mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-25 01:02:24 +00:00
Implement the Chinese Remainder Theorem optimisation for speeding up
RSA private key operations by making use of the fact that we know the factors of the modulus. [originally from svn r9095]
This commit is contained in:
parent
61875b87e3
commit
fa85085640
2
ssh.h
2
ssh.h
@ -447,6 +447,8 @@ int ssh1_write_bignum(void *data, Bignum bn);
|
||||
Bignum biggcd(Bignum a, Bignum b);
|
||||
unsigned short bignum_mod_short(Bignum number, unsigned short modulus);
|
||||
Bignum bignum_add_long(Bignum number, unsigned long addend);
|
||||
Bignum bigadd(Bignum a, Bignum b);
|
||||
Bignum bigsub(Bignum a, Bignum b);
|
||||
Bignum bigmul(Bignum a, Bignum b);
|
||||
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend);
|
||||
Bignum bigdiv(Bignum a, Bignum b);
|
||||
|
63
sshbn.c
63
sshbn.c
@ -1190,6 +1190,69 @@ Bignum bigmul(Bignum a, Bignum b)
|
||||
return bigmuladd(a, b, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Simple addition.
|
||||
*/
|
||||
Bignum bigadd(Bignum a, Bignum b)
|
||||
{
|
||||
int alen = a[0], blen = b[0];
|
||||
int rlen = (alen > blen ? alen : blen) + 1;
|
||||
int i, maxspot;
|
||||
Bignum ret;
|
||||
BignumDblInt carry;
|
||||
|
||||
ret = newbn(rlen);
|
||||
|
||||
carry = 0;
|
||||
maxspot = 0;
|
||||
for (i = 1; i <= rlen; i++) {
|
||||
carry += (i <= (int)a[0] ? a[i] : 0);
|
||||
carry += (i <= (int)b[0] ? b[i] : 0);
|
||||
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
if (ret[i] != 0 && i > maxspot)
|
||||
maxspot = i;
|
||||
}
|
||||
ret[0] = maxspot;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Subtraction. Returns a-b, or NULL if the result would come out
|
||||
* negative (recall that this entire bignum module only handles
|
||||
* positive numbers).
|
||||
*/
|
||||
Bignum bigsub(Bignum a, Bignum b)
|
||||
{
|
||||
int alen = a[0], blen = b[0];
|
||||
int rlen = (alen > blen ? alen : blen);
|
||||
int i, maxspot;
|
||||
Bignum ret;
|
||||
BignumDblInt carry;
|
||||
|
||||
ret = newbn(rlen);
|
||||
|
||||
carry = 1;
|
||||
maxspot = 0;
|
||||
for (i = 1; i <= rlen; i++) {
|
||||
carry += (i <= (int)a[0] ? a[i] : 0);
|
||||
carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
|
||||
ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
|
||||
carry >>= BIGNUM_INT_BITS;
|
||||
if (ret[i] != 0 && i > maxspot)
|
||||
maxspot = i;
|
||||
}
|
||||
ret[0] = maxspot;
|
||||
|
||||
if (!carry) {
|
||||
freebn(ret);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a bignum which is the bitmask covering another one. That
|
||||
* is, the smallest integer which is >= N and is also one less than
|
||||
|
86
sshrsa.c
86
sshrsa.c
@ -114,9 +114,83 @@ static void sha512_mpint(SHA512_State * s, Bignum b)
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is a wrapper on modpow(). It has the same effect
|
||||
* as modpow(), but employs RSA blinding to protect against timing
|
||||
* attacks.
|
||||
* Compute (base ^ exp) % mod, provided mod == p * q, with p,q
|
||||
* distinct primes, and iqmp is the multiplicative inverse of q mod p.
|
||||
* Uses Chinese Remainder Theorem to speed computation up over the
|
||||
* obvious implementation of a single big modpow.
|
||||
*/
|
||||
Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
|
||||
Bignum p, Bignum q, Bignum iqmp)
|
||||
{
|
||||
Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
|
||||
|
||||
/*
|
||||
* Reduce the exponent mod phi(p) and phi(q), to save time when
|
||||
* exponentiating mod p and mod q respectively. Of course, since p
|
||||
* and q are prime, phi(p) == p-1 and similarly for q.
|
||||
*/
|
||||
pm1 = copybn(p);
|
||||
decbn(pm1);
|
||||
qm1 = copybn(q);
|
||||
decbn(qm1);
|
||||
pexp = bigmod(exp, pm1);
|
||||
qexp = bigmod(exp, qm1);
|
||||
|
||||
/*
|
||||
* Do the two modpows.
|
||||
*/
|
||||
presult = modpow(base, pexp, p);
|
||||
qresult = modpow(base, qexp, q);
|
||||
|
||||
/*
|
||||
* Recombine the results. We want a value which is congruent to
|
||||
* qresult mod q, and to presult mod p.
|
||||
*
|
||||
* We know that iqmp * q is congruent to 1 * mod p (by definition
|
||||
* of iqmp) and to 0 mod q (obviously). So we start with qresult
|
||||
* (which is congruent to qresult mod both primes), and add on
|
||||
* (presult-qresult) * (iqmp * q) which adjusts it to be congruent
|
||||
* to presult mod p without affecting its value mod q.
|
||||
*/
|
||||
if (bignum_cmp(presult, qresult) < 0) {
|
||||
/*
|
||||
* Can't subtract presult from qresult without first adding on
|
||||
* p.
|
||||
*/
|
||||
Bignum tmp = presult;
|
||||
presult = bigadd(presult, p);
|
||||
freebn(tmp);
|
||||
}
|
||||
diff = bigsub(presult, qresult);
|
||||
multiplier = bigmul(iqmp, q);
|
||||
ret0 = bigmuladd(multiplier, diff, qresult);
|
||||
|
||||
/*
|
||||
* Finally, reduce the result mod n.
|
||||
*/
|
||||
ret = bigmod(ret0, mod);
|
||||
|
||||
/*
|
||||
* Free all the intermediate results before returning.
|
||||
*/
|
||||
freebn(pm1);
|
||||
freebn(qm1);
|
||||
freebn(pexp);
|
||||
freebn(qexp);
|
||||
freebn(presult);
|
||||
freebn(qresult);
|
||||
freebn(diff);
|
||||
freebn(multiplier);
|
||||
freebn(ret0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is a wrapper on modpow(). It has the same effect as
|
||||
* modpow(), but employs RSA blinding to protect against timing
|
||||
* attacks and also uses the Chinese Remainder Theorem (implemented
|
||||
* above, in crt_modpow()) to speed up the main operation.
|
||||
*/
|
||||
static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
|
||||
{
|
||||
@ -218,10 +292,12 @@ static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
|
||||
* _y^d_, and use the _public_ exponent to compute (y^d)^e = y
|
||||
* from it, which is much faster to do.
|
||||
*/
|
||||
random_encrypted = modpow(random, key->exponent, key->modulus);
|
||||
random_encrypted = crt_modpow(random, key->exponent,
|
||||
key->modulus, key->p, key->q, key->iqmp);
|
||||
random_inverse = modinv(random, key->modulus);
|
||||
input_blinded = modmul(input, random_encrypted, key->modulus);
|
||||
ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
|
||||
ret_blinded = crt_modpow(input_blinded, key->private_exponent,
|
||||
key->modulus, key->p, key->q, key->iqmp);
|
||||
ret = modmul(ret_blinded, random_inverse, key->modulus);
|
||||
|
||||
freebn(ret_blinded);
|
||||
|
Loading…
Reference in New Issue
Block a user