mirror of
https://git.tartarus.org/simon/putty.git
synced 2025-01-10 09:58:01 +00:00
5678b4c7cf
10 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Simon Tatham
|
f1c8298000 |
Centralise most details of host-key prompting.
The text of the host key warnings was replicated in three places: the Windows rc file, the GTK dialog setup function, and the console.c shared between both platforms' CLI tools. Now it lives in just one place, namely ssh/common.c where the rest of the centralised host-key checking is done, so it'll be easier to adjust the wording in future. This comes with some extra automation. Paragraph wrapping is no longer done by hand in any version of these prompts. (Previously we let GTK do the wrapping on GTK, but on Windows the resource file contained a bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped terminal messages.) And the dialog heights in Windows are determined automatically based on the amount of stuff in the window. The main idea of all this is that it'll be easier to set up more elaborate kinds of host key prompt that deal with certificates (if, e.g., a server sends us a certified host key which we don't trust the CA for). But there are side benefits of this refactoring too: each tool now reliably inserts its own appname in the prompts, and also, on Windows the entire prompt text is copy-pastable. Details of implementation: there's a new type SeatDialogText which holds a set of (type, string) pairs describing the contents of a prompt. Type codes distinguish ordinary text paragraphs, paragraphs to be displayed prominently (like key fingerprints), the extra-bold scary title at the top of the 'host key changed' version of the dialog, and the various information that lives in the subsidiary 'more info' box. ssh/common.c constructs this, and passes it to the Seat to present the actual prompt. In order to deal with the different UI for answering the prompt, I've added an extra Seat method 'prompt_descriptions' which returns some snippets of text to interpolate into the messages. ssh/common.c calls that while it's still constructing the text, and incorporates the resulting snippets into the SeatDialogText. For the moment, this refactoring only affects the host key prompts. The warnings about outmoded crypto are still done the old-fashioned way; they probably ought to be similarly refactored to use this new SeatDialogText system, but it's not immediately critical for the purpose I have right now. |
||
Simon Tatham
|
a2ff884512 |
Richer data type for interactive prompt results.
All the seat functions that request an interactive prompt of some kind to the user - both the main seat_get_userpass_input and the various confirmation dialogs for things like host keys - were using a simple int return value, with the general semantics of 0 = "fail", 1 = "proceed" (and in the case of seat_get_userpass_input, answers to the prompts were provided), and -1 = "request in progress, wait for a callback". In this commit I change all those functions' return types to a new struct called SeatPromptResult, whose primary field is an enum replacing those simple integer values. The main purpose is that the enum has not three but _four_ values: the "fail" result has been split into 'user abort' and 'software abort'. The distinction is that a user abort occurs as a result of an interactive UI action, such as the user clicking 'cancel' in a dialog box or hitting ^D or ^C at a terminal password prompt - and therefore, there's no need to display an error message telling the user that the interactive operation has failed, because the user already knows, because they _did_ it. 'Software abort' is from any other cause, where PuTTY is the first to know there was a problem, and has to tell the user. We already had this 'user abort' vs 'software abort' distinction in other parts of the code - the SSH backend has separate termination functions which protocol layers can call. But we assumed that any failure from an interactive prompt request fell into the 'user abort' category, which is not true. A couple of examples: if you configure a host key fingerprint in your saved session via the SSH > Host keys pane, and the server presents a host key that doesn't match it, then verify_ssh_host_key would report that the user had aborted the connection, and feel no need to tell the user what had gone wrong! Similarly, if a password provided on the command line was not accepted, then (after I fixed the semantics of that in the previous commit) the same wrong handling would occur. So now, those Seat prompt functions too can communicate whether the user or the software originated a connection abort. And in the latter case, we also provide an error message to present to the user. Result: in those two example cases (and others), error messages should no longer go missing. Implementation note: to avoid the hassle of having the error message in a SeatPromptResult being a dynamically allocated string (and hence, every recipient of one must always check whether it's non-NULL and free it on every exit path, plus being careful about copying the struct around), I've instead arranged that the structure contains a function pointer and a couple of parameters, so that the string form of the message can be constructed on demand. That way, the only users who need to free it are the ones who actually _asked_ for it in the first place, which is a much smaller set. (This is one of the rare occasions that I regret not having C++'s extra features available in this code base - a unique_ptr or shared_ptr to a string would have been just the thing here, and the compiler would have done all the hard work for me of remembering where to insert the frees!) |
||
Simon Tatham
|
4e93a2c1b8 |
Fix obvious braino in tempseat_output.
I'd added a data length to the 'type' field of output_chunk instead of the 'size' field. Caused an assertion failure when I tried a simple SSH proxy operation on Windows just now, because the output_chunks and the output bufchain didn't match up, and no wonder. The mystery is how it hasn't been consistently failing like that since September! |
||
Simon Tatham
|
7eb7d5e2e9 |
New Seat query, has_mixed_input_stream().
(TL;DR: to suppress redundant 'Press Return to begin session' prompts in between hops of a jump-host configuration, in Plink.) This new query method directly asks the Seat the question: is the same stream of input used to provide responses to interactive login prompts, and the session input provided after login concludes? It's used to suppress the last-ditch anti-spoofing defence in Plink of interactively asking 'Access granted. Press Return to begin session', on the basis that any such spoofing attack works by confusing the user about what's a legit login prompt before the session begins and what's sent by the server after the main session begins - so if those two things take input from different places, the user can't be confused. This doesn't change the existing behaviour of Plink, which was already suppressing the antispoof prompt in cases where its standard input was redirected from something other than a terminal. But previously it was doing it within the can_set_trust_status() seat query, and I've now moved it out into a separate query function. The reason why these need to be separate is for SshProxy, which needs to give an unusual combination of answers when run inside Plink. For can_set_trust_status(), it needs to return whatever the parent Seat returns, so that all the login prompts for a string of proxy connections in session will be antispoofed the same way. But you only want that final 'Access granted' prompt to happen _once_, after all the proxy connection setup phases are done, because up until then you're still in the safe hands of PuTTY itself presenting an unbroken sequence of legit login prompts (even if they come from a succession of different servers). Hence, SshProxy unconditionally returns 'no' to the query of whether it has a single mixed input stream, because indeed, it never does - for purposes of session input it behaves like an always-redirected Plink, no matter what kind of real Seat it ends up sending its pre-session login prompts to. |
||
Simon Tatham
|
74a0be9c56 |
Split seat_banner from seat_output.
Previously, SSH authentication banners were displayed by calling the ordinary seat_output function, and passing it a special value in the SeatOutputType enumeration indicating an auth banner. The awkwardness of this was already showing a little in SshProxy's implementation of seat_output, where it had to check for that special value and do totally different things for SEAT_OUTPUT_AUTH_BANNER and everything else. Further work in that area is going to make it more and more awkward if I keep the two output systems unified. So let's split them up. Now, Seat has separate output() and banner() methods, which each implementation can override differently if it wants to. All the 'end user' Seat implementations use the centralised implementation function nullseat_banner_to_stderr(), which turns banner text straight back into SEAT_OUTPUT_STDERR and passes it on to seat_output. So I didn't have to tediously implement a boring version of this function in GTK, Windows GUI, consoles, file transfer etc. |
||
Simon Tatham
|
efa89573ae |
Reorganise host key checking and confirmation.
Previously, checking the host key against the persistent cache managed by the storage.h API was done as part of the seat_verify_ssh_host_key method, i.e. separately by each Seat. Now that check is done by verify_ssh_host_key(), which is a new function in ssh/common.c that centralises all the parts of host key checking that don't need an interactive prompt. It subsumes the previous verify_ssh_manual_host_key() that checked against the Conf, and it does the check against the storage API that each Seat was previously doing separately. If it can't confirm or definitively reject the host key by itself, _then_ it calls out to the Seat, once an interactive prompt is definitely needed. The main point of doing this is so that when SshProxy forwards a Seat call from the proxy SSH connection to the primary Seat, it won't print an announcement of which connection is involved unless it's actually going to do something interactive. (Not that we're printing those announcements _yet_ anyway, but this is a piece of groundwork that works towards doing so.) But while I'm at it, I've also taken the opportunity to clean things up a bit by renaming functions sensibly. Previously we had three very similarly named functions verify_ssh_manual_host_key(), SeatVtable's 'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now the Seat method is called 'confirm' rather than 'verify' (since its job is now always to print an interactive prompt, so it looks more like the other confirm_foo methods), and the storage.h function is called check_stored_host_key(), which goes better with store_host_key and avoids having too many functions with similar names. And the 'manual' function is subsumed into the new centralised code, so there's now just *one* host key function with 'verify' in the name. Several functions are reindented in this commit. Best viewed with whitespace changes ignored. |
||
Simon Tatham
|
71cb9ca487 |
TempSeat: fix output interleaving.
Working on the previous commit, I suddenly realised I'd made a mistake in the design of TempSeat: you can't buffer standard output and standard error separately and then replay them one after another, because the interleaving of the two kinds of output might also be significant. (Especially if the consuming Seat doesn't separate them.) Now TempSeat has a single bufchain for all the data, paralleled by a linked list describing each contiguous chunk of it consisting of a single output type. So we can replay the data with both the correct separation _and_ the correct order. |
||
Simon Tatham
|
ac47e550c6 |
seat_output: add an output type for SSH banners. (NFC)
The jump host system ought really to be treating SSH authentication banners as a distinct thing from the standard-error session output, so that the former can be presented to the user in the same way as the auth banner for the main session. This change converts the 'bool is_stderr' parameter of seat_output() into an enumerated type with three values. For the moment, stderr and banners are treated the same, but the plan is for that to change. |
||
Simon Tatham
|
cd8a7181fd |
Complete rework of terminal userpass input system.
The system for handling seat_get_userpass_input has always been structured differently between GUI PuTTY and CLI tools like Plink. In the CLI tools, password input is read directly from the OS terminal/console device by console_get_userpass_input; this means that you need to ensure the same terminal input data _hasn't_ already been consumed by the main event loop and sent on to the backend. This is achieved by the backend_sendok() method, which tells the event loop when the backend has finished issuing password prompts, and hence, when it's safe to start passing standard input to backend_send(). But in the GUI tools, input generated by the terminal window has always been sent straight to backend_send(), regardless of whether backend_sendok() says it wants it. So the terminal-based implementation of username and password prompts has to work by consuming input data that had _already_ been passed to the backend - hence, any backend that needs to do that must keep its input on a bufchain, and pass that bufchain to seat_get_userpass_input. It's awkward that these two totally different systems coexist in the first place. And now that SSH proxying needs to present interactive prompts of its own, it's clear which one should win: the CLI style is the Right Thing. So this change reworks the GUI side of the mechanism to be more similar: terminal data now goes into a queue in the Ldisc, and is not sent on to the backend until the backend says it's ready for it via backend_sendok(). So terminal-based userpass prompts can now consume data directly from that queue during the connection setup stage. As a result, the 'bufchain *' parameter has vanished from all the userpass_input functions (both the official implementations of the Seat trait method, and term_get_userpass_input() to which some of those implementations delegate). The only function that actually used that bufchain, namely term_get_userpass_input(), now instead reads from the ldisc's input queue via a couple of new Ldisc functions. (Not _trivial_ functions, since input buffered by Ldisc can be a mixture of raw bytes and session specials like SS_EOL! The input queue inside Ldisc is a bufchain containing a fiddly binary encoding that can represent an arbitrary interleaving of those things.) This greatly simplifies the calls to seat_get_userpass_input in backends, which now don't have to mess about with passing their own user_input bufchain around, or toggling their want_user_input flag back and forth to request data to put on to that bufchain. But the flip side is that now there has to be some _other_ method for notifying the terminal when there's more input to be consumed during an interactive prompt, and for notifying the backend when prompt input has finished so that it can proceed to the next stage of the protocol. This is done by a pair of extra callbacks: when more data is put on to Ldisc's input queue, it triggers a call to term_get_userpass_input, and when term_get_userpass_input finishes, it calls a callback function provided in the prompts_t. Therefore, any use of a prompts_t which *might* be asynchronous must fill in the latter callback when setting up the prompts_t. In SSH, the callback is centralised into a common PPL helper function, which reinvokes the same PPL's process_queue coroutine; in rlogin we have to set it up ourselves. I'm sorry for this large and sprawling patch: I tried fairly hard to break it up into individually comprehensible sub-patches, but I just couldn't tease out any part of it that would stand sensibly alone. |
||
Simon Tatham
|
6d272ee007 |
Allow new_connection to take an optional Seat. (NFC)
This is working towards allowing the subsidiary SSH connection in an SshProxy to share the main user-facing Seat, so as to be able to pass through interactive prompts. This is more difficult than the similar change with LogPolicy, because Seats are stateful. In particular, the trust-sigil status will need to be controlled by the SshProxy until it's ready to pass over control to the main SSH (or whatever) connection. To make this work, I've introduced a thing called a TempSeat, which is (yet) another Seat implementation. When a backend hands its Seat to new_connection(), it does it in a way that allows new_connection() to borrow it completely, and replace it in the main backend structure with a TempSeat, which acts as a temporary placeholder. If the main backend tries to do things like changing trust status or sending output, the TempSeat will buffer them; later on, when the connection is established, TempSeat will replay the changes into the real Seat. So, in each backend, I've made the following changes: - pass &foo->seat to new_connection, which may overwrite it with a TempSeat. - if it has done so (which we can tell via the is_tempseat() query function), then we have to free the TempSeat and reinstate our main Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS notification, which indicates that SshProxy has finished all its connection setup work. - we also have to remember to free the TempSeat if our backend is disposed of without that having happened (e.g. because the connection _doesn't_ succeed). - in backends which have no local auth phase to worry about, ensure we don't call seat_set_trust_status on the main Seat _before_ it gets potentially replaced with a TempSeat. Moved some calls of seat_set_trust_status to just after new_connection(), so that now the initial trust status setup will go into the TempSeat (if appropriate) and be buffered until that seat is relinquished. In all other uses of new_connection, where we don't have a Seat available at all, we just pass NULL. This is NFC, because neither new_connection() nor any of its delegates will _actually_ do this replacement yet. We're just setting up the framework to enable it to do so in the next commit. |