I'm preparing to be able to ask about the other end of the connection
too, so the first step is to give this data structure a neutral name
that can refer to either. No functional change yet.
This is like the seat-independent nonfatal(), but specifies a Seat,
which allows the GUI dialog box to have the right terminal window as
its parent (if there are multiple ones).
Changed over all the nonfatal() calls in the code base that could be
localised to a Seat, which means all the ones that come up if
something goes horribly wrong in host key storage. To make that
possible, I've added a 'seat' parameter to store_host_key(); it turns
out that all its call sites had one available already.
My experimental build with clang-cl at -Wall did show up a few things
that are safe enough to fix right now. One was this list of missing
includes, which was causing a lot of -Wmissing-prototype warnings, and
is a real risk because it means the declarations in headers weren't
being type-checked against the actual function definitions.
Happily, no actual mismatches.
Passing an operating-system-specific error code to plug_closing(),
such as errno or GetLastError(), was always a bit weird, given that it
generally had to be handled by cross-platform receiving code in
backends. I had the platform.h implementations #define any error
values that the cross-platform code would have to handle specially,
but that's still not a great system, because it also doesn't leave
freedom to invent error representations of my own that don't
correspond to any OS code. (For example, the ones I just removed from
proxy.h.)
So now, the OS error code is gone from the plug_closing API, and in
its place is a custom enumeration of closure types: normal, error, and
the special case BROKEN_PIPE which is the only OS error code we have
so far needed to handle specially. (All others just mean 'abandon the
connection and print the textual message'.)
Having already centralised the handling of OS error codes in the
previous commit, we've now got a convenient place to add any further
type codes for errors needing special handling: each of Unix
plug_closing_errno(), Windows plug_closing_system_error(), and Windows
plug_closing_winsock_error() can easily grow extra special cases if
need be, and each one will only have to live in one place.
Previously, checking the host key against the persistent cache managed
by the storage.h API was done as part of the seat_verify_ssh_host_key
method, i.e. separately by each Seat.
Now that check is done by verify_ssh_host_key(), which is a new
function in ssh/common.c that centralises all the parts of host key
checking that don't need an interactive prompt. It subsumes the
previous verify_ssh_manual_host_key() that checked against the Conf,
and it does the check against the storage API that each Seat was
previously doing separately. If it can't confirm or definitively
reject the host key by itself, _then_ it calls out to the Seat, once
an interactive prompt is definitely needed.
The main point of doing this is so that when SshProxy forwards a Seat
call from the proxy SSH connection to the primary Seat, it won't print
an announcement of which connection is involved unless it's actually
going to do something interactive. (Not that we're printing those
announcements _yet_ anyway, but this is a piece of groundwork that
works towards doing so.)
But while I'm at it, I've also taken the opportunity to clean things
up a bit by renaming functions sensibly. Previously we had three very
similarly named functions verify_ssh_manual_host_key(), SeatVtable's
'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now
the Seat method is called 'confirm' rather than 'verify' (since its
job is now always to print an interactive prompt, so it looks more
like the other confirm_foo methods), and the storage.h function is
called check_stored_host_key(), which goes better with store_host_key
and avoids having too many functions with similar names. And the
'manual' function is subsumed into the new centralised code, so
there's now just *one* host key function with 'verify' in the name.
Several functions are reindented in this commit. Best viewed with
whitespace changes ignored.
It was totally unused. No implementation of the 'closing' method in a
Plug vtable was checking it for any reason at all, except for
ProxySocket which captured it from its client in order to pass on to
its server (which, perhaps after further iterations of ProxySocket,
would have ended up ignoring it similarly). And every caller of
plug_closing set it to 0 (aka false), except for the one in sshproxy.c
which passed true (but it would have made no difference to anyone).
The comment in network.h refers to a FIXME comment which was in
try_send() when that code was written (see winnet.c in commit
7b0e082700). That FIXME is long gone, replaced by a use of a
toplevel callback. So I think the aim must have been to avoid
re-entrancy when sk_write called try_send which encountered a socket
error and called back to plug_closing - but that's long since fixed by
other means now.
This clears up another large pile of clutter at the top level, and in
the process, allows me to rename source files to things that don't all
have that annoying 'ssh' prefix at the top.
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
This is built more or less entirely out of pieces I already had. The
SOCKS server code is provided by the dynamic forwarding code in
portfwd.c. When that accepts a connection request, it wants to talk to
an SSH ConnectionLayer, which is already a trait with interchangeable
implementations - so I just provide one of my own which only supports
the lportfwd_open() method. And that in turn returns an SshChannel
object, with a special trait implementation all of whose methods
just funnel back to an ordinary Socket.
Result: you get a Socket-to-Socket SOCKS implementation with no SSH
anywhere, and even a minimal amount of need to _pretend_ internally to
be an SSH implementation.
Additional features include the ability to log all the traffic in the
form of diagnostics to standard error, or log each direction of each
connection separately to a file, or for anything more general, to log
each direction of each connection through a pipe to a subcommand that
can filter out whatever you think are the interesting parts. Also, you
can spawn a subcommand after the SOCKS server is set up, and terminate
automatically when that subcommand does - e.g. you might use this to
wrap the execution of a single SOCKS-using program.
This is a modernisation of a diagnostic utility I've had kicking
around out-of-tree for a long time. With all of last year's
refactorings, it now becomes feasible to keep it in-tree without
needing huge amounts of scaffolding. Also, this version runs on
Windows, which is more than the old one did. (On Windows I haven't
implemented the subprocess parts, although there's no reason I
_couldn't_.)
As well as diagnostic uses, this may also be useful in some situations
as a thing to forward ports to: PuTTY doesn't currently support
reverse dynamic port forwarding (in which the remote listening port
acts as a SOCKS server), but you could get the same effect by
forwarding a remote port to a local instance of this. (Although, of
course, that's nothing you couldn't achieve using any other SOCKS
server.)