This will let us put two controls side by side (e.g. in disjoint
columns of a multi-col layout) and indicate that instead of the
default behaviour of aligning their top edges, their centreline (or,
even better if available, font baseline) should be aligned.
NFC: nothing uses this yet.
Now we pass the whole set of fingerprints, and also a displayable
format for the full host public key.
NFC: this commit doesn't modify any of the host key prompts to _use_
any of the new information. That's coming next.
There aren't quite as many of these as there are on Unix, but Windows
Plink and PSFTP still share some suspiciously similar-looking code.
Now they're both clients of wincliloop.c.
Now it's no longer used, we can get rid of it, and better still, get
rid of every #define PUTTY_DO_GLOBALS in the many source files that
previously had them.
We now have no remaining things in header files that switch from being
a declaration to a definition depending on an awkward #define at the
point of including that header. There are still a few mutable
variables with external linkage, but at least now each one is defined
in a specific source file file appropriate to its purpose and context.
The remaining globals as of this commit were:
- 'logctx' and 'term', which never needed to be globals in the first
place, because they were never actually shared between source
files. Now 'term' is just a static in window.c, and 'logctx' is a
static in each of that and winplink.c.
- 'hinst', which still has external linkage, but is now defined
separately in each source file that sets it up (i.e. those with a
WinMain)
- osMajorVersion, osMinorVersion and osPlatformId, whose definitions
now live in winmisc.c alongside the code which sets them up.
(Actually they were defined there all along, it turns out, but
every toolchain I've built with has commoned them together with the
version defined by the GLOBAL in the header.)
- 'hwnd', which nothing was actually _using_ any more after previous
commits, so all this commit had to do was delete it.
The declarations in header files now use ordinary 'extern'. That means
I have to arrange to put definitions matching those declarations in
the appropriate modules; so I've made a macro DEFINE_WINDOWS_FUNCTION
which performs a definition matching a prior DECLARE_WINDOWS_FUNCTION
(and reusing the typedef made by the latter).
This applies not only to the batch of functions that were marked
GLOBAL in winstuff.h, but also the auxiliary sets marked
WINCAPI_GLOBAL and WINSECUR_GLOBAL in wincapi.h and winsecur.h
respectively.
This was the difficult part of cleaning up that global variable. The
main Windows PuTTY GUI is split between source files, so that _does_
actually need to refer to the main window from multiple places.
But all the places where windlg.c needed to use 'hwnd' are seat
methods, so they were already receiving a Seat pointer as a parameter.
In other words, the methods of the Windows GUI Seat were already split
between source files. So it seems only fair that they should be able
to share knowledge of the seat's data as well.
Hence, I've created a small 'WinGuiSeat' structure which both window.c
and windlg.c can see the layout of, and put the main terminal window
handle in there. Then the seat methods implemented in windlg.c, like
win_seat_verify_ssh_host_key, can use container_of to turn the Seat
pointer parameter back into the address of that structure, just as the
methods in window.c can do (even though they currently don't need to).
(Who knows: now that it _exists_, perhaps that structure can be
gradually expanded in future to turn it into a proper encapsulation of
all the Windows frontend's state, like we should have had all
along...)
I've also moved the Windows GUI LogPolicy implementation into the same
object (i.e. WinGuiSeat implements both traits at once). That allows
win_gui_logging_error to recover the same WinGuiSeat from its input
LogPolicy pointer, which means it can get from there to the Seat facet
of the same object, so that I don't need the extern variable
'win_seat' any more either.
The GUI version of pgp_fingerprints() is now a differently named
function that takes a parent HWND as a parameter, and so does my
help-enabled wrapper around MessageBox.
It's now a static in the main source file of each application that
uses it, and isn't accessible from any other source file unless the
main one passes it by reference.
In fact, there were almost no instances of the latter: only the
config-box functions in windlg.c were using 'conf' by virtue of its
globalness, and it's easy to make those take it as a parameter.
It's silly to set it at each call site of restrict_process_acl() if
that function returns success! More sensible to have it be a flag in
the same source file as restrict_process_acl(), set as an automatic
_side effect_ of success.
I've renamed the variable itself, and the global name 'restricted_acl'
is now a query function that asks winsecur.c whether that operation
has been (successfully) performed.
This is another piece of the old 2003 attempt at async agent requests.
Nothing ever calls this function (in particular, the new working
version of async-agent doesn't need it). Remove it completely, and all
its special-window-message implementations too.
(If we _were_ still using this function, then it would surely be
possible to fold it into the more recently introduced general
toplevel-callback system, and get rid of all this single-use special
code. But we're not, so removing it completely is even easier.)
In particular, this system was the only reason why Windows Plink paid
any attention to its message queue. So now I can make it call plain
WaitForMultipleObjects instead of MsgWaitForMultipleObjects.
This was the easiest flag to remove: nothing ever checks it at all!
It was part of an abandoned early attempt to make Pageant requests
asynchronous. The flag was added in commit 135abf244 (April 2003); the
code that used it was #ifdef-ed out in commit 98d735fde (January 2004),
and removed completely in commit f864265e3 (January 2017).
We now have an actually working system for async agent requests on
Windows, via the new named-pipe IPC. And we also have a perfectly good
way to force a particular agent request to work synchronously: just
pass NULL as the callback function pointer. All of that works just
fine, without ever using this flag. So begone!
This reuses all the named-pipe IPC code I set up for connection
sharing a few years ago, to set up a named pipe with a predictable
name and speak the stream-oriented SSH agent protocol over it.
In this commit, we just set up the server, and there's no code that
speaks the client end of the new IPC yet. But my plan is that clients
should switch over to using this interface if possible, because it's
generally better: it doesn't have to be handled synchronously in the
middle of a GUI event loop (either in Pageant itself _or_ in its
client), and it's a better fit to the connection-oriented nature of
forwarded agent connections (so if any features ever appear in the
agent protocol that require state within a connection, we'll now be
able to support them).
This contains most of the guts of the previously monolithic function
new_named_pipe_client(), but it directly returns the HANDLE to the
opened pipe, or a string error message on failure.
new_named_pipe_client() is now a thin veneer on top of that, which
returns a Socket * by wrapping up the HANDLE into a HandleSocket or
the error message into an ErrorSocket as appropriate.
So it's now possible to connect to a named pipe, using all our usual
infrastructure (including in particular the ownership check of the
server, to defend against spoofing attacks), without having to have a
Socket-capable event loop in progress.
Windows Plink and PSFTP had very similar implementations, and now they
share one that lives in a new file winselcli.c. I've similarly moved
GUI PuTTY's implementation out of window.c into winselgui.c, where
other GUI programs wanting to do networking will be able to access
that too.
In the spirit of centralisation, I've also taken the opportunity to
make both functions use the reasonably complete winsock_error_string()
rather than (for some historical reason) each inlining a minimal
version that reports most errors as 'unknown'.
The do_select function is called with a boolean parameter indicating
whether we're supposed to start or stop paying attention to network
activity on a given socket. So if we freeze and unfreeze the socket in
mid-session because of backlog, we'll call do_select(s, false) to
freeze it, and do_select(s, true) to unfreeze it.
But the implementation of do_select in the Windows SFTP code predated
the rigorous handling of socket backlogs, so it assumed that
do_select(s, true) would only be called at initialisation time, i.e.
only once, and therefore that it was safe to use that flag as a cue to
set up the Windows event object to associate with socket activity.
Hence, every time the socket was frozen and unfrozen, we would create
a new netevent at unfreeze time, leaking the old one.
I think perhaps part of the reason why that was hard to figure out was
that the boolean parameter was called 'startup' rather than 'enable'.
To make it less confusing the next time I read this code, I've also
renamed it, and while I was at it, adjusted another related comment.
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
The executables were already ignoring it.
This is a minimal change; PUTTY.HLP can still be built, and there's
still all the context IDs lying around.
Buildscr changes are untested.
With this change, we stop expecting to find putty.chm alongside the
executable file. That was a security hazard comparable to DLL
hijacking, because of the risk that a malicious CHM file could be
dropped into the same directory as putty.exe (e.g. if someone ran
PuTTY from their browser's download dir)..
Instead, the standalone putty.exe (and other binaries needing help)
embed the proper CHM file within themselves, as a Windows resource,
and if called on to display the help then they write the file out to a
temporary location. This has the advantage that if you download and
run the standalone putty.exe then you actually _get_ help, which
previously didn't happen!
The versions of the binaries in the installer don't each contain a
copy of the help file; that would be extravagant. Instead, the
installer itself writes a registry entry pointing at the proper help
file, and the executables will look there.
Another effect of this commit is that I've withdrawn support for the
older .HLP format completely. It's now entirely outdated, and
supporting it through this security fix would have been a huge pain.
I haven't tried compiling with /DMINEFIELD in a while, and when I just
did, I found that the declarations in winstuff.h weren't actually
being included by memory.c where they're needed.
My trawl of all the vtable systems in the code spotted a couple of
other function-like macros in passing, which might as well be
rewritten as inline functions too for the same reasons.
Rather like isatty() on Unix, this tells you if a raw Windows HANDLE
points at a console or not. Useful to know if your standard output or
standard error is going to be shown to a user, or redirected to
something that will make automated use of it.
There's now a stdio_sink, whose write function calls fwrite on the
given FILE *; a bufchain_sink, whose write function appends to the
given bufchain; and on Windows there's a handle_sink whose write
function writes to the given 'struct handle'. (That is, not the raw
Windows HANDLE, but our event-loop-friendly wrapper on it.)
Not yet used for anything, but they're about to be.
This is a general cleanup which has been overdue for some time: lots
of length fields are now the machine word type rather than the (in
practice) fixed 'int'.
Now we pass an error code in a separate dedicated parameter, instead
of overloading the length parameter so that a negative value means an
error code. This enables length to become unsigned without causing
trouble.
After I moved parts of misc.c into utils.c, we started getting two
versions of smemclr in the Windows builds, because utils.c didn't know
to omit its one, having not included the main putty.h.
But it was deliberate that utils.c didn't include putty.h, because I
wanted it (along with the rest of testcrypt in particular) to be
portable to unusual platforms without having to port the whole of the
code base.
So I've moved into the ubiquitous defs.h just the one decision about
whether we're on a platform that will supersede utils.c's definition
of smemclr.
(Also, in the process of moving it, I've removed the clause that
disabled the Windows smemclr in winelib mode, because it looks as if
the claim that winelib doesn't have SecureZeroMemory is now out of
date.)
Now they live in their own file memory.c. The advantage of this is
that you can link them into a binary without also pulling in the rest
of misc.c with its various dependencies on other parts of the code,
such as conf.c.
This is another cleanup I felt a need for while I was doing
boolification. If you define a function or variable in one .c file and
declare it extern in another, then nothing will check you haven't got
the types of the two declarations mismatched - so when you're
_changing_ the type, it's a pain to make sure you've caught all the
copies of it.
It's better to put all those extern declarations in header files, so
that the declaration in the header is also in scope for the
definition. Then the compiler will complain if they don't match, which
is what I want.
For a start, they now have different names on Windows and Unix,
reflecting their different roles: on Windows they apply escaping to
any string that's going to be used as a registry key (be it a session
name, or a host name for host key storage), whereas on Unix they're
for constructing saved-session file names in particular (and also
handle the special case of filling in "Default Settings" for NULL).
Also, they now produce output by writing to a strbuf, which simplifies
a lot of the call sites. In particular, the strbuf output idiom is
passed on to enum_settings_next, which is especially nice because its
only actual caller was doing an ad-hoc realloc loop that I can now get
rid of completely.
Thirdly, on Windows they're centralised into winmisc.c instead of
living in winstore.c, because that way Pageant can use the unescape
function too. (It was spotting the duplication there that made me
think of doing this in the first place, but once I'd started, I had to
keep unravelling the thread...)
Jumped out at me in my trawl of the whole code base:
set_explicit_app_user_model_id is declared and defined as () rather
than (void), but this isn't C++.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
This commit includes <stdbool.h> from defs.h and deletes my
traditional definitions of TRUE and FALSE, but other than that, it's a
100% mechanical search-and-replace transforming all uses of TRUE and
FALSE into the C99-standardised lowercase spellings.
No actual types are changed in this commit; that will come next. This
is just getting the noise out of the way, so that subsequent commits
can have a higher proportion of signal.
After the recent Seat and LogContext revamps, _nearly_ all the
remaining uses of the type 'Frontend' were in terminal.c, which needs
all sorts of interactions with the GUI window the terminal lives in,
from the obvious (actually drawing text on the window, reading and
writing the clipboard) to the obscure (minimising, maximising and
moving the window in response to particular escape sequences).
All of those functions are now provided by an abstraction called
TermWin. The few remaining uses of Frontend after _that_ are internal
to a particular platform directory, so as to spread the implementation
of that particular kind of Frontend between multiple source files; so
I've renamed all of those so that they take a more specifically named
type that refers to the particular implementation rather than the
general abstraction.
So now the name 'Frontend' no longer exists in the code base at all,
and everywhere one used to be used, it's completely clear whether it
was operating in one of Frontend's three abstract roles (and if so,
which), or whether it was specific to a particular implementation.
Another type that's disappeared is 'Context', which used to be a
typedef defined to something different on each platform, describing
whatever short-lived resources were necessary to draw on the terminal
window: the front end would provide a ready-made one when calling
term_paint, and the terminal could request one with get_ctx/free_ctx
if it wanted to do proactive window updates. Now that drawing context
lives inside the TermWin itself, because there was never any need to
have two of those contexts live at the same time.
(Another minor API change is that the window-title functions - both
reading and writing - have had a missing 'const' added to their char *
parameters / return values.)
I don't expect this change to enable any particularly interesting new
functionality (in particular, I have no plans that need more than one
implementation of TermWin in the same application). But it completes
the tidying-up that began with the Seat and LogContext rework.
This is a new vtable-based abstraction which is passed to a backend in
place of Frontend, and it implements only the subset of the Frontend
functions needed by a backend. (Many other Frontend functions still
exist, notably the wide range of things called by terminal.c providing
platform-independent operations on the GUI terminal window.)
The purpose of making it a vtable is that this opens up the
possibility of creating a backend as an internal implementation detail
of some other activity, by providing just that one backend with a
custom Seat that implements the methods differently.
For example, this refactoring should make it feasible to directly
implement an SSH proxy type, aka the 'jump host' feature supported by
OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP
mode, and then expose the main channel of that as the Socket for the
primary connection'. (Which of course you can already do by spawning
'plink -nc' as a separate proxy process, but this would permit it in
the _same_ process without anything getting confused.)
I've centralised a full set of stub methods in misc.c for the new
abstraction, which allows me to get rid of several annoying stubs in
the previous code. Also, while I'm here, I've moved a lot of
duplicated modalfatalbox() type functions from application main
program files into wincons.c / uxcons.c, which I think saves
duplication overall. (A minor visible effect is that the prefixes on
those console-based fatal error messages will now be more consistent
between applications.)
This is another major source of unexplained 'void *' parameters
throughout the code.
In particular, the currently unused testback.c actually gave the wrong
pointer type to its internal store of the frontend handle - it cast
the input void * to a Terminal *, from which it got implicitly cast
back again when calling from_backend, and nobody noticed. Now it uses
the right type internally as well as externally.
Nearly every part of the code that ever handles a full backend
structure has historically done it using a pair of pointer variables,
one pointing at a constant struct full of function pointers, and the
other pointing to a 'void *' state object that's passed to each of
those.
While I'm modernising the rest of the code, this seems like a good
time to turn that into the same more or less type-safe and less
cumbersome system as I'm using for other parts of the code, such as
Socket, Plug, BinaryPacketProtocol and so forth: the Backend structure
contains a vtable pointer, and a system of macro wrappers handles
dispatching through that vtable.
Same principle again - the more of these structures have globally
visible tags (even if the structure contents are still opaque in most
places), the fewer of them I can mistake for each other.
Rather than squelching the warning, I'm actually paying attention to
the deprecation, in that I'm allowing for the possibility that the
function might stop existing or stop returning success.
Apparently Windows on Arm has an emulator that lets it run x86
binaries without it being obvious, which could get confusing when
people start reporting what version of what they're running where.
(Indeed, it might get confusing for _me_ during early testing.) So now
the Windows builds explicitly state 'x86' or 'Arm' as well as 32- or
64-bit.
This centralises a few things that multiple header files were
previously defining, and were protecting against each other's
redefinition with ifdefs - small things like structs and typedefs. Now
all those things are in a defs.h which is by definition safe to
include _first_ (out of all the codebase-local headers) and only need
to be defined once.
On all platforms, you can now configure which clipboard the mouse
pastes from, which clipboard Ctrl-Ins and Shift-Ins access, and which
Ctrl-Shift-C and Ctrl-Shift-V access. In each case, the options are:
- nothing at all
- a clipboard which is implicitly written by the act of mouse
selection (the PRIMARY selection on X, CLIP_LOCAL everywhere else)
- the standard clipboard written by explicit copy/paste UI actions
(CLIPBOARD on X, the unique system clipboard elsewhere).
Also, you can control whether selecting text with the mouse _also_
writes to the explicitly accessed clipboard.
The wording of the various messages changes between platforms, but the
basic UI shape is the same everywhere.
This lays some groundwork for making PuTTY's cut and paste handling
more flexible in the area of which clipboard(s) it reads and writes,
if more than one is available on the system.
I've introduced a system of list macros which define an enumeration of
integer clipboard ids, some defined centrally in putty.h (at present
just a CLIP_NULL which never has any text in it, because that seems
like the sort of thing that will come in useful for configuring a
given copy or paste UI action to be ignored) and some defined per
platform. All the front end functions that copy and paste take a
clipboard id, and the Terminal structure is now configured at startup
to tell it which clipboard id it should paste from on a mouse click,
and which it should copy from on a selection.
However, I haven't actually added _real_ support for multiple X11
clipboards, in that the Unix front end supports a single CLIP_SYSTEM
regardless of whether it's in OS X or GTK mode. So this is currently a
NFC refactoring which does nothing but prepare the way for real
changes to come.
It's actually a function specific to the Windows front end, and has
been all along - but I've only just noticed that no other front end
either uses it or defines it.