This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
I've only just noticed that it doesn't do anything at all!
Almost every implementation of the Socket vtable provides a flush()
method which does nothing, optionally with a comment explaining why
it's OK to do nothing. The sole exception is the wrapper Proxy_Socket,
which implements the method during its setup phase by setting a
pending_flush flag, so that when its sub-socket is later created, it
can call sk_flush on that. But since the sub-socket's sk_flush will do
nothing, even that is completely pointless!
Source control history says that sk_flush was introduced by Dave
Hinton in 2001 (commit 7b0e08270), who was going to use it for some
purpose involving the SSL Telnet support he was working on at the
time. That SSL support was never finished, and its vestigial
declarations in network.h were removed in 2015 (commit 42334b65b). So
sk_flush is just another vestige of that abandoned work, which I
should have removed in the latter commit but overlooked.
If a proxy command jabbers on standard error in a way that doesn't
involve any newline characters, we now won't keep buffering data for
ever.
(Not that I've heard of it happening, but I noticed the theoretical
possibility on the way past in a recent cleanup pass.)
Now that all the call sites are expecting a size_t instead of an int
length field, it's no longer particularly difficult to make it
actually return the pointer,length pair in the form of a ptrlen.
It would be nice to say that simplifies call sites because those
ptrlens can all be passed straight along to other ptrlen-consuming
functions. Actually almost none of the call sites are like that _yet_,
but this makes it possible to move them in that direction in future
(as part of my general aim to migrate ptrlen-wards as much as I can).
But also it's just nicer to keep the pointer and length together in
one variable, and not have to declare them both in advance with two
extra lines of boilerplate.
This is a general cleanup which has been overdue for some time: lots
of length fields are now the machine word type rather than the (in
practice) fixed 'int'.
The upcoming PRNG revamp will want to tell noise sources apart, so
that it can treat them all fairly. So I've added an extra parameter to
noise_ultralight and random_add_noise, which takes values in an
enumeration covering all the vague classes of entropy source I'm
collecting. In this commit, though, it's simply ignored.
Mostly on the Unix side: there are lots of places the Windows code was
collecting noise that the corresponding Unix/GTK code wasn't bothering
to, such as mouse movements, keystrokes and various network events.
Also, both platforms had forgotten to collect noise when reading data
from a pipe to a local proxy process, even though in that
configuration that's morally equivalent to the network packet timings
that we'd normally be collecting from.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
The new FdSocket just takes an arbitrary pair of file descriptors to
read and write, optionally with an extra input fd providing the
standard error output from a command. uxproxy.c now just does the
forking and pipe setup, and once it's got all its fds, it hands off to
FdSocket to actually do the reading and writing.
This is very like the reorganisation I did on the Windows side in
commit 98a6a3553 (back in 2013, in preparation for named-pipe sockets
and connection sharing). The idea is that it should enable me to make
a thing that the PuTTY code base sees as a Socket, but which actually
connects to the standard I/O handles of the process it lives in.