There are three separate indexing schemes in use by various bits of
the PuTTY front ends, and _none_ of them was clearly documented, let
alone all in the same place. Worse, functions that looked obviously
related, like win_palette_set and win_palette_get, used different
encodings.
Now all the encodings are defined together in putty.h, with
explanation of why there are three in the first place and clear
documentation of where each one is used; terminal.c provides mapping
tables that convert between them; the terminology is consistent
throughout; and win_palette_set has been converted to use the sensible
encoding.
Two minor memory-leak fixes on 0.74 seem not to be needed on master:
the fix in an early exit path of pageant_add_keyfile is done already
on master in a different way, and the missing sfree(fdlist) in
uxsftp.c is in code that's been completely rewritten in the uxcliloop
refactoring.
Other minor conflicts: the rework in commit b52641644905 of
ssh1login.c collided with the change from FLAG_VERBOSE to
seat_verbose(), and master and 0.74 each added an unrelated extra
field to the end of struct SshServerConfig.
This mitigates CVE-2020-14002: if you're in the habit of clicking OK
to unknown host keys (the TOFU policy - trust on first use), then an
active attacker looking to exploit that policy to substitute their own
host key in your first connection to a server can use the host key
algorithm order in your KEXINIT to (not wholly reliably) detect
whether you have a key already stored for this host, and if so, abort
their attack to avoid giving themself away.
However, for users who _don't_ use the TOFU policy and instead check
new host keys out of band, the dynamic policy is more useful. So it's
provided as a configurable option.
In commit 1f399bec58 I had the idea of generating the protocol radio
buttons in the GUI configurer by looping over the backends[] array,
which gets the reliably correct list of available backends for a given
binary rather than having to second-guess. That's given me an idea: we
can do the same for the per-backend config panels too.
Now the GUI config panel for every backend is guarded by a check of
backend_vt_from_proto, and we won't display the config for that
backend unless it's present.
In particular, this allows me to move the serial-port configuration
back into config.c from the separate file sercfg.c: we find out
whether to apply it by querying backend_vt_from_proto(PROT_SERIAL),
the same as any other backend.
In _particular_ particular, that also makes it much easier for me to
move the serial config up the pecking order, so that it's now second
only to SSH in the list of per-protocol config panes, which I think is
now where it deserves to be.
(A side effect of that is that I now have to come up with a different
method of having each serial backend specify the subset of parity and
flow control schemes it supports. I've done it by adding an extra pair
of serial-port specific bitmask fields to BackendVtable, taking
advantage of the new vtable definition idiom to avoid having to
boringly declare them as zero in all the other backends.)
The contribution of SUPDUP has pushed SSH off the first page in my
default GTK font settings. It probably won't do that the same way for
everyone, but it did make me realise that the [Telnet, Rlogin, SSH]
order was a relic of 1997 when the SSH backend was new and added at
the bottom of the list. These days, SSH ought to be at the top for
easy access!
(And Serial ought to be next, but since it's added in a separate file,
that involves a bit more faffing about which I haven't done yet.)
How embarrassing - this morning's triumphant push of a shiny new
public-key method managed to break the entire GUI configuration system
so that it dereferences a null pointer during setup. That's what I get
for only testing the crypto side.
settings.c generates a preference list of host-key enum values that
included HK_ED448. So then hklist_handler() in config.c tries to look
that id up in its list of names, and doesn't find one, because I
forgot to add it there. Now reinstated.
Up until now, it's been a variadic _function_, whose argument list
consists of 'const char *' ASCIZ strings to concatenate, terminated by
one containing a null pointer. Now, that function is dupcat_fn(), and
it's wrapped by a C99 variadic _macro_ called dupcat(), which
automatically suffixes the null-pointer terminating argument.
This has three benefits. Firstly, it's just less effort at every call
site. Secondly, it protects against the risk of accidentally leaving
off the NULL, causing arbitrary words of stack memory to be
dereferenced as char pointers. And thirdly, it protects against the
more subtle risk of writing a bare 'NULL' as the terminating argument,
instead of casting it explicitly to a pointer. That last one is
necessary because C permits the macro NULL to expand to an integer
constant such as 0, so NULL by itself may not have pointer type, and
worse, it may not be marshalled in a variadic argument list in the
same way as a pointer. (For example, on a 64-bit machine it might only
occupy 32 bits. And yet, on another 64-bit platform, it might work
just fine, so that you don't notice the mistake!)
I was inspired to do this by happening to notice one of those bare
NULL terminators, and thinking I'd better check if there were any
more. Turned out there were quite a few. Now there are none.
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
If you select an entry in the saved sessions list box, but without
double-clicking to actually load it, and then you hit OK, the config-
box code will automatically load it. That just saves one click in a
common situation.
But in order to load that session, the config-box system first has to
ask the list-box control _which_ session is selected. On Windows, this
causes an assertion failure if the user has switched away from the
Session panel to some other panel of the config box, because when the
list box isn't on screen, its Windows control object is actually
destroyed.
I think a sensible answer is that we shouldn't be doing that implicit
load behaviour in any case if the list box isn't _visible_: silently
loading and launching a session someone selected a lot of UI actions
ago wasn't really the point. So now I make that behaviour only happen
when the list box (i.e. the Session panel) _is_ visible. That should
prevent the assertion failure on Windows, but the UI effect is cross-
platform, applying even on GTK where the control objects for invisible
panels persist and so the assertion failure didn't happen. I think
it's a reasonable UI change to make globally.
In order to implement it, I've had to invent a new query function so
that config.c can tell whether a given control is visible. In order to
do that on GTK, I had to give each control a pointer to the 'selparam'
structure describing its config-box pane, so that query function could
check it against the current one - and in order to do _that_, I had to
first arrange that those 'selparam' structures have stable addresses
from the moment they're first created, which meant adding a layer of
indirection so that the array of them in the top-level dlgparam
structure is now an array of _pointers_ rather than of actual structs.
(That way, realloc half way through config box creation can't
invalidate the important pointer values.)
Move "Response to remote title query" next to "Disable remote-controlled
window title changing"; that seems more logical, and matches the
documentation.
Those two flags had the opposite sense to what you might expect: each
one is the value of the Conf entry corresponding to the checkbox that
_disables_ the corresponding terminal feature. So term->bidi is true
if and only if bidi is _off_.
I think that confusion of naming probably contributed to the control-
flow error fixed in the previous commit, just by increasing cognitive
load until I couldn't remember which flags were set where any more! So
now I've renamed the two fields of Terminal, and the corresponding
Conf keywords, to be called "no_bidi" and "no_arabicshaping", in line
with other 'disable this feature' flags, so that it's clear what the
sense should be.
This is a fairly shallow patch, which removes the UI and interactions
with external libraries. Some other machinery (which is dead code in
this configuration) is left in place.
Adapted by me from a patch by Jeroen Roovers.
This fixes a batch of clang-analyzer warnings of the form 'you
declared / assigned this variable and then never use it'. It doesn't
fix _all_ of them - some are there so that when I add code in the
future _it_ can use the variable without me having to remember to
start setting it - but these are the ones I thought it would make the
code better instead of worse to fix.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
I think this is the full set of things that ought logically to be
boolean.
One annoyance is that quite a few radio-button controls in config.c
address Conf fields that are now bool rather than int, which means
that the shared handler function can't just access them all with
conf_{get,set}_int. Rather than back out the rigorous separation of
int and bool in conf.c itself, I've just added a similar alternative
handler function for the bool-typed ones.
This commit includes <stdbool.h> from defs.h and deletes my
traditional definitions of TRUE and FALSE, but other than that, it's a
100% mechanical search-and-replace transforming all uses of TRUE and
FALSE into the C99-standardised lowercase spellings.
No actual types are changed in this commit; that will come next. This
is just getting the noise out of the way, so that subsequent commits
can have a higher proportion of signal.
It is useful to be able to exclude the header so that the log file
can be used for realtime input to other programs such as Kst for
plotting live data from sensors.
Nearly every part of the code that ever handles a full backend
structure has historically done it using a pair of pointer variables,
one pointing at a constant struct full of function pointers, and the
other pointing to a 'void *' state object that's passed to each of
those.
While I'm modernising the rest of the code, this seems like a good
time to turn that into the same more or less type-safe and less
cumbersome system as I'm using for other parts of the code, such as
Socket, Plug, BinaryPacketProtocol and so forth: the Backend structure
contains a vtable pointer, and a system of macro wrappers handles
dispatching through that vtable.
Thanks to Jiri Kaspar for sending this patch (apart from the new docs
section, which is in my own words), which implements a feature we've
had as a wishlist item ('utf8-plus-vt100') for a long time.
I was actually surprised it was possible to implement it in so few
lines of code! I'd forgotten, or possibly never noticed in the first
place, that even in UTF-8 mode PuTTY not only accepts but still
_processes_ all the ISO 2022 control sequences and shift characters,
and keeps running track of all the same state in term->cset and
term->cset_attrs that it tracks in IS0-2022-enabled modes. It's just
that in UTF-8 mode, at the very last minute when a character+attribute
pair is about to be written into the terminal's character buffer, it
deliberately ignores the contents of those variables.
So all that was needed was a new flag checked at that last moment
which causes it not quite to ignore them after all, and bingo,
utf8-plus-vt100 is supported. And it works no matter which ISO 2022
sequences you're using; whether you're using ESC ( 0 to select the
line drawing set directly into GL and ESC ( B to get back when you're
done, or whether you send a preliminary ESC ( B ESC ) 0 to get GL/GR
to be ASCII and line drawing respectively so you can use SI and SO as
one-byte mode switches thereafter, both work just as well.
This implementation strategy has a couple of consequences, which I
don't think matter very much one way or the other but I document them
just in case they turn out to be important later:
- if an application expecting this mode has already filled your
terminal window with lqqqqqqqqk, then enabling this mode in Change
Settings won't retroactively turn them into the line drawing
characters you wanted, because no memory is preserved in the screen
buffer of what the ISO 2022 state was when they were printed. So
the application still has to do a screen refresh.
- on the other hand, if you already sent the ESC ( 0 or whatever to
put the terminal _into_ line drawing mode, and then you turn on
this mode in Change Settings, you _will_ still be in line drawing
mode, because the system _does_ remember your current ISO 2022
state at all times, whether it's currently applying it to output
printing characters or not.
Commit d515e4f1a went through a lot of very different shapes before it
was finally pushed. In some of them, GSS kex had its own value in the
kex enumeration, but it was used in ssh.c but not in config.c
(because, as in the final version, it wasn't configured by the same
drag-list system as the rest of them). So we had to distinguish the
set of key exchange ids known to the program as a whole from the set
controllable in the configuration.
In the final version, GSS kex ended up even more separated from the
kex enumeration than that: the enum value KEX_GSS_SHA1_K5 isn't used
at all. Instead, GSS key exchange appears in the list at the point of
translation from the list of enum values into the list of pointers to
data structures full of kex methods.
But after all the changes, everyone involved forgot to revert the part
of the patch which split KEX_MAX in two and introduced the pointless
value KEX_GSS_SHA1_K5! Better late than never: I'm reverting it now,
to avoid confusion, and because I don't have any reason to think the
distinction will be useful for any other purpose.
The former has advantages in terms of keeping Kerberos credentials up
to date, but it also does something sufficiently weird to the usual
SSH host key system that I think it's worth making sure users have a
means of turning it off separately from the less intrusive GSS
userauth.
This is a heavily edited (by me) version of a patch originally due to
Nico Williams and Viktor Dukhovni. Their comments:
* Don't delegate credentials when rekeying unless there's a new TGT
or the old service ticket is nearly expired.
* Check for the above conditions more frequently (every two minutes
by default) and rekey when we would delegate credentials.
* Do not rekey with very short service ticket lifetimes; some GSSAPI
libraries may lose the race to use an almost expired ticket. Adjust
the timing of rekey checks to try to avoid this possibility.
My further comments:
The most interesting thing about this patch to me is that the use of
GSS key exchange causes a switch over to a completely different model
of what host keys are for. This comes from RFC 4462 section 2.1: the
basic idea is that when your session is mostly bidirectionally
authenticated by the GSSAPI exchanges happening in initial kex and
every rekey, host keys become more or less vestigial, and their
remaining purpose is to allow a rekey to happen if the requirements of
the SSH protocol demand it at an awkward moment when the GSS
credentials are not currently available (e.g. timed out and haven't
been renewed yet). As such, there's no need for host keys to be
_permanent_ or to be a reliable identifier of a particular host, and
RFC 4462 allows for the possibility that they might be purely
transient and only for this kind of emergency fallback purpose.
Therefore, once PuTTY has done a GSS key exchange, it disconnects
itself completely from the permanent host key cache functions in
storage.h, and instead switches to a _transient_ host key cache stored
in memory with the lifetime of just that SSH session. That cache is
populated with keys received from the server as a side effect of GSS
kex (via the optional SSH2_MSG_KEXGSS_HOSTKEY message), and used if
later in the session we have to fall back to a non-GSS key exchange.
However, in practice servers we've tested against do not send a host
key in that way, so we also have a fallback method of populating the
transient cache by triggering an immediate non-GSS rekey straight
after userauth (reusing the code path we also use to turn on OpenSSH
delayed encryption without the race condition).
The variable in question holds the return value of strchr when its
input string was const, so it ought logically to be const itself even
though the official prototype of strchr permits it not to be.
Now its remit is widened to include not just the character-classes
list box, but also anything else related specifically to _copying_
rather than _pasting_, i.e. the terminal -> clipboard direction.
This allows me to move the Windows-specific 'write RTF to clipboard'
option into the newly named Copy panel, which gets it _out_ of the
main Selection panel which had just overflowed due to the new option
added by the previous commit.
(It looks a little asymmetric that there's no corresponding Paste
panel now! But since it would currently contain a single checkbox,
I'll wait until there's more to put in it...)
This is a mild security measure against malicious clipboard-writing.
It's only mild, because of course there are situations in which even a
sanitised paste could be successfully malicious (imagine someone
managing to write the traditional 'rm -rf' command into your clipboard
when you were going to paste to a shell prompt); but it at least
allows pasting into typical text editors without also allowing the
control sequence that exits the editor UI and returns to the shell
prompt.
This is a configurable option, because there's no well defined line to
be drawn between acceptable and unacceptable pastes, and it's very
plausible that users will have sensible use cases for pasting things
outside the list of permitted characters, or cases in which they know
they trust the clipboard-writer. I for one certainly find it useful on
occasion to deliberately construct a paste containing control
sequences that automate a terminal-based UI.
While I'm at it, when bracketed paste mode is enabled, we also prevent
pasting of data that includes the 'end bracketed paste' sequence
somewhere in the middle. I really _hope_ nobody was treating bracketed
paste mode as a key part of their security boundary, but then again, I
also can't imagine that anyone had an actually sensible use case for
deliberately making a bracketed paste be only partly bracketed, and
it's an easy change while I'm messing about in this area anyway.
On all platforms, you can now configure which clipboard the mouse
pastes from, which clipboard Ctrl-Ins and Shift-Ins access, and which
Ctrl-Shift-C and Ctrl-Shift-V access. In each case, the options are:
- nothing at all
- a clipboard which is implicitly written by the act of mouse
selection (the PRIMARY selection on X, CLIP_LOCAL everywhere else)
- the standard clipboard written by explicit copy/paste UI actions
(CLIPBOARD on X, the unique system clipboard elsewhere).
Also, you can control whether selecting text with the mouse _also_
writes to the explicitly accessed clipboard.
The wording of the various messages changes between platforms, but the
basic UI shape is the same everywhere.
This makes space in the Selection panel (at least on Windows; it
wasn't overfull on Unix) to add a new set of config options
controlling the mapping of UI actions to clipboards.
(A possible future advantage of having spare space in this new Words
panel is that there's room to add controls for context-sensitive
special-casing, e.g. I'd quite like ':' to be treated differently when
it appears as part of "http://".)
I know some users don't like any colour _at all_, and we have a
separate option to turn off xterm-style 256-colour sequences, so it
seems remiss not to have an option to disable true colour as well.
A lenof() being applied to a non-array, a couple of missing frees on
an error path, and a case in pfd_receive() where we could have gone
round a loop again after freeing the port forwarding structure it was
working on.
2ce0b680c inadvertently removed this ability in trying to ensure that
everyone got the new IUTF8 mode by default; you could remove a mode from
the list in the UI, but this would just revert PuTTY to its default.
The UI and storage have been revamped; the storage format now explicitly
says when a mode is not to be sent, and the configuration UI always
shows all modes known to PuTTY; if a mode is not to be sent it now shows
up as "(don't send)" in the list.
Old saved settings are migrated so as to preserve previous removals of
longstanding modes, while automatically adding IUTF8.
(In passing, this removes a bug where pressing the 'Remove' button of
the previous UI would populate the value edit box with garbage.)
Now bugs that are still likely to come up with relatively recent
server software (because they're only a few years fixed, or because
they're the sort of mistake that new server implementors will likely
make again) are in the Bugs panel, and very old things long since
fixed are relegated to More Bugs.
In particular, More Bugs contains everything SSH-1 related.
The UI now only has "1" and "2" options for SSH protocol version, which
behave like the old "1 only" and "2 only" options; old
SSH-N-with-fallback settings are interpreted as SSH-N-only.
This prevents any attempt at a protocol downgrade attack.
Most users should see no difference; those poor souls who still have to
work with SSH-1 equipment now have to explicitly opt in.
Now we actually have enough of them to worry about, and especially
since some of the types we support are approved by organisations that
people might make their own decisions about whether to trust, it seems
worth having a config list for host keys the same way we have one for
kex types and ciphers.
To make room for this, I've created an SSH > Host Keys config panel,
and moved the existing host-key related configuration (manually
specified fingerprints) into there from the Kex panel.
It's too esoteric to be the first thing on the Auth panel; I've never
heard of any SSH server that supports it in the decade since I
implemented it. The only Google hits are lost souls mistakenly believing
they need it for passwordless public-key login and the like.
It has three settings: on, off, and 'only until session starts'. The
idea of the last one is that if you use something like 'ssh -v' as
your proxy command, you probably wanted to see the initial SSH
connection-setup messages while you were waiting to see if the
connection would be set up successfully at all, but probably _didn't_
want a slew of diagnostics from rekeys disrupting your terminal in
mid-emacs once the session had got properly under way.
Default is off, to avoid startling people used to the old behaviour. I
wonder if I should have set it more aggressively, though.
Users have requested this from time to time, for distinguishing log
file names when there's more than one SSH server running on different
ports of the same host. Since we do take account of that possibility
in other areas (e.g. we cache host keys indexed by (host,port) rather
than just host), it doesn't seem unreasonable to do so here too.