I just happened to notice in a re-read of the code that we were
computing b^2-4a and feeding it to mp_sqrt to check if it was a
perfect square, without having first checked that the subtraction
didn't overflow and deliver some arbitrary large positive number when
the true mathematical value was negative.
Fortunately, if this came up at all, it would have been as a false
_negative_ in Pockle's primality verification: it might have managed
to reject a genuine prime with a valid certificate on rare occasions.
So that's not too serious. But even so, now I've spotted it, fix it.
Conveniently checkable certificates of primality aren't a new concept.
I didn't invent them, and I wasn't the first to implement them. Given
that, I thought it might be useful to be able to independently verify
a prime generated by PuTTY's provable prime system. Then, even if you
don't trust _this_ code, you might still trust someone else's
verifier, or at least be less willing to believe that both were
colluding.
The Perl module Math::Prime::Util is the only free software I've found
that defines a specific text-file format for certificates of
primality. The MPU format (as it calls it) supports various different
methods of certifying the primality of a number (most of which, like
Pockle's, depend on having previously proved some smaller number(s) to
be prime). The system implemented by Pockle is on its list: MPU calls
it by the name "BLS5".
So this commit introduces extra stored data inside Pockle so that it
remembers not just _that_ it believes certain numbers to be prime, but
also _why_ it believed each one to be prime. Then there's an extra
method in the Pockle API to translate its internal data structures
into the text of an MPU certificate for any number it knows about.
Math::Prime::Util doesn't come with a command-line verification tool,
unfortunately; only a Perl function which you feed a string argument.
So also in this commit I add test/mpu-check.pl, which is a trivial
command-line client of that function.
At the moment, this new piece of API is only exposed via testcrypt. I
could easily put some user interface into the key generation tools
that would save a few primality certificates alongside the private
key, but I have yet to think of any good reason to do it. Mostly this
facility is intended for debugging and cross-checking of the
_algorithm_, not of any particular prime.
This implements an extended form of primality verification using
certificates based on Pocklington's theorem. You make a Pockle object,
and then try to convince it that one number after another is prime, by
means of providing it with a list of prime factors of p-1 and a
primitive root. (Or just by saying 'this prime is small enough for you
to check yourself'.)
Pocklington's theorem requires you to have factors of p-1 whose
product is at least the square root of p. I've extended that to
support factorisations only as big as the cube root, via an extension
of the theorem given in Maurer's paper on generating provable primes.
The Pockle object is more or less write-only: it has no methods for
reading out its contents. Its only output channel is the return value
when you try to insert a prime into it: if it isn't sufficiently
convinced that your prime is prime, it will return an error code. So
anything for which it returns POCKLE_OK you can be confident of.
I'm going to use this for provable prime generation. But exposing this
part of the system as an object in its own right means I can write a
set of unit tests for this specifically. My negative tests exercise
all the different ways a certification can be erroneous or inadequate;
the positive tests include proofs of primality of various primes used
in elliptic-curve crypto. The Poly1305 proof in particular is taken
from a proof in DJB's paper, which has exactly the form of a
Pocklington certificate only written in English.