1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 09:58:01 +00:00
Commit Graph

5 Commits

Author SHA1 Message Date
Simon Tatham
621f8f4314 Windows: move dputs back into winmisc.c.
Having it in winmiscs.c made it conflict with the one in testcrypt.
2019-01-23 23:29:57 +00:00
Simon Tatham
dc2fdb8acf Support hardware SHA-256 and SHA-1 on Arm platforms.
Similarly to my recent addition of NEON-accelerated AES, these new
implementations drop in alongside the SHA-NI ones, under a different
set of ifdefs. All the details of selection and detection are
essentially the same as they were for the AES code.
2019-01-23 22:36:17 +00:00
Simon Tatham
53747ad3ab Support hardware AES on Arm platforms.
The refactored sshaes.c gives me a convenient slot to drop in a second
hardware-accelerated AES implementation, similar to the existing one
but using Arm NEON intrinsics in place of the x86 AES-NI ones.

This needed a minor structural change, because Arm systems are often
heterogeneous, containing more than one type of CPU which won't
necessarily all support the same set of architecture features. So you
can't test at run time for the presence of AES acceleration by
querying the CPU you're running on - even if you found a way to do it,
the answer wouldn't be reliable once the OS started migrating your
process between CPUs. Instead, you have to ask the OS itself, because
only that knows about _all_ the CPUs on the system. So that means the
aes_hw_available() mechanism has to extend a tentacle into each
platform subdirectory.

The trickiest part was the nest of ifdefs that tries to detect whether
the compiler can support the necessary parts. I had successful
test-compiles on several compilers, and was able to run the code
directly on an AArch64 tablet (so I know it passes cryptsuite), but
it's likely that at least some Arm platforms won't be able to build it
because of some path through the ifdefs that I haven't been able to
test yet.
2019-01-16 22:08:50 +00:00
Simon Tatham
fdc4800669 Build testcrypt on Windows.
The bulk of this commit is the changes necessary to make testcrypt
compile under Visual Studio. Unfortunately, I've had to remove my
fiddly clever uses of C99 variadic macros, because Visual Studio does
something unexpected when a variadic macro's expansion puts
__VA_ARGS__ in the argument list of a further macro invocation: the
commas don't separate further arguments. In other words, if you write

  #define INNER(x,y,z) some expansion involving x, y and z
  #define OUTER(...) INNER(__VA_ARGS__)
  OUTER(1,2,3)

then gcc and clang will translate OUTER(1,2,3) into INNER(1,2,3) in
the obvious way, and the inner macro will be expanded with x=1, y=2
and z=3. But try this in Visual Studio, and you'll get the macro
parameter x expanding to the entire string 1,2,3 and the other two
empty (with warnings complaining that INNER didn't get the number of
arguments it expected).

It's hard to cite chapter and verse of the standard to say which of
those is _definitely_ right, though my reading leans towards the
gcc/clang behaviour. But I do know I can't depend on it in code that
has to compile under both!

So I've removed the system that allowed me to declare everything in
testcrypt.h as FUNC(ret,fn,arg,arg,arg), and now I have to use a
different macro for each arity (FUNC0, FUNC1, FUNC2 etc). Also, the
WRAPPED_NAME system is gone (because that too depended on the use of a
comma to shift macro arguments along by one), and now I put a custom C
wrapper around a function by simply re-#defining that function's own
name (and therefore the subsequent code has to be a little more
careful to _not_ pass functions' names between several macros before
stringifying them).

That's all a bit tedious, and commits me to a small amount of ongoing
annoyance because now I'll have to add an explicit argument count
every time I add something to testcrypt.h. But then again, perhaps it
will make the code less incomprehensible to someone trying to
understand it!
2019-01-12 08:07:44 +00:00
Simon Tatham
d4d89d51e9 Move some of winmisc.c into winmiscs.c.
That's a terrible name, but winutils.c was already taken. The new
source file is intended to be to winmisc.c as the new utils.c is to
misc.c: it contains all the parts that are basically safe to link into
_any_ Windows program (even standalone test things), without tying in
to the runtime infrastructure of the main tools, referring to any
other PuTTY source module, or introducing an extra Win32 API library
dependency.
2019-01-12 08:14:54 +00:00