1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-25 09:12:24 +00:00
Commit Graph

4 Commits

Author SHA1 Message Date
Simon Tatham
5f35f5b4ac testsc.c: fix further memory leaks.
These were spotted by Leak Sanitiser rather than Coverity: it reported
them while I was checking the fixes for Coverity-spotted issues.
2019-05-05 10:25:01 +01:00
Simon Tatham
0f6ce9bd01 Remove some spurious null pointer tests.
In load_openssh_new_key, ret->keyblob is never null any more: now that
it's a strbuf instead of a bare realloc()ed string, it's at worst an
_empty_ strbuf. Secondly, as Coverity pointed out, the null pointer
check was too late to do any good in the first place - the previous
clause of the same if condition would already have dereferenced it!

In test_mac in the auxiliary testsc program, there's no actual reason
I would ever have called it with null ssh_mac pointer - it would mean
'don't test anything'! Looks as if I just copy-pasted the MAC parts of
the cipher+MAC setup code in test_cipher.
2019-05-05 10:14:24 +01:00
Simon Tatham
64fdc85b2d Fix miscellaneous minor memory leaks.
All found by Coverity.
2019-05-05 10:14:24 +01:00
Simon Tatham
83db341e8a New test system to detect side channels in crypto code.
All the work I've put in in the last few months to eliminate timing
and cache side channels from PuTTY's mp_int and cipher implementations
has been on a seat-of-the-pants basis: just thinking very hard about
what kinds of language construction I think would be safe to use, and
trying not to absentmindedly leave a conditional branch or a cast to
bool somewhere vital.

Now I've got a test suite! The basic idea is that you run the same
crypto primitive multiple times, with inputs differing only in ways
that are supposed to avoid being leaked by timing or leaving evidence
in the cache; then you instrument the code so that it logs all the
control flow, memory access and a couple of other relevant things in
each of those runs, and finally, compare the logs and expect them to
be identical.

The instrumentation is done using DynamoRIO, which I found to be well
suited to this kind of work: it lets you define custom modifications
of the code in a reasonably low-effort way, and it lets you work at
both the low level of examining single instructions _and_ the higher
level of the function call ABI (so you can give things like malloc
special treatment, not to mention intercepting communications from the
program being instrumented). Build instructions are all in the comment
at the top of testsc.c.

At present, I've found this test to give a 100% pass rate using gcc
-O0 and -O3 (Ubuntu 18.10). With clang, there are a couple of
failures, which I'll fix in the next commit.
2019-02-10 13:09:53 +00:00