The "rsa-sha2-256" and "rsa-sha2-512" algorithms, as defined by RFC
8332, differ in one detail from "ssh-rsa" in addition to the change of
hash function. They also specify that the signature integer should be
encoded using the same number of bytes as the key modulus, even if
that means giving it a leading zero byte (or even more than one).
I hadn't noticed this, and had assumed that unrelated details wouldn't
have changed. But they had. Thanks to Ilia Mirkin for pointing this
out.
Nobody has previously reported a problem, so very likely most servers
are forgiving of people making this mistake! But now it's been pointed
out, we should comply with the spec. (Especially since the new spec is
more sensible, and only historical inertia justified sticking to the
old one.)
I mentioned recently (in commit 9e7d4c53d8) message that I'm no
longer fond of the variable name 'ret', because it's used in two quite
different contexts: it's the return value from a subroutine you just
called (e.g. 'int ret = read(fd, buf, len);' and then check for error
or EOF), or it's the value you're preparing to return from the
_containing_ routine (maybe by assigning it a default value and then
conditionally modifying it, or by starting at NULL and reallocating,
or setting it just before using the 'goto out' cleanup idiom). In the
past I've occasionally made mistakes by forgetting which meaning the
variable had, or accidentally conflating both uses.
If all else fails, I now prefer 'retd' (short for 'returned') in the
former situation, and 'toret' (obviously, the value 'to return') in
the latter case. But even better is to pick a name that actually says
something more specific about what the thing actually is.
One particular bad habit throughout this codebase is to have a set of
functions that deal with some object type (say 'Foo'), all *but one*
of which take a 'Foo *foo' parameter, but the foo_new() function
starts with 'Foo *ret = snew(Foo)'. If all the rest of them think the
canonical name for the ambient Foo is 'foo', so should foo_new()!
So here's a no-brainer start on cutting down on the uses of 'ret': I
looked for all the cases where it was being assigned the result of an
allocation, and renamed the variable to be a description of the thing
being allocated. In the case of a new() function belonging to a
family, I picked the same name as the rest of the functions in its own
family, for consistency. In other cases I picked something sensible.
One case where it _does_ make sense not to use your usual name for the
variable type is when you're cloning an existing object. In that case,
_neither_ of the Foo objects involved should be called 'foo', because
it's ambiguous! They should be named so you can see which is which. In
the two cases I found here, I've called them 'orig' and 'copy'.
As in the previous refactoring, many thanks to clang-rename for the
help.
Previously, we had a single data structure 'keytree' containing
records each involving a public and private key (the latter maybe in
clear, or as an encrypted key file, or both). Now, we have separate
'pubkeytree' and 'privkeytree', the former storing public keys indexed
by their full public blob (including certificate, if any), and the
latter storing private keys, indexed by the _base_ public blob
only (i.e. with no certificate included).
The effect of this is that deferred decryption interacts more sensibly
with certificates. Now, if you load certified and uncertified versions
of the same key into Pageant, or two or more differently certified
versions, then the separate public key records will all share the same
private key record, and hence, a single state of decryption. So the
first time you enter a passphrase that unlocks that private key, it
will unlock it for all public keys that share the same private half.
Conversely, re-encrypting any one of them will cause all of them to
become re-encrypted, eliminating the risk that you deliberately
re-encrypt a key you really care about and forget that another equally
valuble copy of it is still in clear.
The most subtle part of this turned out to be the question of what key
comment you present in a deferred decryption prompt. It's very
tempting to imagine that it should be the comment that goes with
whichever _public_ key was involved in the signing request that
triggered the prompt. But in fact, it _must_ be the comment that goes
with whichever version of the encrypted key file is stored in Pageant
- because what if the user chose different passphrases for their
uncertified and certified PPKs? Then the decryption prompt will have
to indicate which passphrase they should be typing, so it's vital to
present the comment that goes with the _file we're decrypting_.
(Of course, if the user has selected different passphrases for those
two PPKs but the _same_ comment, they're still going to end up
confused. But at least once they realise they've done that, they have
a workaround.)
My bulk indentation check also turned up a lot of cases where a run-on
function call or if statement didn't have its later lines aligned
correctly relative to the open paren.
I think this is quite easy to do by getting things out of
sync (editing the first line of the function call and forgetting to
update the rest, perhaps even because you never _saw_ the rest during
a search-replace). But a few didn't quite fit into that pattern, in
particular an outright misleading case in unix/askpass.c where the
second line of a call was aligned neatly below the _wrong_ one of the
open parens on the opening line.
Restored as many alignments as I could easily find.
The test in the Pageant list box code for whether we should display
the bit count of a key was done by checking specifically for ssh_rsa
or ssh_dsa, which of course meant that it didn't catch the certified
versions of those keys.
Now there's yet another footling ssh_keyalg method that asks the
question 'is it worth displaying the bit count?', to which RSA and DSA
answer yes, and the opensshcert family delegates to its base key type,
so that RSA and DSA certified keys also answer yes.
(This isn't the same as ssh_key_public_bits(alg, blob) >= 0. All
supported public key algorithms _can_ display a bit count if called
on. But only in RSA and DSA is it configurable, and therefore worth
bothering to print in the list box.)
Also in this commit, I've fixed a bug in the certificate
implementation of public_bits, which was passing a wrongly formatted
public blob to the underlying key. (Done by factoring out the code
from opensshcert_new_shared which constructed the _correct_ public
blob, and reusing it in public_bits to do the same job.)
If you load a certified key into Windows Pageant, the official SSH id
for the key type is so long that it overflows its space in the list
box and overlaps the key fingerprint hash.
This commit introduces yet another footling little ssh_keyalg method
which returns a shorter human-readable description of the key type,
and uses that in the Windows Pageant list box only.
(Not in the Unix Pageant list, though, because being output to stdout,
that seems like something people are more likely to want to
machine-read, which firstly means we shouldn't change it lightly, and
secondly, if we did change it we'd want to avoid having a variable
number of spaces in the replacement key type text.)
Certificate keys don't work the same as normal keys, so the rest of
the code is going to have to pay attention to whether a key is a
certificate, and if so, treat it differently and do cert-specific
stuff to it. So here's a collection of methods for that purpose.
With one exception, these methods of ssh_key are not expected to be
implemented at all in non-certificate key types: they should only ever
be called once you already know you're dealing with a certificate. So
most of the new method pointers can be left out of the ssh_keyalg
initialisers.
The exception is the base_key method, which retrieves the base key of
a certificate - the underlying one with the certificate stripped off.
It's convenient for non-certificate keys to implement this too, and
just return a pointer to themselves. So I've added an implementation
in nullkey.c doing that. (The returned pointer doesn't transfer
ownership; you have to use the new ssh_key_clone() if you want to keep
the base key after freeing the certificate key.)
The methods _only_ implemented in certificates:
Query methods to return the public key of the CA (for looking up in a
list of trusted ones), and to return the key id string (which exists
to be written into log files).
Obviously, we need a check_cert() method which will verify the CA's
actual signature, not to mention checking all the other details like
the principal and the validity period.
And there's another fiddly method for dealing with the RSA upgrade
system, called 'related_alg'. This is quite like alternate_ssh_id, in
that its job is to upgrade one key algorithm to a related one with
more modern RSA signing flags (or any other similar thing that might
later reuse the same mechanism). But where alternate_ssh_id took the
actual signing flags as an argument, this takes a pointer to the
upgraded base algorithm. So it answers the question "What is to this
key algorithm as you are to its base?" - if you call it on
opensshcert_ssh_rsa and give it ssh_rsa_sha512, it'll give you back
opensshcert_ssh_rsa_sha512.
(It's awkward to have to have another of these fiddly methods, and in
the longer term I'd like to try to clean up their proliferation a bit.
But I even more dislike the alternative of just going through
all_keyalgs looking for a cert algorithm with, say, ssh_rsa_sha512 as
the base: that approach would work fine now but it would be a lurking
time bomb for when all the -cert-v02@ methods appear one day. This
way, each certificate type can upgrade itself to the appropriately
related version. And at least related_alg is only needed if you _are_
a certificate key type - it's not adding yet another piece of
null-method boilerplate to the rest.)
This makes a second independent copy of an existing ssh_key, for
situations where one piece of code is going to want to keep it after
its current owner frees it.
In order to have it work on an arbitrary ssh_key, whether public-only
or a full public+private key pair, I've had to add an ssh_key query
method to ask whether a private key is known. I'm surprised I haven't
found a need for that before! But I suppose in most situations in an
SSH client you statically know which kind of key you're dealing with.
Previously, the fact that "ssh-rsa" sometimes comes with two subtypes
"rsa-sha2-256" and "rsa-sha2-512" was known to three different parts
of the code - two in userauth and one in transport. Now the knowledge
of what those ids are, which one goes with which signing flags, and
which key types have subtypes at all, is centralised into a method of
the key algorithm, and all those locations just query it.
This will enable the introduction of further key algorithms that have
a parallel upgrade system.
It's a class method rather than an object method, so it doesn't allow
keys with the same algorithm to make different choices about what
flags they support. But that's not what I wanted it for: the real
purpose is to allow one key algorithm to delegate supported_flags to
another, by having its method implementation call the one from the
delegate class.
(If only C's compile/link model permitted me to initialise a field of
one global const struct variable to be a copy of that of another, I
wouldn't need the runtime overhead of this method! But object file
formats don't let you even specify that.)
Most key algorithms support no flags at all, so they all want to use
the same implementation of this method. So I've started a file of
stubs utils/nullkey.c to contain the common stub version.
marshal.h now provides a macro put_fmt() which allows you to write
arbitrary printf-formatted data to an arbitrary BinarySink.
We already had this facility for strbufs in particular, in the form of
strbuf_catf(). That was able to take advantage of knowing the inner
structure of a strbuf to minimise memory allocation (it would snprintf
directly into the strbuf's existing buffer if possible). For a general
black-box BinarySink we can't do that, so instead we dupvprintf into a
temporary buffer.
For consistency, I've removed strbuf_catf, and converted all uses of
it into the new put_fmt - and I've also added an extra vtable method
in the BinarySink API, so that put_fmt can still use strbuf_catf's
more efficient memory management when talking to a strbuf, and fall
back to the simpler strategy when that's not available.
Similarly to 'utils', I've moved all the stuff in the crypto
build-time library into a source directory of its own, and while I'm
at it, split up the monolithic sshauxcrypt.c into its various
unrelated parts.
This is also an opportunity to remove the annoying 'ssh' prefix from
the front of the file names, and give several of them less cryptic
names.