I've had more than one conversation recently in which users have
mentioned finding this mode inconvenient. I don't know whether any of
them would want to turn it off completely, but it seems likely that
_somebody_ will, sooner or later. So here's an option to do that.
When you send a "publickey" USERAUTH_REQUEST containing a certified
RSA key, and you want to use a SHA-2 based RSA algorithm, modern
OpenSSH expects you to send the algorithm string as
rsa-sha2-NNN-cert-v01@openssh.com. But 7.7 and earlier didn't
recognise those names, and expected the algorithm string in the
userauth request packet to be ssh-rsa-cert-v01@... and would then
follow it with an rsa-sha2-NNN signature.
OpenSSH itself has a bug workaround for its own older versions. Follow
suit.
In recent months I've had two requests from different people to build
support into PuTTY for automatically handling complicated third-party
auth protocols layered on top of keyboard-interactive - the kind of
thing where you're asked to enter some auth response, and you have to
refer to some external source like a web server to find out what the
right response _is_, which is a pain to do by hand, so you'd prefer it
to be automated in the SSH client.
That seems like a reasonable thing for an end user to want, but I
didn't think it was a good idea to build support for specific
protocols of that kind directly into PuTTY, where there would no doubt
be an ever-lengthening list, and maintenance needed on all of them.
So instead, in collaboration with one of my correspondents, I've
designed and implemented a protocol to be spoken between PuTTY and a
plugin running as a subprocess. The plugin can opt to handle the
keyboard-interactive authentication loop on behalf of the user, in
which case PuTTY passes on all the INFO_REQUEST packets to it, and
lets it make up responses. It can also ask questions of the user if
necessary.
The protocol spec is provided in a documentation appendix. The entire
configuration for the end user consists of providing a full command
line to use as the subprocess.
In the contrib directory I've provided an example plugin written in
Python. It gives a set of fixed responses suitable for getting through
Uppity's made-up k-i system, because that was a reasonable thing I
already had lying around to test against. But it also provides example
code that someone else could pick up and insert their own live
response-provider into the middle of, assuming they were happy with it
being in Python.
We've occasionally had reports of SSH servers disconnecting as soon as
they receive PuTTY's KEXINIT. I think all such reports have involved
the kind of simple ROM-based SSH server software you find in small
embedded devices.
I've never been able to prove it, but I've always suspected that one
possible cause of this is simply that PuTTY's KEXINIT is _too long_,
either in number of algorithms listed or in total length (especially
given all the ones that end in @very.long.domain.name suffixes).
If I'm right about either of those being the cause, then it's just
become even more likely to happen, because of all the extra
Diffie-Hellman groups and GSSAPI algorithms we just threw into our
already-long list in the previous few commits.
A workaround I've had in mind for ages is to wait for the server's
KEXINIT, and then filter our own down to just the algorithms the
server also mentioned. Then our KEXINIT is no longer than that of the
server, and hence, presumably fits in whatever buffer it has. So I've
implemented that workaround, in anticipation of it being needed in the
near future.
(Well ... it's not _quite_ true that our KEXINIT is at most the same
length as the server. In fact I had to leave in one KEXINIT item that
won't match anything in the server's list, namely "ext-info-c" which
gates access to SHA-2 based RSA. So if we turn out to support
absolutely everything on all the server's lists, then our KEXINIT
would be a few bytes longer than the server's, even with this
workaround. But that would only cause trouble if the server's outgoing
KEXINIT was skating very close to whatever buffer size it has for the
incoming one, and I'm guessing that's not very likely.)
((Another possible cause of this kind of disconnection would be a
server that simply objects to seeing any KEXINIT string it doesn't
know how to speak. But _surely_ no such server would have survived
initial testing against any full-featured client at all!))
Partly, this just seems more sensible, since it may well vary per
platform beyond the ability of intorptr to specify. But more
immediately it means the definition of the HELPCTX macro doesn't have
to use the P() function from dialog.h, which isn't defined in any
circumstances outside the config subsystem. And I'm about to want to
put a help context well outside that subsystem.
This commit introduces a new config option for how to handle shifted
arrow keys.
In the default mode (SHARROW_APPLICATION), we do what we've always
done: Ctrl flips the arrow keys between sending their most usual
escape sequences (ESC [ A ... ESC [ D) and sending the 'application
cursor keys' sequences (ESC O A ... ESC O D). Whichever of those modes
is currently configured, Ctrl+arrow sends the other one.
In the new mode (SHARROW_BITMAP), application cursor key mode is
unaffected by any shift keys, but the default sequences acquire two
numeric arguments. The first argument is 1 (reflecting the fact that a
shifted arrow key still notionally moves just 1 character cell); the
second is the bitmap (1 for Shift) + (2 for Alt) + (4 for Ctrl),
offset by 1. (Except that if _none_ of those modifiers is pressed,
both numeric arguments are simply omitted.)
The new bitmap mode is what current xterm generates, and also what
Windows ConPTY seems to expect. If you start an ordinary Command
Prompt and launch into WSL, those are the sequences it will generate
for shifted arrow keys; conversely, if you run a Command Prompt within
a ConPTY, then these sequences for Ctrl+arrow will have the effect you
expect in cmd.exe command-line editing (going backward or forward a
word). For that reason, I enable this mode unconditionally when
launching Windows pterm.
Ian Jackson recently tried to use the recipe in the psusan manpage for
talking to UML, and found that the connection was not successfully set
up, because at some point during startup, UML read the SSH greeting
(ok, the bare-ssh-connection greeting) from its input fd and threw it
away. So by the time psusan was run by the guest init process, the
greeting wasn't there to be read.
Ian's report: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=991958
I was also able to reproduce this locally, which makes me wonder why I
_didn't_ notice it when I originally wrote that part of the psusan man
page. It worked for me before, honest! But now it doesn't.
Anyway. The ssh verstring module already has a mode switch to decide
whether we ought to send our greeting before or after waiting for the
other side's greeting (because that decision varies between client and
server, and between SSH-1 and SSH-2). So it's easy to implement an
override that forces it to 'wait for the server greeting first'.
I've added this as yet another bug workaround flag. But unlike all the
others, it can't be autodetected from the server's version string,
because, of course, we have to act on it _before_ seeing the server's
greeting and version string! So it's a manual-only flag.
However, I've mentioned it in the UML section of the psusan man page,
since that's the place where I _know_ people are likely to need to use
this flag.
Suggested by Manfred Kaiser, who also wrote most of this patch
(although outlying parts, like documentation and SSH-1 support, are by
me).
This is a second line of defence against the kind of spoofing attacks
in which a malicious or compromised SSH server rushes the client
through the userauth phase of SSH without actually requiring any auth
inputs (passwords or signatures or whatever), and then at the start of
the connection phase it presents something like a spoof prompt,
intended to be taken for part of userauth by the user but in fact with
some more sinister purpose.
Our existing line of defence against this is the trust sigil system,
and as far as I know, that's still working. This option allows a bit of
extra defence in depth: if you don't expect your SSH server to
trivially accept authentication in the first place, then enabling this
option will cause PuTTY to disconnect if it unexpectedly does so,
without the user having to spot the presence or absence of a fiddly
little sigil anywhere.
Several types of authentication count as 'trivial'. The obvious one is
the SSH-2 "none" method, which clients always try first so that the
failure message will tell them what else they can try, and which a
server can instead accept in order to authenticate you unconditionally.
But there are two other ways to do it that we know of: one is to run
keyboard-interactive authentication and send an empty INFO_REQUEST
packet containing no actual prompts for the user, and another even
weirder one is to send USERAUTH_SUCCESS in response to the user's
preliminary *offer* of a public key (instead of sending the usual PK_OK
to request an actual signature from the key).
This new option detects all of those, by clearing the 'is_trivial_auth'
flag only when we send some kind of substantive authentication response
(be it a password, a k-i prompt response, a signature, or a GSSAPI
token). So even if there's a further path through the userauth maze we
haven't spotted, that somehow avoids sending anything substantive, this
strategy should still pick it up.
This gets rid of all those annoying 'win', 'ux' and 'gtk' prefixes
which made filenames annoying to type and to tab-complete. Also, as
with my other recent renaming sprees, I've taken the opportunity to
expand and clarify some of the names so that they're not such cryptic
abbreviations.