The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
This is another cleanup I felt a need for while I was doing
boolification. If you define a function or variable in one .c file and
declare it extern in another, then nothing will check you haven't got
the types of the two declarations mismatched - so when you're
_changing_ the type, it's a pain to make sure you've caught all the
copies of it.
It's better to put all those extern declarations in header files, so
that the declaration in the header is also in scope for the
definition. Then the compiler will complain if they don't match, which
is what I want.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
This commit includes <stdbool.h> from defs.h and deletes my
traditional definitions of TRUE and FALSE, but other than that, it's a
100% mechanical search-and-replace transforming all uses of TRUE and
FALSE into the C99-standardised lowercase spellings.
No actual types are changed in this commit; that will come next. This
is just getting the noise out of the way, so that subsequent commits
can have a higher proportion of signal.
Almost all the call sites were doing a cumbersome dupprintf-use-free
cycle to get a formatted message into an ErrorSocket anyway, so it
seems more sensible to give them an easier way of doing so.
The few call sites that were passing a constant string literal
_shouldn't_ have been - they'll be all the better for adding a
strerror suffix to the message they were previously giving!
I don't actually know why this was ever here; it appeared in the very
first commit that invented Plug in the first place (7b0e08270) without
explanation. Perhaps Dave's original idea was that sometimes you'd
need those macros _not_ to be defined so that the same names could be
reused as the methods for a particular Plug instance? But I don't
think that ever actually happened, and the code base builds just fine
with those macros defined unconditionally just like all the other sets
of method macros we now have, so let's get rid of this piece of cruft
that was apparently unnecessary all along.
All the main backend structures - Ssh, Telnet, Pty, Serial etc - now
describe structure types themselves rather than pointers to them. The
same goes for the codebase-wide trait types Socket and Plug, and the
supporting types SockAddr and Pinger.
All those things that were typedefed as pointers are older types; the
newer ones have the explicit * at the point of use, because that's
what I now seem to be preferring. But whichever one of those is
better, inconsistently using a mixture of the two styles is worse, so
let's make everything consistent.
A few types are still implicitly pointers, such as Bignum and some of
the GSSAPI types; generally this is either because they have to be
void *, or because they're typedefed differently on different
platforms and aren't always pointers at all. Can't be helped. But I've
got rid of the main ones, at least.
Originally, it controlled whether ssh.c should send terminal messages
(such as login and password prompts) to terminal.c or to stderr. But
we've had the from_backend() abstraction for ages now, which even has
an existing flag to indicate that the data is stderr rather than
stdout data; applications which set FLAG_STDERR are precisely those
that link against uxcons or wincons, so from_backend will do the
expected thing anyway with data sent to it with that flag set. So
there's no reason ssh.c can't just unconditionally pass everything
through that, and remove the special case.
FLAG_STDERR was also used by winproxy and uxproxy to decide whether to
capture standard error from a local proxy command, or whether to let
the proxy command send its diagnostics directly to the usual standard
error. On reflection, I think it's better to unconditionally capture
the proxy's stderr, for three reasons. Firstly, it means proxy
diagnostics are prefixed with 'proxy:' so that you can tell them apart
from any other stderr spew (which used to be particularly confusing if
both the main application and the proxy command were instances of
Plink); secondly, proxy diagnostics are now reliably copied to packet
log files along with all the other Event Log entries, even by
command-line tools; and thirdly, this means the option to suppress
proxy command diagnostics after the main session starts will actually
_work_ in the command-line tools, which it previously couldn't.
A more minor structure change is that copying of Event Log messages to
stderr in verbose mode is now done by wincons/uxcons, instead of
centrally in logging.c (since logging.c can now no longer check
FLAG_STDERR to decide whether to do it). The total amount of code to
do this is considerably smaller than the defensive-sounding comment in
logevent.c explaining why I did it the other way instead :-)
Thanks to Colin Harrison for spotting it very quickly. No thanks to
Visual Studio for only giving me a _warning_ when I prototyped a
function with four parameters and called it with five!
On both Unix and Windows, we now redirect the local proxy command's
standard error into a third pipe; data received from that pipe is
broken up at newlines and logged in the Event Log. So if the proxy
command emits any error messages in the course of failing to connect
to something, you now have a fighting chance of finding out what went
wrong.
This feature is disabled in command-line tools like PSFTP and Plink,
on the basis that in that situation it seems more likely that the user
would expect standard-error output to go to the ordinary standard
error in the ordinary way. Only GUI PuTTY catches it and logs it like
this, because it either doesn't have a standard error at all (on
Windows) or is likely to be pointing it at some completely unhelpful
session log file (under X).
I've defined a new value for the 'int type' parameter passed to
plug_log(), which proxy sockets will use to pass their backend
information on how the setup of their proxied connections are going.
I've implemented support for the new type code in all _nontrivial_
plug log functions (which, conveniently, are precisely the ones I just
refactored into backend_socket_log); the ones which just throw all
their log data away anyway will do that to the new code as well.
We use the new type code to log the DNS lookup and connection setup
for connecting to a networked proxy, and also to log the exact command
string sent down Telnet proxy connections (so the user can easily
debug mistakes in the configured format string) and the exact command
executed when spawning a local proxy process. (The latter was already
supported on Windows by a bodgy logging call taking advantage of
Windows in particular having no front end pointer; I've converted that
into a sensible use of the new plug_log facility, and done the same
thing on Unix.)
Having found a lot of unfixed constness issues in recent development,
I thought perhaps it was time to get proactive, so I compiled the
whole codebase with -Wwrite-strings. That turned up a huge load of
const problems, which I've fixed in this commit: the Unix build now
goes cleanly through with -Wwrite-strings, and the Windows build is as
close as I could get it (there are some lingering issues due to
occasional Windows API functions like AcquireCredentialsHandle not
having the right constness).
Notable fallout beyond the purely mechanical changing of types:
- the stuff saved by cmdline_save_param() is now explicitly
dupstr()ed, and freed in cmdline_run_saved.
- I couldn't make both string arguments to cmdline_process_param()
const, because it intentionally writes to one of them in the case
where it's the argument to -pw (in the vain hope of being at least
slightly friendly to 'ps'), so elsewhere I had to temporarily
dupstr() something for the sake of passing it to that function
- I had to invent a silly parallel version of const_cmp() so I could
pass const string literals in to lookup functions.
- stripslashes() in pscp.c and psftp.c has the annoying strchr nature
It's now kept in a separate module, where it can be reused
conveniently for other kinds of Windows HANDLE that I want to wrap in
the PuTTY Socket abstraction - for example, the named pipes that I
shortly plan to use for the Windows side of connection-sharing IPC.
[originally from svn r10066]
The most interesting one is printer_add_enum, which I've modified to
take a char ** rather than a char * so that it can both realloc its
input buffer _and_ return NULL to indicate error.
[originally from svn r9959]
data channels. Should comprehensively fix 'half-closed', in principle,
though it's a big and complicated change and so there's a good chance
I've made at least one mistake somewhere.
All connections should now be rigorous about propagating end-of-file
(or end-of-data-stream, or socket shutdown, or whatever) independently
in both directions, except in frontends with no mechanism for sending
explicit EOF (e.g. interactive terminal windows) or backends which are
basically always used for interactive sessions so it's unlikely that
an application would be depending on independent EOF (telnet, rlogin).
EOF should now never accidentally be sent while there's still buffered
data to go out before it. (May help fix 'portfwd-corrupt', and also I
noticed recently that the ssh main session channel can accidentally
have MSG_EOF sent before the output bufchain is clear, leading to
embarrassment when it subsequently does send the output).
[originally from svn r9279]
'Config' in putty.h, which stores all PuTTY's settings and includes an
arbitrary length limit on every single one of those settings which is
stored in string form. In place of it is 'Conf', an opaque data type
everywhere outside the new file conf.c, which stores a list of (key,
value) pairs in which every key contains an integer identifying a
configuration setting, and for some of those integers the key also
contains extra parts (so that, for instance, CONF_environmt is a
string-to-string mapping). Everywhere that a Config was previously
used, a Conf is now; everywhere there was a Config structure copy,
conf_copy() is called; every lookup, adjustment, load and save
operation on a Config has been rewritten; and there's a mechanism for
serialising a Conf into a binary blob and back for use with Duplicate
Session.
User-visible effects of this change _should_ be minimal, though I
don't doubt I've introduced one or two bugs here and there which will
eventually be found. The _intended_ visible effects of this change are
that all arbitrary limits on configuration strings and lists (e.g.
limit on number of port forwardings) should now disappear; that list
boxes in the configuration will now be displayed in a sorted order
rather than the arbitrary order in which they were added to the list
(since the underlying data structure is now a sorted tree234 rather
than an ad-hoc comma-separated string); and one more specific change,
which is that local and dynamic port forwardings on the same port
number are now mutually exclusive in the configuration (putting 'D' in
the key rather than the value was a mistake in the first place).
One other reorganisation as a result of this is that I've moved all
the dialog.c standard handlers (dlg_stdeditbox_handler and friends)
out into config.c, because I can't really justify calling them generic
any more. When they took a pointer to an arbitrary structure type and
the offset of a field within that structure, they were independent of
whether that structure was a Config or something completely different,
but now they really do expect to talk to a Conf, which can _only_ be
used for PuTTY configuration, so I've renamed them all things like
conf_editbox_handler and moved them out of the nominally independent
dialog-box management module into the PuTTY-specific config.c.
[originally from svn r9214]
ago, I apparently caused all data received from local proxies to be
unconditionally tagged as TCP Urgent. Most network backends ignore
this, but it's critical to the Telnet backend, which will ignore all
Urgent-marked data in the assumption that there's a SYNCH on its way
that it should wait for. Nobody has noticed in two years, presumably
meaning that nobody has ever tried to do Telnet over a local proxy
in that time.
[originally from svn r8158]
a serial port backend:
- In order to do simultaneous reading and writing on the same
HANDLE, you must enable overlapped access and pass an OVERLAPPED
structure to each ReadFile and WriteFile call. This would make
sense if it were an optional thing I could do if I wanted to do
the reading and writing in the same thread, but making it
mandatory even if I'm doing them in _different_ threads is just
annoying and arbitrary.
- Serial ports occasionally return length 0 from ReadFile, for no
particularly good reason. Fortunately serial ports also don't
have a real EOF condition to speak of, so ignoring EOFs is
actually a viable response in spite of sounding utterly gross.
Hence, handle_{input,output}_new() now accept a flags parameter,
which includes a flag to enable the OVERLAPPED bureaucracy and a
flag to cause EOFs to be ignored on input handles. The current
clients of winhandl.c do not use either of these.
[originally from svn r6813]
inherit _our_ ends of its I/O pipes! Otherwise, closing our copy of
those handles does not cause it to see EOF on its stdin, because
it's holding the pipe open itself.
[originally from svn r6808]