I wasn't really satisfied with the previous version, but it was
easiest to get Stein's algorithm working on polynomials by doing it
exactly how I already knew to do it for integers. But now I've
improved it in two ways.
The first improvement I got from another implementation: instead of
transforming A into A - kB for some k that makes the constant term
zero, you can scale _both_ inputs, replacing A with mA - kB for some
k,m. The advantage is that you can calculate m and k very easily, by
making each one the constant term of the other polynomial, which means
you don't need to invert something mod q in every step. (Rather like
the projective-coordinates optimisations in elliptic curves, where
instead of inverting in every step you accumulate the product of all
the factors that need to be inverted, and invert the whole product
once at the very end.)
The second improvement is to abandon my cumbersome unwinding loop that
builds up the output coefficients by reversing the steps in the
original gcd-finding loop. Instead, I do the thing you do in normal
Euclid's algorithm: keep track of the coefficients as you go through
the original loop. I had wanted to do this before, but hadn't figured
out how you could deal with dividing a coefficient by x when (unlike
the associated real value) the coefficient isn't a multiple of x. But
the answer is very simple: x is invertible in the ring we're working
in (its inverse mod x^p-x-1 is just x^{p-1}-1), so you _can_ just
divide your coefficient by x, and moreover, very easily!
Together, these changes speed up the NTRU key generation by about a
factor of 1.5. And they remove lots of complicated code as well, so
everybody wins.
This consists of DJB's 'Streamlined NTRU Prime' quantum-resistant
cryptosystem, currently in round 3 of the NIST post-quantum key
exchange competition; it's run in parallel with ordinary Curve25519,
and generates a shared secret combining the output of both systems.
(Hence, even if you don't trust this newfangled NTRU Prime thing at
all, it's at least no _less_ secure than the kex you were using
already.)
As the OpenSSH developers point out, key exchange is the most urgent
thing to make quantum-resistant, even before working quantum computers
big enough to break crypto become available, because a break of the
kex algorithm can be applied retroactively to recordings of your past
sessions. By contrast, authentication is a real-time protocol, and can
only be broken by a quantum computer if there's one available to
attack you _already_.
I've implemented both sides of the mechanism, so that PuTTY and Uppity
both support it. In my initial testing, the two sides can both
interoperate with the appropriate half of OpenSSH, and also (of
course, but it would be embarrassing to mess it up) with each other.