b8acf, 0xb492a779, 0xf2f0f307, 0xe2a14e69, - 0xf4cd65da, 0xbed50605, 0x621fd134, 0xfe8ac4a6, - 0x539d342e, 0x55a0a2f3, 0xe132058a, 0xeb75a4f6, - 0xec390b83, 0xefaa4060, 0x9f065e71, 0x1051bd6e, - 0x8af93e21, 0x063d96dd, 0x05aedd3e, 0xbd464de6, - 0x8db59154, 0x5d0571c4, 0xd46f0406, 0x15ff6050, - 0xfb241998, 0xe997d6bd, 0x43cc8940, 0x9e7767d9, - 0x42bdb0e8, 0x8b880789, 0x5b38e719, 0xeedb79c8, - 0x0a47a17c, 0x0fe97c42, 0x1ec9f884, 0x00000000, - 0x86830980, 0xed48322b, 0x70ac1e11, 0x724e6c5a, - 0xfffbfd0e, 0x38560f85, 0xd51e3dae, 0x3927362d, - 0xd9640a0f, 0xa621685c, 0x54d19b5b, 0x2e3a2436, - 0x67b10c0a, 0xe70f9357, 0x96d2b4ee, 0x919e1b9b, - 0xc54f80c0, 0x20a261dc, 0x4b695a77, 0x1a161c12, - 0xba0ae293, 0x2ae5c0a0, 0xe0433c22, 0x171d121b, - 0x0d0b0e09, 0xc7adf28b, 0xa8b92db6, 0xa9c8141e, - 0x198557f1, 0x074caf75, 0xddbbee99, 0x60fda37f, - 0x269ff701, 0xf5bc5c72, 0x3bc54466, 0x7e345bfb, - 0x29768b43, 0xc6dccb23, 0xfc68b6ed, 0xf163b8e4, - 0xdccad731, 0x85104263, 0x22401397, 0x112084c6, - 0x247d854a, 0x3df8d2bb, 0x3211aef9, 0xa16dc729, - 0x2f4b1d9e, 0x30f3dcb2, 0x52ec0d86, 0xe3d077c1, - 0x166c2bb3, 0xb999a970, 0x48fa1194, 0x642247e9, - 0x8cc4a8fc, 0x3f1aa0f0, 0x2cd8567d, 0x90ef2233, - 0x4ec78749, 0xd1c1d938, 0xa2fe8cca, 0x0b3698d4, - 0x81cfa6f5, 0xde28a57a, 0x8e26dab7, 0xbfa43fad, - 0x9de42c3a, 0x920d5078, 0xcc9b6a5f, 0x4662547e, - 0x13c2f68d, 0xb8e890d8, 0xf75e2e39, 0xaff582c3, - 0x80be9f5d, 0x937c69d0, 0x2da96fd5, 0x12b3cf25, - 0x993bc8ac, 0x7da71018, 0x636ee89c, 0xbb7bdb3b, - 0x7809cd26, 0x18f46e59, 0xb701ec9a, 0x9aa8834f, - 0x6e65e695, 0xe67eaaff, 0xcf0821bc, 0xe8e6ef15, - 0x9bd9bae7, 0x36ce4a6f, 0x09d4ea9f, 0x7cd629b0, - 0xb2af31a4, 0x23312a3f, 0x9430c6a5, 0x66c035a2, - 0xbc37744e, 0xcaa6fc82, 0xd0b0e090, 0xd81533a7, - 0x984af104, 0xdaf741ec, 0x500e7fcd, 0xf62f1791, - 0xd68d764d, 0xb04d43ef, 0x4d54ccaa, 0x04dfe496, - 0xb5e39ed1, 0x881b4c6a, 0x1fb8c12c, 0x517f4665, - 0xea049d5e, 0x355d018c, 0x7473fa87, 0x412efb0b, - 0x1d5ab367, 0xd25292db, 0x5633e910, 0x47136dd6, - 0x618c9ad7, 0x0c7a37a1, 0x148e59f8, 0x3c89eb13, - 0x27eecea9, 0xc935b761, 0xe5ede11c, 0xb13c7a47, - 0xdf599cd2, 0x733f55f2, 0xce791814, 0x37bf73c7, - 0xcdea53f7, 0xaa5b5ffd, 0x6f14df3d, 0xdb867844, - 0xf381caaf, 0xc43eb968, 0x342c3824, 0x405fc2a3, - 0xc372161d, 0x250cbce2, 0x498b283c, 0x9541ff0d, - 0x017139a8, 0xb3de080c, 0xe49cd8b4, 0xc1906456, - 0x84617bcb, 0xb670d532, 0x5c74486c, 0x5742d0b8, -}; -static const uint32_t D3[256] = { - 0xf4a75051, 0x4165537e, 0x17a4c31a, 0x275e963a, - 0xab6bcb3b, 0x9d45f11f, 0xfa58abac, 0xe303934b, - 0x30fa5520, 0x766df6ad, 0xcc769188, 0x024c25f5, - 0xe5d7fc4f, 0x2acbd7c5, 0x35448026, 0x62a38fb5, - 0xb15a49de, 0xba1b6725, 0xea0e9845, 0xfec0e15d, - 0x2f7502c3, 0x4cf01281, 0x4697a38d, 0xd3f9c66b, - 0x8f5fe703, 0x929c9515, 0x6d7aebbf, 0x5259da95, - 0xbe832dd4, 0x7421d358, 0xe0692949, 0xc9c8448e, - 0xc2896a75, 0x8e7978f4, 0x583e6b99, 0xb971dd27, - 0xe14fb6be, 0x88ad17f0, 0x20ac66c9, 0xce3ab47d, - 0xdf4a1863, 0x1a3182e5, 0x51336097, 0x537f4562, - 0x6477e0b1, 0x6bae84bb, 0x81a01cfe, 0x082b94f9, - 0x48685870, 0x45fd198f, 0xde6c8794, 0x7bf8b752, - 0x73d323ab, 0x4b02e272, 0x1f8f57e3, 0x55ab2a66, - 0xeb2807b2, 0xb5c2032f, 0xc57b9a86, 0x3708a5d3, - 0x2887f230, 0xbfa5b223, 0x036aba02, 0x16825ced, - 0xcf1c2b8a, 0x79b492a7, 0x07f2f0f3, 0x69e2a14e, - 0xdaf4cd65, 0x05bed506, 0x34621fd1, 0xa6fe8ac4, - 0x2e539d34, 0xf355a0a2, 0x8ae13205, 0xf6eb75a4, - 0x83ec390b, 0x60efaa40, 0x719f065e, 0x6e1051bd, - 0x218af93e, 0xdd063d96, 0x3e05aedd, 0xe6bd464d, - 0x548db591, 0xc45d0571, 0x06d46f04, 0x5015ff60, - 0x98fb2419, 0xbde997d6, 0x4043cc89, 0xd99e7767, - 0xe842bdb0, 0x898b8807, 0x195b38e7, 0xc8eedb79, - 0x7c0a47a1, 0x420fe97c, 0x841ec9f8, 0x00000000, - 0x80868309, 0x2bed4832, 0x1170ac1e, 0x5a724e6c, - 0x0efffbfd, 0x8538560f, 0xaed51e3d, 0x2d392736, - 0x0fd9640a, 0x5ca62168, 0x5b54d19b, 0x362e3a24, - 0x0a67b10c, 0x57e70f93, 0xee96d2b4, 0x9b919e1b, - 0xc0c54f80, 0xdc20a261, 0x774b695a, 0x121a161c, - 0x93ba0ae2, 0xa02ae5c0, 0x22e0433c, 0x1b171d12, - 0x090d0b0e, 0x8bc7adf2, 0xb6a8b92d, 0x1ea9c814, - 0xf1198557, 0x75074caf, 0x99ddbbee, 0x7f60fda3, - 0x01269ff7, 0x72f5bc5c, 0x663bc544, 0xfb7e345b, - 0x4329768b, 0x23c6dccb, 0xedfc68b6, 0xe4f163b8, - 0x31dccad7, 0x63851042, 0x97224013, 0xc6112084, - 0x4a247d85, 0xbb3df8d2, 0xf93211ae, 0x29a16dc7, - 0x9e2f4b1d, 0xb230f3dc, 0x8652ec0d, 0xc1e3d077, - 0xb3166c2b, 0x70b999a9, 0x9448fa11, 0xe9642247, - 0xfc8cc4a8, 0xf03f1aa0, 0x7d2cd856, 0x3390ef22, - 0x494ec787, 0x38d1c1d9, 0xcaa2fe8c, 0xd40b3698, - 0xf581cfa6, 0x7ade28a5, 0xb78e26da, 0xadbfa43f, - 0x3a9de42c, 0x78920d50, 0x5fcc9b6a, 0x7e466254, - 0x8d13c2f6, 0xd8b8e890, 0x39f75e2e, 0xc3aff582, - 0x5d80be9f, 0xd0937c69, 0xd52da96f, 0x2512b3cf, - 0xac993bc8, 0x187da710, 0x9c636ee8, 0x3bbb7bdb, - 0x267809cd, 0x5918f46e, 0x9ab701ec, 0x4f9aa883, - 0x956e65e6, 0xffe67eaa, 0xbccf0821, 0x15e8e6ef, - 0xe79bd9ba, 0x6f36ce4a, 0x9f09d4ea, 0xb07cd629, - 0xa4b2af31, 0x3f23312a, 0xa59430c6, 0xa266c035, - 0x4ebc3774, 0x82caa6fc, 0x90d0b0e0, 0xa7d81533, - 0x04984af1, 0xecdaf741, 0xcd500e7f, 0x91f62f17, - 0x4dd68d76, 0xefb04d43, 0xaa4d54cc, 0x9604dfe4, - 0xd1b5e39e, 0x6a881b4c, 0x2c1fb8c1, 0x65517f46, - 0x5eea049d, 0x8c355d01, 0x877473fa, 0x0b412efb, - 0x671d5ab3, 0xdbd25292, 0x105633e9, 0xd647136d, - 0xd7618c9a, 0xa10c7a37, 0xf8148e59, 0x133c89eb, - 0xa927eece, 0x61c935b7, 0x1ce5ede1, 0x47b13c7a, - 0xd2df599c, 0xf2733f55, 0x14ce7918, 0xc737bf73, - 0xf7cdea53, 0xfdaa5b5f, 0x3d6f14df, 0x44db8678, - 0xaff381ca, 0x68c43eb9, 0x24342c38, 0xa3405fc2, - 0x1dc37216, 0xe2250cbc, 0x3c498b28, 0x0d9541ff, - 0xa8017139, 0x0cb3de08, 0xb4e49cd8, 0x56c19064, - 0xcb84617b, 0x32b670d5, 0x6c5c7448, 0xb85742d0, +static const ssh2_cipheralg *const aes_list[] = { + &ssh_aes256_sdctr, + &ssh_aes256_cbc, + &ssh_rijndael_lysator, + &ssh_aes192_sdctr, + &ssh_aes192_cbc, + &ssh_aes128_sdctr, + &ssh_aes128_cbc, }; +const ssh2_ciphers ssh2_aes = { lenof(aes_list), aes_list }; + /* - * Set up an AESContext. `keylen' is measured in - * bytes; it can be either 16 (128-bit), 24 (192-bit), or 32 - * (256-bit). + * The actual query function that asks if hardware acceleration is + * available. */ -static void aes_setup(AESContext * ctx, const unsigned char *key, int keylen) +static bool aes_hw_available(void); + +/* + * The top-level selection function, caching the results of + * aes_hw_available() so it only has to run once. + */ +static bool aes_hw_available_cached(void) { - int i, j, Nk, rconst; - size_t bufaddr; + static bool initialised = false; + static bool hw_available; + if (!initialised) + hw_available = aes_hw_available(); + return hw_available; +} - ctx->Nr = 6 + (keylen / 4); /* Number of rounds */ +static ssh2_cipher *aes_select(const ssh2_cipheralg *alg) +{ + const struct aes_extra *extra = (const struct aes_extra *)alg->extra; + const ssh2_cipheralg *real_alg = + aes_hw_available_cached() ? extra->hw : extra->sw; - /* Ensure the key schedule arrays are 16-byte aligned */ - bufaddr = (size_t)ctx->keysched_buf; - ctx->keysched = ctx->keysched_buf + - (0xF & -bufaddr) / sizeof(uint32_t); - assert((size_t)ctx->keysched % 16 == 0); - bufaddr = (size_t)ctx->invkeysched_buf; - ctx->invkeysched = ctx->invkeysched_buf + - (0xF & -bufaddr) / sizeof(uint32_t); - assert((size_t)ctx->invkeysched % 16 == 0); + return ssh2_cipher_new(real_alg); +} - ctx->isNI = supports_aes_ni(); +/* ---------------------------------------------------------------------- + * Definitions likely to be helpful to multiple implementations. + */ - if (ctx->isNI) { - aes_setup_ni(ctx, key, keylen); - return; +#define REP2(x) x x +#define REP4(x) REP2(REP2(x)) +#define REP8(x) REP2(REP4(x)) +#define REP9(x) REP8(x) x +#define REP11(x) REP8(x) REP2(x) x +#define REP13(x) REP8(x) REP4(x) x + +static const uint8_t key_setup_round_constants[] = { + /* The first few powers of X in GF(2^8), used during key setup. + * This can safely be a lookup table without side channel risks, + * because key setup iterates through it once in a standard way + * regardless of the key. */ + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, +}; + +#define MAXROUNDKEYS 15 + +/* ---------------------------------------------------------------------- + * Software implementation of AES. + * + * This implementation uses a bit-sliced representation. Instead of + * the obvious approach of storing the cipher state so that each byte + * (or field element, or entry in the cipher matrix) occupies 8 + * contiguous bits in a machine integer somewhere, we organise the + * cipher state as an array of 8 integers, in such a way that each + * logical byte of the cipher state occupies one bit in each integer, + * all at the same position. This allows us to do parallel logic on + * all bytes of the state by doing bitwise operations between the 8 + * integers; in particular, the S-box (SubBytes) lookup is done this + * way, which takes about 110 operations - but for those 110 bitwise + * ops you get 64 S-box lookups, not just one. + */ + +#define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2) + +#ifdef BITSLICED_DEBUG +/* Dump function that undoes the bitslicing transform, so you can see + * the logical data represented by a set of slice words. */ +static inline void dumpslices_uint16_t( + const char *prefix, const uint16_t slices[8]) +{ + printf("%-30s", prefix); + for (unsigned byte = 0; byte < 16; byte++) { + unsigned byteval = 0; + for (unsigned bit = 0; bit < 8; bit++) + byteval |= (1 & (slices[bit] >> byte)) << bit; + printf("%02x", byteval); + } + printf("\n"); +} + +static inline void dumpslices_BignumInt( + const char *prefix, const BignumInt slices[8]) +{ + printf("%-30s", prefix); + for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) { + for (unsigned byte = 0; byte < 16; byte++) { + unsigned byteval = 0; + for (unsigned bit = 0; bit < 8; bit++) + byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit; + printf("%02x", byteval); + } + if (iter+1 < SLICE_PARALLELISM) + printf(" "); + } + printf("\n"); +} +#else +#define dumpslices_uintN_t(prefix, slices) ((void)0) +#define dumpslices_BignumInt(prefix, slices) ((void)0) +#endif + +/* ----- + * Bit-slicing transformation: convert between an array of 16 uint8_t + * and an array of 8 uint16_t, so as to interchange the bit index + * within each element and the element index within the array. (That + * is, bit j of input[i] == bit i of output[j]. + */ + +#define SWAPWORDS(shift) do \ + { \ + uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1); \ + uint64_t diff = ((i0 >> shift) ^ i1) & mask; \ + i0 ^= diff << shift; \ + i1 ^= diff; \ + } while (0) + +#define SWAPINWORD(i, bigshift, smallshift) do \ + { \ + uint64_t mask = ~(uint64_t)0; \ + mask /= ((1ULL << bigshift) + 1); \ + mask /= ((1ULL << smallshift) + 1); \ + mask <<= smallshift; \ + unsigned shift = bigshift - smallshift; \ + uint64_t diff = ((i >> shift) ^ i) & mask; \ + i ^= diff ^ (diff << shift); \ + } while (0) + +#define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do \ + { \ + uint64_t i0 = GET_64BIT_LSB_FIRST(bytes); \ + uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8); \ + SWAPINWORD(i0, 8, 1); \ + SWAPINWORD(i1, 8, 1); \ + SWAPINWORD(i0, 16, 2); \ + SWAPINWORD(i1, 16, 2); \ + SWAPINWORD(i0, 32, 4); \ + SWAPINWORD(i1, 32, 4); \ + SWAPWORDS(8); \ + slices[0] assign_op (uintN_t)((i0 >> 0) & 0xFFFF) << (shift); \ + slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift); \ + slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift); \ + slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift); \ + slices[1] assign_op (uintN_t)((i1 >> 0) & 0xFFFF) << (shift); \ + slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift); \ + slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift); \ + slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift); \ + } while (0) + +#define FROM_BITSLICES(bytes, slices, shift) do \ + { \ + uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF); \ + i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF); \ + i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF); \ + i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF); \ + uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF); \ + i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF); \ + i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF); \ + i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF); \ + SWAPWORDS(8); \ + SWAPINWORD(i0, 32, 4); \ + SWAPINWORD(i1, 32, 4); \ + SWAPINWORD(i0, 16, 2); \ + SWAPINWORD(i1, 16, 2); \ + SWAPINWORD(i0, 8, 1); \ + SWAPINWORD(i1, 8, 1); \ + PUT_64BIT_LSB_FIRST(bytes, i0); \ + PUT_64BIT_LSB_FIRST((bytes) + 8, i1); \ + } while (0) + +/* ----- + * Some macros that will be useful repeatedly. + */ + +/* Iterate a unary transformation over all 8 slices. */ +#define ITERATE(MACRO, output, input, uintN_t) do \ + { \ + MACRO(output[0], input[0], uintN_t); \ + MACRO(output[1], input[1], uintN_t); \ + MACRO(output[2], input[2], uintN_t); \ + MACRO(output[3], input[3], uintN_t); \ + MACRO(output[4], input[4], uintN_t); \ + MACRO(output[5], input[5], uintN_t); \ + MACRO(output[6], input[6], uintN_t); \ + MACRO(output[7], input[7], uintN_t); \ + } while (0) + +/* Simply add (i.e. XOR) two whole sets of slices together. */ +#define BITSLICED_ADD(output, lhs, rhs) do \ + { \ + output[0] = lhs[0] ^ rhs[0]; \ + output[1] = lhs[1] ^ rhs[1]; \ + output[2] = lhs[2] ^ rhs[2]; \ + output[3] = lhs[3] ^ rhs[3]; \ + output[4] = lhs[4] ^ rhs[4]; \ + output[5] = lhs[5] ^ rhs[5]; \ + output[6] = lhs[6] ^ rhs[6]; \ + output[7] = lhs[7] ^ rhs[7]; \ + } while (0) + +/* ----- + * The AES S-box, in pure bitwise logic so that it can be run in + * parallel on whole words full of bit-sliced field elements. + * + * Source: 'A new combinational logic minimization technique with + * applications to cryptology', https://eprint.iacr.org/2009/191 + */ + +/* Initial linear transformation for the forward S-box, from Fig 2 of + * the paper. */ +#define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t) \ + uintN_t y14 = input[4] ^ input[2]; \ + uintN_t y13 = input[7] ^ input[1]; \ + uintN_t y9 = input[7] ^ input[4]; \ + uintN_t y8 = input[7] ^ input[2]; \ + uintN_t t0 = input[6] ^ input[5]; \ + uintN_t y1 = t0 ^ input[0]; \ + uintN_t y4 = y1 ^ input[4]; \ + uintN_t y12 = y13 ^ y14; \ + uintN_t y2 = y1 ^ input[7]; \ + uintN_t y5 = y1 ^ input[1]; \ + uintN_t y3 = y5 ^ y8; \ + uintN_t t1 = input[3] ^ y12; \ + uintN_t y15 = t1 ^ input[2]; \ + uintN_t y20 = t1 ^ input[6]; \ + uintN_t y6 = y15 ^ input[0]; \ + uintN_t y10 = y15 ^ t0; \ + uintN_t y11 = y20 ^ y9; \ + uintN_t y7 = input[0] ^ y11; \ + uintN_t y17 = y10 ^ y11; \ + uintN_t y19 = y10 ^ y8; \ + uintN_t y16 = t0 ^ y11; \ + uintN_t y21 = y13 ^ y16; \ + uintN_t y18 = input[7] ^ y16; \ + /* Make a copy of input[0] under a new name, because the core + * will refer to it, and in the inverse version of the S-box + * the corresponding value will be one of the calculated ones + * and not in input[0] itself. */ \ + uintN_t i0 = input[0]; \ + /* end */ + +/* Core nonlinear component, from Fig 3 of the paper. */ +#define SBOX_CORE(uintN_t) \ + uintN_t t2 = y12 & y15; \ + uintN_t t3 = y3 & y6; \ + uintN_t t4 = t3 ^ t2; \ + uintN_t t5 = y4 & i0; \ + uintN_t t6 = t5 ^ t2; \ + uintN_t t7 = y13 & y16; \ + uintN_t t8 = y5 & y1; \ + uintN_t t9 = t8 ^ t7; \ + uintN_t t10 = y2 & y7; \ + uintN_t t11 = t10 ^ t7; \ + uintN_t t12 = y9 & y11; \ + uintN_t t13 = y14 & y17; \ + uintN_t t14 = t13 ^ t12; \ + uintN_t t15 = y8 & y10; \ + uintN_t t16 = t15 ^ t12; \ + uintN_t t17 = t4 ^ t14; \ + uintN_t t18 = t6 ^ t16; \ + uintN_t t19 = t9 ^ t14; \ + uintN_t t20 = t11 ^ t16; \ + uintN_t t21 = t17 ^ y20; \ + uintN_t t22 = t18 ^ y19; \ + uintN_t t23 = t19 ^ y21; \ + uintN_t t24 = t20 ^ y18; \ + uintN_t t25 = t21 ^ t22; \ + uintN_t t26 = t21 & t23; \ + uintN_t t27 = t24 ^ t26; \ + uintN_t t28 = t25 & t27; \ + uintN_t t29 = t28 ^ t22; \ + uintN_t t30 = t23 ^ t24; \ + uintN_t t31 = t22 ^ t26; \ + uintN_t t32 = t31 & t30; \ + uintN_t t33 = t32 ^ t24; \ + uintN_t t34 = t23 ^ t33; \ + uintN_t t35 = t27 ^ t33; \ + uintN_t t36 = t24 & t35; \ + uintN_t t37 = t36 ^ t34; \ + uintN_t t38 = t27 ^ t36; \ + uintN_t t39 = t29 & t38; \ + uintN_t t40 = t25 ^ t39; \ + uintN_t t41 = t40 ^ t37; \ + uintN_t t42 = t29 ^ t33; \ + uintN_t t43 = t29 ^ t40; \ + uintN_t t44 = t33 ^ t37; \ + uintN_t t45 = t42 ^ t41; \ + uintN_t z0 = t44 & y15; \ + uintN_t z1 = t37 & y6; \ + uintN_t z2 = t33 & i0; \ + uintN_t z3 = t43 & y16; \ + uintN_t z4 = t40 & y1; \ + uintN_t z5 = t29 & y7; \ + uintN_t z6 = t42 & y11; \ + uintN_t z7 = t45 & y17; \ + uintN_t z8 = t41 & y10; \ + uintN_t z9 = t44 & y12; \ + uintN_t z10 = t37 & y3; \ + uintN_t z11 = t33 & y4; \ + uintN_t z12 = t43 & y13; \ + uintN_t z13 = t40 & y5; \ + uintN_t z14 = t29 & y2; \ + uintN_t z15 = t42 & y9; \ + uintN_t z16 = t45 & y14; \ + uintN_t z17 = t41 & y8; \ + /* end */ + +/* Final linear transformation for the forward S-box, from Fig 4 of + * the paper. */ +#define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t) \ + uintN_t t46 = z15 ^ z16; \ + uintN_t t47 = z10 ^ z11; \ + uintN_t t48 = z5 ^ z13; \ + uintN_t t49 = z9 ^ z10; \ + uintN_t t50 = z2 ^ z12; \ + uintN_t t51 = z2 ^ z5; \ + uintN_t t52 = z7 ^ z8; \ + uintN_t t53 = z0 ^ z3; \ + uintN_t t54 = z6 ^ z7; \ + uintN_t t55 = z16 ^ z17; \ + uintN_t t56 = z12 ^ t48; \ + uintN_t t57 = t50 ^ t53; \ + uintN_t t58 = z4 ^ t46; \ + uintN_t t59 = z3 ^ t54; \ + uintN_t t60 = t46 ^ t57; \ + uintN_t t61 = z14 ^ t57; \ + uintN_t t62 = t52 ^ t58; \ + uintN_t t63 = t49 ^ t58; \ + uintN_t t64 = z4 ^ t59; \ + uintN_t t65 = t61 ^ t62; \ + uintN_t t66 = z1 ^ t63; \ + output[7] = t59 ^ t63; \ + output[1] = ~(t56 ^ t62); \ + output[0] = ~(t48 ^ t60); \ + uintN_t t67 = t64 ^ t65; \ + output[4] = t53 ^ t66; \ + output[3] = t51 ^ t66; \ + output[2] = t47 ^ t65; \ + output[6] = ~(t64 ^ output[4]); \ + output[5] = ~(t55 ^ t67); \ + /* end */ + +#define BITSLICED_SUBBYTES(output, input, uintN_t) do { \ + SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t); \ + SBOX_CORE(uintN_t); \ + SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t); \ + } while (0) + +/* + * Initial and final linear transformations for the backward S-box. I + * generated these myself, by implementing the linear-transform + * optimisation algorithm in the paper, and applying it to the + * matrices calculated by _their_ top and bottom transformations, pre- + * and post-multiplied as appropriate by the linear map in the inverse + * S_box. + */ +#define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t) \ + /* Initial subtraction of the constant */ \ + uintN_t iv0 = ~input[0], iv1 = ~input[1]; \ + uintN_t iv5 = ~input[5], iv6 = ~input[6]; \ + \ + uintN_t y5 = input[4] ^ iv6; \ + uintN_t y19 = input[3] ^ iv0; \ + uintN_t itmp8 = y5 ^ iv0; \ + uintN_t y4 = itmp8 ^ iv1; \ + uintN_t y9 = input[4] ^ input[3]; \ + uintN_t y2 = y9 ^ y4; \ + uintN_t itmp9 = y2 ^ input[7]; \ + uintN_t y1 = y9 ^ iv0; \ + uintN_t y6 = y5 ^ input[7]; \ + uintN_t y18 = y9 ^ iv5; \ + uintN_t y7 = y18 ^ y2; \ + uintN_t y16 = y7 ^ y1; \ + uintN_t y21 = y7 ^ iv1; \ + uintN_t y3 = input[4] ^ input[7]; \ + uintN_t y13 = y16 ^ y21; \ + uintN_t y8 = input[4] ^ y6; \ + uintN_t y10 = y8 ^ y19; \ + uintN_t y14 = y8 ^ y9; \ + uintN_t y20 = itmp9 ^ input[2]; \ + uintN_t y11 = y9 ^ y20; \ + uintN_t i0 = y11 ^ y7; \ + uintN_t y15 = i0 ^ y6; \ + uintN_t y17 = y16 ^ y15; \ + uintN_t y12 = itmp9 ^ input[3]; \ + /* end */ +#define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \ + uintN_t otmp18 = z15 ^ z6; \ + uintN_t otmp19 = z13 ^ otmp18; \ + uintN_t otmp20 = z12 ^ otmp19; \ + uintN_t otmp21 = z16 ^ otmp20; \ + uintN_t otmp22 = z8 ^ otmp21; \ + uintN_t otmp23 = z0 ^ otmp22; \ + uintN_t otmp24 = otmp22 ^ z3; \ + uintN_t otmp25 = otmp24 ^ z4; \ + uintN_t otmp26 = otmp25 ^ z2; \ + uintN_t otmp27 = z1 ^ otmp26; \ + uintN_t otmp28 = z14 ^ otmp27; \ + uintN_t otmp29 = otmp28 ^ z10; \ + output[4] = z2 ^ otmp23; \ + output[7] = z5 ^ otmp24; \ + uintN_t otmp30 = z11 ^ otmp29; \ + output[5] = z13 ^ otmp30; \ + uintN_t otmp31 = otmp25 ^ z8; \ + output[1] = z7 ^ otmp31; \ + uintN_t otmp32 = z11 ^ z9; \ + uintN_t otmp33 = z17 ^ otmp32; \ + uintN_t otmp34 = otmp30 ^ otmp33; \ + output[0] = z15 ^ otmp33; \ + uintN_t otmp35 = z12 ^ otmp34; \ + output[6] = otmp35 ^ z16; \ + uintN_t otmp36 = z1 ^ otmp23; \ + uintN_t otmp37 = z5 ^ otmp36; \ + output[2] = z4 ^ otmp37; \ + uintN_t otmp38 = z11 ^ output[1]; \ + uintN_t otmp39 = z2 ^ otmp38; \ + uintN_t otmp40 = z17 ^ otmp39; \ + uintN_t otmp41 = z0 ^ otmp40; \ + uintN_t otmp42 = z5 ^ otmp41; \ + uintN_t otmp43 = otmp42 ^ z10; \ + uintN_t otmp44 = otmp43 ^ z3; \ + output[3] = otmp44 ^ z16; \ + /* end */ + +#define BITSLICED_INVSUBBYTES(output, input, uintN_t) do { \ + SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t); \ + SBOX_CORE(uintN_t); \ + SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t); \ + } while (0) + + +/* ----- + * The ShiftRows transformation. This operates independently on each + * bit slice. + */ + +#define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do \ + { \ + uintN_t mask, mask2, mask3, diff, x = (input); \ + /* Rotate rows 2 and 3 by 16 bits */ \ + mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + diff = ((x >> 8) ^ x) & mask; \ + x ^= diff ^ (diff << 8); \ + /* Rotate rows 1 and 3 by 8 bits */ \ + mask = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3); \ + /* Write output */ \ + (output) = x; \ + } while (0) + +#define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do \ + { \ + uintN_t mask, mask2, mask3, diff, x = (input); \ + /* Rotate rows 2 and 3 by 16 bits */ \ + mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + diff = ((x >> 8) ^ x) & mask; \ + x ^= diff ^ (diff << 8); \ + /* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \ + mask = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF); \ + x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3); \ + /* Write output */ \ + (output) = x; \ + } while (0) + +#define BITSLICED_SHIFTROWS(output, input, uintN_t) do \ + { \ + ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t); \ + } while (0) + +#define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do \ + { \ + ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t); \ + } while (0) + +/* ----- + * The MixColumns transformation. This has to operate on all eight bit + * slices at once, and also passes data back and forth between the + * bits in an adjacent group of 4 within each slice. + * + * Notation: let F = GF(2)[X]/ be the finite field + * used in AES, and let R = F[Y]/ be the ring whose elements + * represent the possible contents of a column of the matrix. I use X + * and Y below in those senses, i.e. X is the value in F that + * represents the byte 0x02, and Y is the value in R that cycles the + * four bytes around by one if you multiply by it. + */ + +/* Multiply every column by Y^3, i.e. cycle it round one place to the + * right. Operates on one bit slice at a time; you have to wrap it in + * ITERATE to affect all the data at once. */ +#define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do \ + { \ + uintN_t mask, mask2, x; \ + mask = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF); \ + mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF); \ + x = input; \ + output = ((x << 3) & mask) ^ ((x >> 1) & mask2); \ + } while (0) + +/* Multiply every column by Y^2. */ +#define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do \ + { \ + uintN_t mask, mask2, x; \ + mask = 0xC * (((uintN_t)~(uintN_t)0) / 0xF); \ + mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF); \ + x = input; \ + output = ((x << 2) & mask) ^ ((x >> 2) & mask2); \ + } while (0) + +#define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do \ + { \ + uintN_t tmp = input; \ + BITSLICED_MUL_BY_Y3(tmp, input, uintN_t); \ + output = input ^ tmp; \ + } while (0) + +/* Multiply every column by 1+Y^2. */ +#define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do \ + { \ + uintN_t tmp = input; \ + BITSLICED_MUL_BY_Y2(tmp, input, uintN_t); \ + output = input ^ tmp; \ + } while (0) + +/* Multiply every field element by X. This has to feed data between + * slices, so it does the whole job in one go without needing ITERATE. */ +#define BITSLICED_MUL_BY_X(output, input, uintN_t) do \ + { \ + uintN_t bit7 = input[7]; \ + output[7] = input[6]; \ + output[6] = input[5]; \ + output[5] = input[4]; \ + output[4] = input[3] ^ bit7; \ + output[3] = input[2] ^ bit7; \ + output[2] = input[1]; \ + output[1] = input[0] ^ bit7; \ + output[0] = bit7; \ + } while (0) + +/* + * The MixColumns constant is + * M = X + Y + Y^2 + (X+1)Y^3 + * which we construct by rearranging it into + * M = 1 + (1+Y^3) [ X + (1+Y^2) ] + */ +#define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do \ + { \ + uintN_t a[8], aX[8], b[8]; \ + /* a = input * (1+Y^3) */ \ + ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t); \ + /* aX = a * X */ \ + BITSLICED_MUL_BY_X(aX, a, uintN_t); \ + /* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */ \ + ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t); \ + /* output = input + aX + b (reusing a as a temp */ \ + BITSLICED_ADD(a, aX, b); \ + BITSLICED_ADD(output, input, a); \ + } while (0) + +/* + * The InvMixColumns constant, written out longhand, is + * I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3 + * We represent this as + * I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3) + */ +#define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do \ + { \ + /* We need input * X^i for i=1,...,3 */ \ + uintN_t X[8], X2[8], X3[8]; \ + BITSLICED_MUL_BY_X(X, input, uintN_t); \ + BITSLICED_MUL_BY_X(X2, X, uintN_t); \ + BITSLICED_MUL_BY_X(X3, X2, uintN_t); \ + /* Sum them all and multiply by 1+Y+Y^2+Y^3. */ \ + uintN_t S[8]; \ + BITSLICED_ADD(S, input, X); \ + BITSLICED_ADD(S, S, X2); \ + BITSLICED_ADD(S, S, X3); \ + ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t); \ + ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t); \ + /* Compute the X(Y+Y^2) term. */ \ + uintN_t A[8]; \ + ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t); \ + ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t); \ + /* Compute the X^2(Y+Y^3) term. */ \ + uintN_t B[8]; \ + ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t); \ + ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t); \ + /* And add all the pieces together. */ \ + BITSLICED_ADD(S, S, input); \ + BITSLICED_ADD(S, S, A); \ + BITSLICED_ADD(output, S, B); \ + } while (0) + +/* ----- + * Put it all together into a cipher round. + */ + +/* Dummy macro to get rid of the MixColumns in the final round. */ +#define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0) + +#define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \ + static void aes_sliced_round_e_##suffix( \ + uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \ + { \ + BITSLICED_SUBBYTES(output, input, uintN_t); \ + BITSLICED_SHIFTROWS(output, output, uintN_t); \ + mixcol_macro(output, output, uintN_t); \ + BITSLICED_ADD(output, output, roundkey); \ } - assert(keylen == 16 || keylen == 24 || keylen == 32); +ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS) +ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS) +ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS) +ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS) - ctx->encrypt_cbc = aes_encrypt_cbc_sw; - ctx->decrypt_cbc = aes_decrypt_cbc_sw; - ctx->sdctr = aes_sdctr_sw; +#define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro) \ + static void aes_sliced_round_d_##suffix( \ + uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \ + { \ + BITSLICED_ADD(output, input, roundkey); \ + mixcol_macro(output, output, uintN_t); \ + BITSLICED_INVSUBBYTES(output, output, uintN_t); \ + BITSLICED_INVSHIFTROWS(output, output, uintN_t); \ + } - Nk = keylen / 4; - rconst = 1; - for (i = 0; i < (ctx->Nr + 1) * NB; i++) { - if (i < Nk) - ctx->keysched[i] = GET_32BIT_MSB_FIRST(key + 4 * i); - else { - uint32_t temp = ctx->keysched[i - 1]; - if (i % Nk == 0) { - int a, b, c, d; - a = (temp >> 16) & 0xFF; - b = (temp >> 8) & 0xFF; - c = (temp >> 0) & 0xFF; - d = (temp >> 24) & 0xFF; - temp = Sbox[a] ^ rconst; - temp = (temp << 8) | Sbox[b]; - temp = (temp << 8) | Sbox[c]; - temp = (temp << 8) | Sbox[d]; - rconst = mulby2(rconst); - } else if (i % Nk == 4 && Nk > 6) { - int a, b, c, d; - a = (temp >> 24) & 0xFF; - b = (temp >> 16) & 0xFF; - c = (temp >> 8) & 0xFF; - d = (temp >> 0) & 0xFF; - temp = Sbox[a]; - temp = (temp << 8) | Sbox[b]; - temp = (temp << 8) | Sbox[c]; - temp = (temp << 8) | Sbox[d]; - } - ctx->keysched[i] = ctx->keysched[i - Nk] ^ temp; +#if 0 /* no cipher mode we support requires serial decryption */ +DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS) +DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS) +#endif +DECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS) +DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS) + +/* ----- + * Key setup function. + */ + +typedef struct aes_sliced_key aes_sliced_key; +struct aes_sliced_key { + BignumInt roundkeys_parallel[MAXROUNDKEYS * 8]; + uint16_t roundkeys_serial[MAXROUNDKEYS * 8]; + unsigned rounds; +}; + +static void aes_sliced_key_setup( + aes_sliced_key *sk, const void *vkey, size_t keybits) +{ + const unsigned char *key = (const unsigned char *)vkey; + + size_t key_words = keybits / 32; + sk->rounds = key_words + 6; + size_t sched_words = (sk->rounds + 1) * 4; + + unsigned rconpos = 0; + + uint16_t *outslices = sk->roundkeys_serial; + unsigned outshift = 0; + + memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial)); + + uint8_t inblk[16]; + memset(inblk, 0, 16); + uint16_t slices[8]; + + for (size_t i = 0; i < sched_words; i++) { + /* + * Prepare a word of round key in the low 4 bits of each + * integer in slices[]. + */ + if (i < key_words) { + memcpy(inblk, key + 4*i, 4); + TO_BITSLICES(slices, inblk, uint16_t, =, 0); + } else { + unsigned wordindex, bitshift; + uint16_t *prevslices; + + /* Fetch the (i-1)th key word */ + wordindex = i-1; + bitshift = 4 * (wordindex & 3); + prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2); + for (size_t i = 0; i < 8; i++) + slices[i] = prevslices[i] >> bitshift; + + /* Decide what we're doing in this expansion stage */ + bool rotate_and_round_constant = (i % key_words == 0); + bool sub = rotate_and_round_constant || + (key_words == 8 && i % 8 == 4); + + if (rotate_and_round_constant) { + for (size_t i = 0; i < 8; i++) + slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF; + } + + if (sub) { + BITSLICED_SUBBYTES(slices, slices, uint16_t); + } + + if (rotate_and_round_constant) { + assert(rconpos < lenof(key_setup_round_constants)); + uint8_t rcon = key_setup_round_constants[rconpos++]; + for (size_t i = 0; i < 8; i++) + slices[i] ^= 1 & (rcon >> i); + } + + /* Combine with the (i-Nk)th key word */ + wordindex = i - key_words; + bitshift = 4 * (wordindex & 3); + prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2); + for (size_t i = 0; i < 8; i++) + slices[i] ^= prevslices[i] >> bitshift; } + + /* + * Now copy it into sk. + */ + for (unsigned b = 0; b < 8; b++) + outslices[b] |= (slices[b] & 0xF) << outshift; + outshift += 4; + if (outshift == 16) { + outshift = 0; + outslices += 8; + } } + smemclr(inblk, sizeof(inblk)); + smemclr(slices, sizeof(slices)); + /* - * Now prepare the modified keys for the inverse cipher. + * Replicate that set of round keys into larger integers for the + * parallel versions of the cipher. */ - for (i = 0; i <= ctx->Nr; i++) { - for (j = 0; j < NB; j++) { - uint32_t temp; - temp = ctx->keysched[(ctx->Nr - i) * NB + j]; - if (i != 0 && i != ctx->Nr) { - /* - * Perform the InvMixColumn operation on i. The D - * tables give the result of InvMixColumn applied - * to Sboxinv on individual bytes, so we should - * compose Sbox with the D tables for this. - */ - int a, b, c, d; - a = (temp >> 24) & 0xFF; - b = (temp >> 16) & 0xFF; - c = (temp >> 8) & 0xFF; - d = (temp >> 0) & 0xFF; - temp = D0[Sbox[a]]; - temp ^= D1[Sbox[b]]; - temp ^= D2[Sbox[c]]; - temp ^= D3[Sbox[d]]; - } - ctx->invkeysched[i * NB + j] = temp; - } + for (size_t i = 0; i < 8 * (sched_words / 4); i++) { + sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] * + ((BignumInt)~(BignumInt)0 / 0xFFFF); } } -/* - * Software encrypt/decrypt macros +/* ----- + * The full cipher primitive, including transforming the input and + * output to/from bit-sliced form. */ -#define ADD_ROUND_KEY (block[0]^=*keysched++, \ - block[1]^=*keysched++, \ - block[2]^=*keysched++, \ - block[3]^=*keysched++) -#define MOVEWORD(i) ( block[i] = newstate[i] ) -#define ENCWORD(i) ( newstate[i] = (E0[(block[i ] >> 24) & 0xFF] ^ \ - E1[(block[(i+1)%NB] >> 16) & 0xFF] ^ \ - E2[(block[(i+2)%NB] >> 8) & 0xFF] ^ \ - E3[ block[(i+3)%NB] & 0xFF]) ) -#define ENCROUND { ENCWORD(0); ENCWORD(1); ENCWORD(2); ENCWORD(3); \ - MOVEWORD(0); MOVEWORD(1); MOVEWORD(2); MOVEWORD(3); ADD_ROUND_KEY; } +#define ENCRYPT_FN(suffix, uintN_t, nblocks) \ + static void aes_sliced_e_##suffix( \ + uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \ + { \ + uintN_t state[8]; \ + TO_BITSLICES(state, input, uintN_t, =, 0); \ + for (unsigned i = 1; i < nblocks; i++) { \ + input += 16; \ + TO_BITSLICES(state, input, uintN_t, |=, i*16); \ + } \ + const uintN_t *keys = sk->roundkeys_##suffix; \ + BITSLICED_ADD(state, state, keys); \ + keys += 8; \ + for (unsigned i = 0; i < sk->rounds-1; i++) { \ + aes_sliced_round_e_##suffix(state, state, keys); \ + keys += 8; \ + } \ + aes_sliced_round_e_##suffix##_last(state, state, keys); \ + for (unsigned i = 0; i < nblocks; i++) { \ + FROM_BITSLICES(output, state, i*16); \ + output += 16; \ + } \ + } -#define ENCLASTWORD(i) ( newstate[i] = \ - (Sbox[(block[i] >> 24) & 0xFF] << 24) | \ - (Sbox[(block[(i+1)%NB] >> 16) & 0xFF] << 16) | \ - (Sbox[(block[(i+2)%NB] >> 8) & 0xFF] << 8) | \ - (Sbox[(block[(i+3)%NB] ) & 0xFF] ) ) -#define ENCLASTROUND { ENCLASTWORD(0); ENCLASTWORD(1); ENCLASTWORD(2); ENCLASTWORD(3); \ - MOVEWORD(0); MOVEWORD(1); MOVEWORD(2); MOVEWORD(3); ADD_ROUND_KEY; } +#define DECRYPT_FN(suffix, uintN_t, nblocks) \ + static void aes_sliced_d_##suffix( \ + uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \ + { \ + uintN_t state[8]; \ + TO_BITSLICES(state, input, uintN_t, =, 0); \ + for (unsigned i = 1; i < nblocks; i++) { \ + input += 16; \ + TO_BITSLICES(state, input, uintN_t, |=, i*16); \ + } \ + const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds; \ + aes_sliced_round_d_##suffix##_first(state, state, keys); \ + keys -= 8; \ + for (unsigned i = 0; i < sk->rounds-1; i++) { \ + aes_sliced_round_d_##suffix(state, state, keys); \ + keys -= 8; \ + } \ + BITSLICED_ADD(state, state, keys); \ + for (unsigned i = 0; i < nblocks; i++) { \ + FROM_BITSLICES(output, state, i*16); \ + output += 16; \ + } \ + } -#define DECWORD(i) ( newstate[i] = (D0[(block[i] >> 24) & 0xFF] ^ \ - D1[(block[(i+3)%NB] >> 16) & 0xFF] ^ \ - D2[(block[(i+2)%NB] >> 8) & 0xFF] ^ \ - D3[ block[(i+1)%NB] & 0xFF]) ) -#define DECROUND { DECWORD(0); DECWORD(1); DECWORD(2); DECWORD(3); \ - MOVEWORD(0); MOVEWORD(1); MOVEWORD(2); MOVEWORD(3); ADD_ROUND_KEY; } +ENCRYPT_FN(serial, uint16_t, 1) +#if 0 /* no cipher mode we support requires serial decryption */ +DECRYPT_FN(serial, uint16_t, 1) +#endif +ENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM) +DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM) -#define DECLASTWORD(i) (newstate[i] = \ - (Sboxinv[(block[i] >> 24) & 0xFF] << 24) | \ - (Sboxinv[(block[(i+3)%NB] >> 16) & 0xFF] << 16) | \ - (Sboxinv[(block[(i+2)%NB] >> 8) & 0xFF] << 8) | \ - (Sboxinv[(block[(i+1)%NB] ) & 0xFF] ) ) -#define DECLASTROUND { DECLASTWORD(0); DECLASTWORD(1); DECLASTWORD(2); DECLASTWORD(3); \ - MOVEWORD(0); MOVEWORD(1); MOVEWORD(2); MOVEWORD(3); ADD_ROUND_KEY; } - -/* - * Software AES encrypt/decrypt core +/* ----- + * The SSH interface and the cipher modes. */ -static void aes_encrypt_cbc_sw(unsigned char *blk, int len, AESContext * ctx) + +#define SDCTR_WORDS (16 / BIGNUM_INT_BYTES) + +typedef struct aes_sw_context aes_sw_context; +struct aes_sw_context { + aes_sliced_key sk; + union { + struct { + /* In CBC mode, the IV is just a copy of the last seen + * cipher block. */ + uint8_t prevblk[16]; + } cbc; + struct { + /* In SDCTR mode, we keep the counter itself in a form + * that's easy to increment. We also use the parallel + * version of the core AES function, so we'll encrypt + * multiple counter values in one go. That won't align + * nicely with the sizes of data we're asked to encrypt, + * so we must also store a cache of the last set of + * keystream blocks we generated, and our current position + * within that cache. */ + BignumInt counter[SDCTR_WORDS]; + uint8_t keystream[SLICE_PARALLELISM * 16]; + uint8_t *keystream_pos; + } sdctr; + } iv; + ssh2_cipher ciph; +}; + +static ssh2_cipher *aes_sw_new(const ssh2_cipheralg *alg) { - uint32_t block[4]; - unsigned char* finish = blk + len; - int i; - - assert((len & 15) == 0); - - memcpy(block, ctx->iv, sizeof(block)); - - while (blk < finish) { - uint32_t *keysched = ctx->keysched; - uint32_t newstate[4]; - for (i = 0; i < 4; i++) - block[i] ^= GET_32BIT_MSB_FIRST(blk + 4 * i); - ADD_ROUND_KEY; - switch (ctx->Nr) { - case 14: - ENCROUND; - ENCROUND; - case 12: - ENCROUND; - ENCROUND; - case 10: - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCLASTROUND; - break; - default: - unreachable("bad AES round count"); - } - for (i = 0; i < 4; i++) - PUT_32BIT_MSB_FIRST(blk + 4 * i, block[i]); - blk += 16; - } - - memcpy(ctx->iv, block, sizeof(block)); + aes_sw_context *ctx = snew(aes_sw_context); + ctx->ciph.vt = alg; + return &ctx->ciph; } -static void aes_sdctr_sw(unsigned char *blk, int len, AESContext *ctx) -{ - uint32_t iv[4]; - unsigned char* finish = blk + len; - int i; - - assert((len & 15) == 0); - - memcpy(iv, ctx->iv, sizeof(iv)); - - while (blk < finish) { - uint32_t *keysched = ctx->keysched; - uint32_t newstate[4], block[4], tmp; - memcpy(block, iv, sizeof(block)); - ADD_ROUND_KEY; - switch (ctx->Nr) { - case 14: - ENCROUND; - ENCROUND; - case 12: - ENCROUND; - ENCROUND; - case 10: - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCROUND; - ENCLASTROUND; - break; - default: - unreachable("bad AES round count"); - } - for (i = 0; i < 4; i++) { - tmp = GET_32BIT_MSB_FIRST(blk + 4 * i); - PUT_32BIT_MSB_FIRST(blk + 4 * i, tmp ^ block[i]); - } - for (i = 3; i >= 0; i--) - if ((iv[i] = (iv[i] + 1) & 0xffffffff) != 0) - break; - blk += 16; - } - - memcpy(ctx->iv, iv, sizeof(iv)); -} - -static void aes_decrypt_cbc_sw(unsigned char *blk, int len, AESContext * ctx) -{ - uint32_t iv[4]; - unsigned char* finish = blk + len; - int i; - - assert((len & 15) == 0); - - memcpy(iv, ctx->iv, sizeof(iv)); - - while (blk < finish) { - uint32_t *keysched = ctx->invkeysched; - uint32_t newstate[4], ct[4], block[4]; - for (i = 0; i < 4; i++) - block[i] = ct[i] = GET_32BIT_MSB_FIRST(blk + 4 * i); - ADD_ROUND_KEY; - switch (ctx->Nr) { - case 14: - DECROUND; - DECROUND; - case 12: - DECROUND; - DECROUND; - case 10: - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECROUND; - DECLASTROUND; - break; - default: - unreachable("bad AES round count"); - } - for (i = 0; i < 4; i++) { - PUT_32BIT_MSB_FIRST(blk + 4 * i, iv[i] ^ block[i]); - iv[i] = ct[i]; - } - blk += 16; - } - - memcpy(ctx->iv, iv, sizeof(iv)); -} - -AESContext *aes_make_context(void) -{ - return snew(AESContext); -} - -void aes_free_context(AESContext *ctx) +static void aes_sw_free(ssh2_cipher *ciph) { + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); smemclr(ctx, sizeof(*ctx)); sfree(ctx); } -void aes128_key(AESContext *ctx, const void *key) +static void aes_sw_setkey(ssh2_cipher *ciph, const void *vkey) { - aes_setup(ctx, key, 16); + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits); } -void aes192_key(AESContext *ctx, const void *key) +static void aes_sw_setiv_cbc(ssh2_cipher *ciph, const void *iv) { - aes_setup(ctx, key, 24); + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + memcpy(ctx->iv.cbc.prevblk, iv, 16); } -void aes256_key(AESContext *ctx, const void *key) +static void aes_sw_setiv_sdctr(ssh2_cipher *ciph, const void *viv) { - aes_setup(ctx, key, 32); + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + const uint8_t *iv = (const uint8_t *)viv; + + /* Import the initial counter value into the internal representation */ + for (unsigned i = 0; i < SDCTR_WORDS; i++) + ctx->iv.sdctr.counter[i] = + GET_BIGNUMINT_MSB_FIRST( + iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES); + + /* Set keystream_pos to indicate that the keystream cache is + * currently empty */ + ctx->iv.sdctr.keystream_pos = + ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream); } -void aes_iv(AESContext *ctx, const void *viv) +typedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched); + +static inline void memxor16(void *vout, const void *vlhs, const void *vrhs) { - const unsigned char *iv = (const unsigned char *)viv; - if (ctx->isNI) { - memcpy(ctx->iv, iv, sizeof(ctx->iv)); - } - else { - int i; - for (i = 0; i < 4; i++) - ctx->iv[i] = GET_32BIT_MSB_FIRST(iv + 4 * i); + uint8_t *out = (uint8_t *)vout; + const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs; + uint64_t w; + + w = GET_64BIT_LSB_FIRST(lhs); + w ^= GET_64BIT_LSB_FIRST(rhs); + PUT_64BIT_LSB_FIRST(out, w); + w = GET_64BIT_LSB_FIRST(lhs + 8); + w ^= GET_64BIT_LSB_FIRST(rhs + 8); + PUT_64BIT_LSB_FIRST(out + 8, w); +} + +static inline void aes_cbc_sw_encrypt( + ssh2_cipher *ciph, void *vblk, int blklen) +{ + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + + /* + * CBC encryption has to be done serially, because the input to + * each run of the cipher includes the output from the previous + * run. + */ + + for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; + blk < finish; blk += 16) { + /* + * We use the IV array itself as the location for the + * encryption, because there's no reason not to. + */ + + /* XOR the new plaintext block into the previous cipher block */ + memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk); + + /* Run the cipher over the result, which leaves it + * conveniently already stored in ctx->iv */ + aes_sliced_e_serial( + ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk); + + /* Copy it to the output location */ + memcpy(blk, ctx->iv.cbc.prevblk, 16); } } -void aes_ssh2_encrypt_blk(AESContext *ctx, void *blk, int len) +static inline void aes_cbc_sw_decrypt( + ssh2_cipher *ciph, void *vblk, int blklen) { - aes_encrypt_cbc(blk, len, ctx); + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + uint8_t *blk = (uint8_t *)vblk; + + /* + * CBC decryption can run in parallel, because all the + * _ciphertext_ blocks are already available. + */ + + size_t blocks_remaining = blklen / 16; + + uint8_t data[SLICE_PARALLELISM * 16]; + /* Zeroing the data array is probably overcautious, but it avoids + * technically undefined behaviour from leaving it uninitialised + * if our very first iteration doesn't include enough cipher + * blocks to populate it fully */ + memset(data, 0, sizeof(data)); + + while (blocks_remaining > 0) { + /* Number of blocks we'll handle in this iteration. If we're + * dealing with fewer than the maximum, it doesn't matter - + * it's harmless to run the full parallel cipher function + * anyway. */ + size_t blocks = (blocks_remaining < SLICE_PARALLELISM ? + blocks_remaining : SLICE_PARALLELISM); + + /* Parallel-decrypt the input, in a separate array so we still + * have the cipher stream available for XORing. */ + memcpy(data, blk, 16 * blocks); + aes_sliced_d_parallel(data, data, &ctx->sk); + + /* Write the output and update the IV */ + for (size_t i = 0; i < blocks; i++) { + uint8_t *decrypted = data + 16*i; + uint8_t *output = blk + 16*i; + + memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk); + memcpy(ctx->iv.cbc.prevblk, output, 16); + memcpy(output, decrypted, 16); + } + + /* Advance the input pointer. */ + blk += 16 * blocks; + blocks_remaining -= blocks; + } + + smemclr(data, sizeof(data)); } -void aes_ssh2_decrypt_blk(AESContext *ctx, void *blk, int len) +static inline void aes_sdctr_sw( + ssh2_cipher *ciph, void *vblk, int blklen) { - aes_decrypt_cbc(blk, len, ctx); + aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph); + + /* + * SDCTR encrypt/decrypt loops round one block at a time XORing + * the keystream into the user's data, and periodically has to run + * a parallel encryption operation to get more keystream. + */ + + uint8_t *keystream_end = + ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream); + + for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; + blk < finish; blk += 16) { + + if (ctx->iv.sdctr.keystream_pos == keystream_end) { + /* + * Generate some keystream. + */ + for (uint8_t *block = ctx->iv.sdctr.keystream; + block < keystream_end; block += 16) { + /* Format the counter value into the buffer. */ + for (unsigned i = 0; i < SDCTR_WORDS; i++) + PUT_BIGNUMINT_MSB_FIRST( + block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES, + ctx->iv.sdctr.counter[i]); + + /* Increment the counter. */ + BignumCarry carry = 1; + for (unsigned i = 0; i < SDCTR_WORDS; i++) + BignumADC(ctx->iv.sdctr.counter[i], carry, + ctx->iv.sdctr.counter[i], 0, carry); + } + + /* Encrypt all those counter blocks. */ + aes_sliced_e_parallel(ctx->iv.sdctr.keystream, + ctx->iv.sdctr.keystream, &ctx->sk); + + /* Reset keystream_pos to the start of the buffer. */ + ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream; + } + + memxor16(blk, blk, ctx->iv.sdctr.keystream_pos); + ctx->iv.sdctr.keystream_pos += 16; + } } -void aes_ssh2_sdctr(AESContext *ctx, void *blk, int len) +#define SW_ENC_DEC(len) \ + static void aes##len##_cbc_sw_encrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_cbc_sw_encrypt(ciph, vblk, blklen); } \ + static void aes##len##_cbc_sw_decrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_cbc_sw_decrypt(ciph, vblk, blklen); } \ + static void aes##len##_sdctr_sw( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_sdctr_sw(ciph, vblk, blklen); } + +SW_ENC_DEC(128) +SW_ENC_DEC(192) +SW_ENC_DEC(256) + +/* ---------------------------------------------------------------------- + * Hardware-accelerated implementation of AES using x86 AES-NI. + */ + +#if HW_AES == HW_AES_NI + +/* + * Set target architecture for Clang and GCC + */ +#if !defined(__clang__) && defined(__GNUC__) +# pragma GCC target("aes") +# pragma GCC target("sse4.1") +#endif + +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) +# define FUNC_ISA __attribute__ ((target("sse4.1,aes"))) +#else +# define FUNC_ISA +#endif + +#include +#include + +#if defined(__clang__) || defined(__GNUC__) +#include +#define GET_CPU_ID(out) __cpuid(1, (out)[0], (out)[1], (out)[2], (out)[3]) +#else +#define GET_CPU_ID(out) __cpuid(out, 1) +#endif + +bool aes_hw_available(void) { - aes_sdctr(blk, len, ctx); + /* + * Determine if AES is available on this CPU, by checking that + * both AES itself and SSE4.1 are supported. + */ + unsigned int CPUInfo[4]; + GET_CPU_ID(CPUInfo); + return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19)); } +/* + * Core AES-NI encrypt/decrypt functions, one per length and direction. + */ + +#define NI_CIPHER(len, dir, dirlong, repmacro) \ + static FUNC_ISA inline __m128i aes_ni_##len##_##dir( \ + __m128i v, const __m128i *keysched) \ + { \ + v = _mm_xor_si128(v, *keysched++); \ + repmacro(v = _mm_aes##dirlong##_si128(v, *keysched++);); \ + return _mm_aes##dirlong##last_si128(v, *keysched); \ + } + +NI_CIPHER(128, e, enc, REP9) +NI_CIPHER(128, d, dec, REP9) +NI_CIPHER(192, e, enc, REP11) +NI_CIPHER(192, d, dec, REP11) +NI_CIPHER(256, e, enc, REP13) +NI_CIPHER(256, d, dec, REP13) + +/* + * The main key expansion. + */ +static FUNC_ISA void aes_ni_key_expand( + const unsigned char *key, size_t key_words, + __m128i *keysched_e, __m128i *keysched_d) +{ + size_t rounds = key_words + 6; + size_t sched_words = (rounds + 1) * 4; + + /* + * Store the key schedule as 32-bit integers during expansion, so + * that it's easy to refer back to individual previous words. We + * collect them into the final __m128i form at the end. + */ + uint32_t sched[MAXROUNDKEYS * 4]; + + unsigned rconpos = 0; + + for (size_t i = 0; i < sched_words; i++) { + if (i < key_words) { + sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i); + } else { + uint32_t temp = sched[i - 1]; + + bool rotate_and_round_constant = (i % key_words == 0); + bool only_sub = (key_words == 8 && i % 8 == 4); + + if (rotate_and_round_constant) { + __m128i v = _mm_setr_epi32(0,temp,0,0); + v = _mm_aeskeygenassist_si128(v, 0); + temp = _mm_extract_epi32(v, 1); + + assert(rconpos < lenof(key_setup_round_constants)); + temp ^= key_setup_round_constants[rconpos++]; + } else if (only_sub) { + __m128i v = _mm_setr_epi32(0,temp,0,0); + v = _mm_aeskeygenassist_si128(v, 0); + temp = _mm_extract_epi32(v, 0); + } + + sched[i] = sched[i - key_words] ^ temp; + } + } + + /* + * Combine the key schedule words into __m128i vectors and store + * them in the output context. + */ + for (size_t round = 0; round <= rounds; round++) + keysched_e[round] = _mm_setr_epi32( + sched[4*round ], sched[4*round+1], + sched[4*round+2], sched[4*round+3]); + + smemclr(sched, sizeof(sched)); + + /* + * Now prepare the modified keys for the inverse cipher. + */ + for (size_t eround = 0; eround <= rounds; eround++) { + size_t dround = rounds - eround; + __m128i rkey = keysched_e[eround]; + if (eround && dround) /* neither first nor last */ + rkey = _mm_aesimc_si128(rkey); + keysched_d[dround] = rkey; + } +} + +/* + * Auxiliary routine to increment the 128-bit counter used in SDCTR + * mode. + */ +static FUNC_ISA inline __m128i aes_ni_sdctr_increment(__m128i v) +{ + const __m128i ONE = _mm_setr_epi32(1,0,0,0); + const __m128i ZERO = _mm_setzero_si128(); + + /* Increment the low-order 64 bits of v */ + v = _mm_add_epi64(v, ONE); + /* Check if they've become zero */ + __m128i cmp = _mm_cmpeq_epi64(v, ZERO); + /* If so, the low half of cmp is all 1s. Pack that into the high + * half of addend with zero in the low half. */ + __m128i addend = _mm_unpacklo_epi64(ZERO, cmp); + /* And subtract that from v, which increments the high 64 bits iff + * the low 64 wrapped round. */ + v = _mm_sub_epi64(v, addend); + + return v; +} + +/* + * Auxiliary routine to reverse the byte order of a vector, so that + * the SDCTR IV can be made big-endian for feeding to the cipher. + */ +static FUNC_ISA inline __m128i aes_ni_sdctr_reverse(__m128i v) +{ + v = _mm_shuffle_epi8( + v, _mm_setr_epi8(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0)); + return v; +} + +/* + * The SSH interface and the cipher modes. + */ + +typedef struct aes_ni_context aes_ni_context; +struct aes_ni_context { + __m128i keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv; + + ssh2_cipher ciph; +}; + +static ssh2_cipher *aes_hw_new(const ssh2_cipheralg *alg) +{ + if (!aes_hw_available_cached()) + return NULL; + + aes_ni_context *ctx = snew(aes_ni_context); + ctx->ciph.vt = alg; + return &ctx->ciph; +} + +static void aes_hw_free(ssh2_cipher *ciph) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + smemclr(ctx, sizeof(*ctx)); + sfree(ctx); +} + +static void aes_hw_setkey(ssh2_cipher *ciph, const void *vkey) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + const unsigned char *key = (const unsigned char *)vkey; + + aes_ni_key_expand(key, ctx->ciph.vt->real_keybits / 32, + ctx->keysched_e, ctx->keysched_d); +} + +static FUNC_ISA void aes_hw_setiv_cbc(ssh2_cipher *ciph, const void *iv) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + ctx->iv = _mm_loadu_si128(iv); +} + +static FUNC_ISA void aes_hw_setiv_sdctr(ssh2_cipher *ciph, const void *iv) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + __m128i counter = _mm_loadu_si128(iv); + ctx->iv = aes_ni_sdctr_reverse(counter); +} + +typedef __m128i (*aes_ni_fn)(__m128i v, const __m128i *keysched); + +static FUNC_ISA inline void aes_cbc_ni_encrypt( + ssh2_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + + for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; + blk < finish; blk += 16) { + __m128i plaintext = _mm_loadu_si128((const __m128i *)blk); + __m128i cipher_input = _mm_xor_si128(plaintext, ctx->iv); + __m128i ciphertext = encrypt(cipher_input, ctx->keysched_e); + _mm_storeu_si128((__m128i *)blk, ciphertext); + ctx->iv = ciphertext; + } +} + +static FUNC_ISA inline void aes_cbc_ni_decrypt( + ssh2_cipher *ciph, void *vblk, int blklen, aes_ni_fn decrypt) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + + for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; + blk < finish; blk += 16) { + __m128i ciphertext = _mm_loadu_si128((const __m128i *)blk); + __m128i decrypted = decrypt(ciphertext, ctx->keysched_d); + __m128i plaintext = _mm_xor_si128(decrypted, ctx->iv); + _mm_storeu_si128((__m128i *)blk, plaintext); + ctx->iv = ciphertext; + } +} + +static FUNC_ISA inline void aes_sdctr_ni( + ssh2_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt) +{ + aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph); + + for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; + blk < finish; blk += 16) { + __m128i counter = aes_ni_sdctr_reverse(ctx->iv); + __m128i keystream = encrypt(counter, ctx->keysched_e); + __m128i input = _mm_loadu_si128((const __m128i *)blk); + __m128i output = _mm_xor_si128(input, keystream); + _mm_storeu_si128((__m128i *)blk, output); + ctx->iv = aes_ni_sdctr_increment(ctx->iv); + } +} + +#define NI_ENC_DEC(len) \ + static FUNC_ISA void aes##len##_cbc_hw_encrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_cbc_ni_encrypt(ciph, vblk, blklen, aes_ni_##len##_e); } \ + static FUNC_ISA void aes##len##_cbc_hw_decrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_cbc_ni_decrypt(ciph, vblk, blklen, aes_ni_##len##_d); } \ + static FUNC_ISA void aes##len##_sdctr_hw( \ + ssh2_cipher *ciph, void *vblk, int blklen) \ + { aes_sdctr_ni(ciph, vblk, blklen, aes_ni_##len##_e); } \ + +NI_ENC_DEC(128) +NI_ENC_DEC(192) +NI_ENC_DEC(256) + +/* ---------------------------------------------------------------------- + * Stub functions if we have no hardware-accelerated AES. In this + * case, aes_hw_new returns NULL (though it should also never be + * selected by aes_select, so the only thing that should even be + * _able_ to call it is testcrypt). As a result, the remaining vtable + * functions should never be called at all. + */ + +#elif HW_AES == HW_AES_NONE + +bool aes_hw_available(void) +{ + return false; +} + +static ssh2_cipher *aes_hw_new(const ssh2_cipheralg *alg) +{ + return NULL; +} + +#define STUB_BODY { unreachable("Should never be called"); } + +static void aes_hw_free(ssh2_cipher *ciph) STUB_BODY +static void aes_hw_setkey(ssh2_cipher *ciph, const void *key) STUB_BODY +static void aes_hw_setiv_cbc(ssh2_cipher *ciph, const void *iv) STUB_BODY +static void aes_hw_setiv_sdctr(ssh2_cipher *ciph, const void *iv) STUB_BODY +#define STUB_ENC_DEC(len) \ + static void aes##len##_cbc_hw_encrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) STUB_BODY \ + static void aes##len##_cbc_hw_decrypt( \ + ssh2_cipher *ciph, void *vblk, int blklen) STUB_BODY \ + static void aes##len##_sdctr_hw( \ + ssh2_cipher *ciph, void *vblk, int blklen) STUB_BODY + +STUB_ENC_DEC(128) +STUB_ENC_DEC(192) +STUB_ENC_DEC(256) + +#endif /* HW_AES */ + +/* ---------------------------------------------------------------------- + * Auxiliary routines for use of AES in other contexts than the main + * SSH packet protocol. + */ + void aes256_encrypt_pubkey(const void *key, void *blk, int len) { char iv[16]; @@ -1044,722 +1501,3 @@ void aes256_decrypt_pubkey(const void *key, void *blk, int len) ssh2_cipher_decrypt(cipher, blk, len); ssh2_cipher_free(cipher); } - -struct aes_ssh2_ctx { - AESContext context; - ssh2_cipher ciph; -}; - -ssh2_cipher *aes_ssh2_new(const ssh2_cipheralg *alg) -{ - struct aes_ssh2_ctx *ctx = snew(struct aes_ssh2_ctx); - ctx->ciph.vt = alg; - return &ctx->ciph; -} - -static void aes_ssh2_free(ssh2_cipher *cipher) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - smemclr(ctx, sizeof(*ctx)); - sfree(ctx); -} - -static void aes_ssh2_setiv(ssh2_cipher *cipher, const void *iv) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - aes_iv(&ctx->context, iv); -} - -static void aes_ssh2_setkey(ssh2_cipher *cipher, const void *key) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - aes_setup(&ctx->context, key, ctx->ciph.vt->padded_keybytes); -} - -static void aes_ssh2_encrypt(ssh2_cipher *cipher, void *blk, int len) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - aes_encrypt_cbc(blk, len, &ctx->context); -} - -static void aes_ssh2_decrypt(ssh2_cipher *cipher, void *blk, int len) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - aes_decrypt_cbc(blk, len, &ctx->context); -} - -static void aes_ssh2_sdctr_method(ssh2_cipher *cipher, void *blk, int len) -{ - struct aes_ssh2_ctx *ctx = container_of(cipher, struct aes_ssh2_ctx, ciph); - aes_sdctr(blk, len, &ctx->context); -} - -const ssh2_cipheralg ssh_aes128_sdctr = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_sdctr_method, aes_ssh2_sdctr_method, NULL, NULL, - "aes128-ctr", - 16, 128, 16, 0, "AES-128 SDCTR", - NULL -}; - -const ssh2_cipheralg ssh_aes192_sdctr = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_sdctr_method, aes_ssh2_sdctr_method, NULL, NULL, - "aes192-ctr", - 16, 192, 24, 0, "AES-192 SDCTR", - NULL -}; - -const ssh2_cipheralg ssh_aes256_sdctr = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_sdctr_method, aes_ssh2_sdctr_method, NULL, NULL, - "aes256-ctr", - 16, 256, 32, 0, "AES-256 SDCTR", - NULL -}; - -const ssh2_cipheralg ssh_aes128_cbc = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_encrypt, aes_ssh2_decrypt, NULL, NULL, - "aes128-cbc", - 16, 128, 16, SSH_CIPHER_IS_CBC, "AES-128 CBC", - NULL -}; - -const ssh2_cipheralg ssh_aes192_cbc = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_encrypt, aes_ssh2_decrypt, NULL, NULL, - "aes192-cbc", - 16, 192, 24, SSH_CIPHER_IS_CBC, "AES-192 CBC", - NULL -}; - -const ssh2_cipheralg ssh_aes256_cbc = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_encrypt, aes_ssh2_decrypt, NULL, NULL, - "aes256-cbc", - 16, 256, 32, SSH_CIPHER_IS_CBC, "AES-256 CBC", - NULL -}; - -/* This cipher is just ssh_aes256 under a different protocol - * identifier; we leave it 'static' because testcrypt won't need it */ -static const ssh2_cipheralg ssh_rijndael_lysator = { - aes_ssh2_new, aes_ssh2_free, aes_ssh2_setiv, aes_ssh2_setkey, - aes_ssh2_encrypt, aes_ssh2_decrypt, NULL, NULL, - "rijndael-cbc@lysator.liu.se", - 16, 256, 32, SSH_CIPHER_IS_CBC, "AES-256 CBC", - NULL -}; - -static const ssh2_cipheralg *const aes_list[] = { - &ssh_aes256_sdctr, - &ssh_aes256_cbc, - &ssh_rijndael_lysator, - &ssh_aes192_sdctr, - &ssh_aes192_cbc, - &ssh_aes128_sdctr, - &ssh_aes128_cbc, -}; - -const ssh2_ciphers ssh2_aes = { lenof(aes_list), aes_list }; - -/* - * Implementation of AES for PuTTY using AES-NI - * instuction set expansion was made by: - * @author Pavel Kryukov - * @author Maxim Kuznetsov - * @author Svyatoslav Kuzmich - * - * For Putty AES NI project - * http://pavelkryukov.github.io/putty-aes-ni/ - */ - -/* - * Check of compiler version - */ -#ifdef _FORCE_AES_NI -# define COMPILER_SUPPORTS_AES_NI -#elif defined(__clang__) -# if __has_attribute(target) && __has_include() && (defined(__x86_64__) || defined(__i386)) -# define COMPILER_SUPPORTS_AES_NI -# endif -#elif defined(__GNUC__) -# if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && (defined(__x86_64__) || defined(__i386)) -# define COMPILER_SUPPORTS_AES_NI -# endif -#elif defined (_MSC_VER) -# if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729 -# define COMPILER_SUPPORTS_AES_NI -# endif -#endif - -#ifdef _FORCE_SOFTWARE_AES -# undef COMPILER_SUPPORTS_AES_NI -#endif - -#ifdef COMPILER_SUPPORTS_AES_NI - -/* - * Set target architecture for Clang and GCC - */ -#if !defined(__clang__) && defined(__GNUC__) -# pragma GCC target("aes") -# pragma GCC target("sse4.1") -#endif - -#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) -# define FUNC_ISA __attribute__ ((target("sse4.1,aes"))) -#else -# define FUNC_ISA -#endif - -#include -#include - -/* - * Determinators of CPU type - */ -#if defined(__clang__) || defined(__GNUC__) - -#include -INLINE static bool supports_aes_ni() -{ - unsigned int CPUInfo[4]; - __cpuid(1, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]); - return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19)); /* Check AES and SSE4.1 */ -} - -#else /* defined(__clang__) || defined(__GNUC__) */ - -INLINE static bool supports_aes_ni() -{ - unsigned int CPUInfo[4]; - __cpuid(CPUInfo, 1); - return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19)); /* Check AES and SSE4.1 */ -} - -#endif /* defined(__clang__) || defined(__GNUC__) */ - -/* - * Wrapper of SHUFPD instruction for MSVC - */ -#ifdef _MSC_VER -FUNC_ISA -INLINE static __m128i mm_shuffle_pd_i0(__m128i a, __m128i b) -{ - union { - __m128i i; - __m128d d; - } au, bu, ru; - au.i = a; - bu.i = b; - ru.d = _mm_shuffle_pd(au.d, bu.d, 0); - return ru.i; -} - -FUNC_ISA -INLINE static __m128i mm_shuffle_pd_i1(__m128i a, __m128i b) -{ - union { - __m128i i; - __m128d d; - } au, bu, ru; - au.i = a; - bu.i = b; - ru.d = _mm_shuffle_pd(au.d, bu.d, 1); - return ru.i; -} -#else -#define mm_shuffle_pd_i0(a, b) ((__m128i)_mm_shuffle_pd((__m128d)a, (__m128d)b, 0)); -#define mm_shuffle_pd_i1(a, b) ((__m128i)_mm_shuffle_pd((__m128d)a, (__m128d)b, 1)); -#endif - -/* - * AES-NI key expansion assist functions - */ -FUNC_ISA -INLINE static __m128i AES_128_ASSIST (__m128i temp1, __m128i temp2) -{ - __m128i temp3; - temp2 = _mm_shuffle_epi32 (temp2 ,0xff); - temp3 = _mm_slli_si128 (temp1, 0x4); - temp1 = _mm_xor_si128 (temp1, temp3); - temp3 = _mm_slli_si128 (temp3, 0x4); - temp1 = _mm_xor_si128 (temp1, temp3); - temp3 = _mm_slli_si128 (temp3, 0x4); - temp1 = _mm_xor_si128 (temp1, temp3); - temp1 = _mm_xor_si128 (temp1, temp2); - return temp1; -} - -FUNC_ISA -INLINE static void KEY_192_ASSIST(__m128i* temp1, __m128i * temp2, __m128i * temp3) -{ - __m128i temp4; - *temp2 = _mm_shuffle_epi32 (*temp2, 0x55); - temp4 = _mm_slli_si128 (*temp1, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - *temp1 = _mm_xor_si128 (*temp1, *temp2); - *temp2 = _mm_shuffle_epi32(*temp1, 0xff); - temp4 = _mm_slli_si128 (*temp3, 0x4); - *temp3 = _mm_xor_si128 (*temp3, temp4); - *temp3 = _mm_xor_si128 (*temp3, *temp2); -} - -FUNC_ISA -INLINE static void KEY_256_ASSIST_1(__m128i* temp1, __m128i * temp2) -{ - __m128i temp4; - *temp2 = _mm_shuffle_epi32(*temp2, 0xff); - temp4 = _mm_slli_si128 (*temp1, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp1 = _mm_xor_si128 (*temp1, temp4); - *temp1 = _mm_xor_si128 (*temp1, *temp2); -} - -FUNC_ISA -INLINE static void KEY_256_ASSIST_2(__m128i* temp1, __m128i * temp3) -{ - __m128i temp2,temp4; - temp4 = _mm_aeskeygenassist_si128 (*temp1, 0x0); - temp2 = _mm_shuffle_epi32(temp4, 0xaa); - temp4 = _mm_slli_si128 (*temp3, 0x4); - *temp3 = _mm_xor_si128 (*temp3, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp3 = _mm_xor_si128 (*temp3, temp4); - temp4 = _mm_slli_si128 (temp4, 0x4); - *temp3 = _mm_xor_si128 (*temp3, temp4); - *temp3 = _mm_xor_si128 (*temp3, temp2); -} - -/* - * AES-NI key expansion core - */ -FUNC_ISA -static void AES_128_Key_Expansion (const unsigned char *userkey, __m128i *key) -{ - __m128i temp1, temp2; - temp1 = _mm_loadu_si128((const __m128i*)userkey); - key[0] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1 ,0x1); - temp1 = AES_128_ASSIST(temp1, temp2); - key[1] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x2); - temp1 = AES_128_ASSIST(temp1, temp2); - key[2] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x4); - temp1 = AES_128_ASSIST(temp1, temp2); - key[3] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x8); - temp1 = AES_128_ASSIST(temp1, temp2); - key[4] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x10); - temp1 = AES_128_ASSIST(temp1, temp2); - key[5] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x20); - temp1 = AES_128_ASSIST(temp1, temp2); - key[6] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x40); - temp1 = AES_128_ASSIST(temp1, temp2); - key[7] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x80); - temp1 = AES_128_ASSIST(temp1, temp2); - key[8] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x1b); - temp1 = AES_128_ASSIST(temp1, temp2); - key[9] = temp1; - temp2 = _mm_aeskeygenassist_si128 (temp1,0x36); - temp1 = AES_128_ASSIST(temp1, temp2); - key[10] = temp1; -} - -FUNC_ISA -static void AES_192_Key_Expansion (const unsigned char *userkey, __m128i *key) -{ - __m128i temp1, temp2, temp3; - temp1 = _mm_loadu_si128((const __m128i*)userkey); - temp3 = _mm_loadu_si128((const __m128i*)(userkey+16)); - key[0]=temp1; - key[1]=temp3; - temp2=_mm_aeskeygenassist_si128 (temp3,0x1); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[1] = mm_shuffle_pd_i0(key[1], temp1); - key[2] = mm_shuffle_pd_i1(temp1, temp3); - temp2=_mm_aeskeygenassist_si128 (temp3,0x2); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[3]=temp1; - key[4]=temp3; - temp2=_mm_aeskeygenassist_si128 (temp3,0x4); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[4] = mm_shuffle_pd_i0(key[4], temp1); - key[5] = mm_shuffle_pd_i1(temp1, temp3); - temp2=_mm_aeskeygenassist_si128 (temp3,0x8); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[6]=temp1; - key[7]=temp3; - temp2=_mm_aeskeygenassist_si128 (temp3,0x10); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[7] = mm_shuffle_pd_i0(key[7], temp1); - key[8] = mm_shuffle_pd_i1(temp1, temp3); - temp2=_mm_aeskeygenassist_si128 (temp3,0x20); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[9]=temp1; - key[10]=temp3; - temp2=_mm_aeskeygenassist_si128 (temp3,0x40); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[10] = mm_shuffle_pd_i0(key[10], temp1); - key[11] = mm_shuffle_pd_i1(temp1, temp3); - temp2=_mm_aeskeygenassist_si128 (temp3,0x80); - KEY_192_ASSIST(&temp1, &temp2, &temp3); - key[12]=temp1; - key[13]=temp3; -} - -FUNC_ISA -static void AES_256_Key_Expansion (const unsigned char *userkey, __m128i *key) -{ - __m128i temp1, temp2, temp3; - temp1 = _mm_loadu_si128((const __m128i*)userkey); - temp3 = _mm_loadu_si128((const __m128i*)(userkey+16)); - key[0] = temp1; - key[1] = temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x01); - KEY_256_ASSIST_1(&temp1, &temp2); - key[2]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[3]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x02); - KEY_256_ASSIST_1(&temp1, &temp2); - key[4]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[5]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x04); - KEY_256_ASSIST_1(&temp1, &temp2); - key[6]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[7]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x08); - KEY_256_ASSIST_1(&temp1, &temp2); - key[8]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[9]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x10); - KEY_256_ASSIST_1(&temp1, &temp2); - key[10]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[11]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x20); - KEY_256_ASSIST_1(&temp1, &temp2); - key[12]=temp1; - KEY_256_ASSIST_2(&temp1, &temp3); - key[13]=temp3; - temp2 = _mm_aeskeygenassist_si128 (temp3,0x40); - KEY_256_ASSIST_1(&temp1, &temp2); - key[14]=temp1; -} - -/* - * AES-NI encrypt/decrypt core - */ -FUNC_ISA -static void aes_encrypt_cbc_ni(unsigned char *blk, int len, AESContext * ctx) -{ - __m128i enc; - __m128i* block = (__m128i*)blk; - const __m128i* finish = (__m128i*)(blk + len); - - assert((len & 15) == 0); - - /* Load IV */ - enc = _mm_loadu_si128((__m128i*)(ctx->iv)); - while (block < finish) { - /* Key schedule ptr */ - __m128i* keysched = (__m128i*)ctx->keysched; - - /* Xor data with IV */ - enc = _mm_xor_si128(_mm_loadu_si128(block), enc); - - /* Perform rounds */ - enc = _mm_xor_si128(enc, *keysched); - switch (ctx->Nr) { - case 14: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - case 12: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - case 10: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenclast_si128(enc, *(++keysched)); - break; - default: - unreachable("bad AES round count"); - } - - /* Store and go to next block */ - _mm_storeu_si128(block, enc); - ++block; - } - - /* Update IV */ - _mm_storeu_si128((__m128i*)(ctx->iv), enc); -} - -FUNC_ISA -static void aes_decrypt_cbc_ni(unsigned char *blk, int len, AESContext * ctx) -{ - __m128i* block = (__m128i*)blk; - const __m128i* finish = (__m128i*)(blk + len); - - assert((len & 15) == 0); - - /* Load IV */ - __m128i iv = _mm_loadu_si128((__m128i*)(ctx->iv)); - while (block < finish) { - /* Key schedule ptr */ - __m128i* keysched = (__m128i*)ctx->invkeysched; - __m128i last = _mm_loadu_si128(block); - __m128i dec = _mm_xor_si128(last, *keysched); - switch (ctx->Nr) { - case 14: - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - case 12: - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - case 10: - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdec_si128(dec, *(++keysched)); - dec = _mm_aesdeclast_si128(dec, *(++keysched)); - break; - default: - unreachable("bad AES round count"); - } - - /* Xor data with IV */ - dec = _mm_xor_si128(iv, dec); - - /* Store data */ - _mm_storeu_si128(block, dec); - iv = last; - - /* Go to next block */ - ++block; - } - - /* Update IV */ - _mm_storeu_si128((__m128i*)(ctx->iv), iv); -} - -FUNC_ISA -static void aes_sdctr_ni(unsigned char *blk, int len, AESContext *ctx) -{ - const __m128i BSWAP_EPI64 = _mm_setr_epi8(7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8); - const __m128i ONE = _mm_setr_epi32(0,0,1,0); - const __m128i ZERO = _mm_setzero_si128(); - __m128i iv; - __m128i* block = (__m128i*)blk; - const __m128i* finish = (__m128i*)(blk + len); - - assert((len & 15) == 0); - - iv = _mm_loadu_si128((__m128i*)ctx->iv); - - while (block < finish) { - __m128i enc; - __m128i* keysched = (__m128i*)ctx->keysched;/* Key schedule ptr */ - - /* Perform rounds */ - enc = _mm_xor_si128(iv, *keysched); /* Note that we use IV */ - switch (ctx->Nr) { - case 14: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - case 12: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - case 10: - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenc_si128(enc, *(++keysched)); - enc = _mm_aesenclast_si128(enc, *(++keysched)); - break; - default: - unreachable("bad AES round count"); - } - - /* Xor with block and store result */ - enc = _mm_xor_si128(enc, _mm_loadu_si128(block)); - _mm_storeu_si128(block, enc); - - /* Increment of IV */ - iv = _mm_shuffle_epi8(iv, BSWAP_EPI64); /* Swap endianess */ - iv = _mm_add_epi64(iv, ONE); /* Inc low part */ - enc = _mm_cmpeq_epi64(iv, ZERO); /* Check for carry */ - enc = _mm_unpackhi_epi64(enc, ZERO); /* Pack carry reg */ - iv = _mm_sub_epi64(iv, enc); /* Sub carry reg */ - iv = _mm_shuffle_epi8(iv, BSWAP_EPI64); /* Swap enianess back */ - - /* Go to next block */ - ++block; - } - - /* Update IV */ - _mm_storeu_si128((__m128i*)ctx->iv, iv); -} - -FUNC_ISA -static void aes_inv_key_10(AESContext * ctx) -{ - __m128i* keysched = (__m128i*)ctx->keysched; - __m128i* invkeysched = (__m128i*)ctx->invkeysched; - - *(invkeysched + 10) = *(keysched + 0); - *(invkeysched + 9) = _mm_aesimc_si128(*(keysched + 1)); - *(invkeysched + 8) = _mm_aesimc_si128(*(keysched + 2)); - *(invkeysched + 7) = _mm_aesimc_si128(*(keysched + 3)); - *(invkeysched + 6) = _mm_aesimc_si128(*(keysched + 4)); - *(invkeysched + 5) = _mm_aesimc_si128(*(keysched + 5)); - *(invkeysched + 4) = _mm_aesimc_si128(*(keysched + 6)); - *(invkeysched + 3) = _mm_aesimc_si128(*(keysched + 7)); - *(invkeysched + 2) = _mm_aesimc_si128(*(keysched + 8)); - *(invkeysched + 1) = _mm_aesimc_si128(*(keysched + 9)); - *(invkeysched + 0) = *(keysched + 10); -} - -FUNC_ISA -static void aes_inv_key_12(AESContext * ctx) -{ - __m128i* keysched = (__m128i*)ctx->keysched; - __m128i* invkeysched = (__m128i*)ctx->invkeysched; - - *(invkeysched + 12) = *(keysched + 0); - *(invkeysched + 11) = _mm_aesimc_si128(*(keysched + 1)); - *(invkeysched + 10) = _mm_aesimc_si128(*(keysched + 2)); - *(invkeysched + 9) = _mm_aesimc_si128(*(keysched + 3)); - *(invkeysched + 8) = _mm_aesimc_si128(*(keysched + 4)); - *(invkeysched + 7) = _mm_aesimc_si128(*(keysched + 5)); - *(invkeysched + 6) = _mm_aesimc_si128(*(keysched + 6)); - *(invkeysched + 5) = _mm_aesimc_si128(*(keysched + 7)); - *(invkeysched + 4) = _mm_aesimc_si128(*(keysched + 8)); - *(invkeysched + 3) = _mm_aesimc_si128(*(keysched + 9)); - *(invkeysched + 2) = _mm_aesimc_si128(*(keysched + 10)); - *(invkeysched + 1) = _mm_aesimc_si128(*(keysched + 11)); - *(invkeysched + 0) = *(keysched + 12); -} - -FUNC_ISA -static void aes_inv_key_14(AESContext * ctx) -{ - __m128i* keysched = (__m128i*)ctx->keysched; - __m128i* invkeysched = (__m128i*)ctx->invkeysched; - - *(invkeysched + 14) = *(keysched + 0); - *(invkeysched + 13) = _mm_aesimc_si128(*(keysched + 1)); - *(invkeysched + 12) = _mm_aesimc_si128(*(keysched + 2)); - *(invkeysched + 11) = _mm_aesimc_si128(*(keysched + 3)); - *(invkeysched + 10) = _mm_aesimc_si128(*(keysched + 4)); - *(invkeysched + 9) = _mm_aesimc_si128(*(keysched + 5)); - *(invkeysched + 8) = _mm_aesimc_si128(*(keysched + 6)); - *(invkeysched + 7) = _mm_aesimc_si128(*(keysched + 7)); - *(invkeysched + 6) = _mm_aesimc_si128(*(keysched + 8)); - *(invkeysched + 5) = _mm_aesimc_si128(*(keysched + 9)); - *(invkeysched + 4) = _mm_aesimc_si128(*(keysched + 10)); - *(invkeysched + 3) = _mm_aesimc_si128(*(keysched + 11)); - *(invkeysched + 2) = _mm_aesimc_si128(*(keysched + 12)); - *(invkeysched + 1) = _mm_aesimc_si128(*(keysched + 13)); - *(invkeysched + 0) = *(keysched + 14); -} - -/* - * Set up an AESContext. `keylen' is measured in - * bytes; it can be either 16 (128-bit), 24 (192-bit), or 32 - * (256-bit). - */ -FUNC_ISA -static void aes_setup_ni(AESContext * ctx, - const unsigned char *key, int keylen) -{ - __m128i *keysched = (__m128i*)ctx->keysched; - - ctx->encrypt_cbc = aes_encrypt_cbc_ni; - ctx->decrypt_cbc = aes_decrypt_cbc_ni; - ctx->sdctr = aes_sdctr_ni; - - /* - * Now do the key setup itself. - */ - switch (keylen) { - case 16: - AES_128_Key_Expansion (key, keysched); - break; - case 24: - AES_192_Key_Expansion (key, keysched); - break; - case 32: - AES_256_Key_Expansion (key, keysched); - break; - default: - unreachable("bad AES key length"); - } - - /* - * Now prepare the modified keys for the inverse cipher. - */ - switch (ctx->Nr) { - case 10: - aes_inv_key_10(ctx); - break; - case 12: - aes_inv_key_12(ctx); - break; - case 14: - aes_inv_key_14(ctx); - break; - default: - unreachable("bad AES key length"); - } -} - -#else /* COMPILER_SUPPORTS_AES_NI */ - -static void aes_setup_ni(AESContext * ctx, const unsigned char *key, int keylen) -{ - unreachable("aes_setup_ni called when not compiled in"); -} - -INLINE static bool supports_aes_ni() -{ - return false; -} - -#endif /* COMPILER_SUPPORTS_AES_NI */