1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
Commit Graph

10 Commits

Author SHA1 Message Date
Simon Tatham
af72a11d54 testcrypt: handle int as a return type.
I accepted both 'int' and 'uint' as function argument types, but
hadn't previously noticed that only 'uint' is handled properly as a
return type. Now both are.
2020-01-09 19:57:35 +00:00
Simon Tatham
9cf2db5f94 testcrypt: fix malformatted error message.
I managed to get two format parameters reversed in the message when a
return type is unhandled.
2020-01-09 19:32:54 +00:00
Simon Tatham
7f9aba638f Handle crashes in the testcrypt binary more cleanly.
Previously, if the testcrypt subprocess suffered any kind of crash or
assertion failure during a run of the Python-based test system, the
effect would be that ChildProcess.read_line() would get EOF, ignore
it, and silently return the empty string. Then it would carry on doing
that for the rest of the program, leading to a long string of error
reports in tests that were nowhere near the code that actually caused
the crash.

Now ChildProcess.read_line() detects EOF and raises an exception, so
that the test suite won't heedlessly carry on trying to do things once
it's noticed that its subprocess has gone away.

This is more fiddly than it sounds, however, because of the wrinkle
that sometimes that function can be called while a Python __del__
method is asking testcrypt to free something. If that happens, the
exception can't be propagated out of the __del__ (analogously to the
rule that it's a really terrible idea for C++ destructors to throw).
So you get an annoying warning message on standard error, and then the
next command sent to testcrypt will be back in the same position.
Worse still, this can also happen if testcrypt has _already_ crashed,
because the __del__ methods will still run.

To protect against _that_, ChildProcess caches the exception after
throwing it, and then each subsequent write_line() will rethrow it.
And __del__ catches and explicitly ignores the exception (to avoid the
annoying warning if Python has to do the same).

The combined result should be that if testcrypt crashes in normal
(non-__del__) context, we should get a single exception that
terminates the run cleanly without cascade failures, and whose
backtrace localises the problem to the actual operation that caused
the crash. If testcrypt crashes in __del__, we can't quite do that
well, but we can still terminate with an exception at the next
opportunity, avoiding multiple cascade failures.

Also in this commit, I've got rid of the try-finally in
cryptsuite.py's (trivial) main program.
2019-03-24 10:18:16 +00:00
Simon Tatham
6ecc16fc4b cryptsuite: clean up exit handling.
Now we only run the final memory-leak check if we didn't already have
some other error to report, or some other exception that terminated
the process.

Also, we wait for the subprocess to terminate before returning control
to the shell, so that any last-minute complaints from Leak Sanitiser
appear before rather than after the shell prompt comes back.

While I'm here, I've also made check_return_status tolerate the case
in which the child process never got started at all. That way, if a
failure manages to occur before even getting _that_ far, there won't
be a cascade failure from check_return_status getting confused
afterwards.
2019-03-24 10:18:16 +00:00
Simon Tatham
0e9ad99c04 testcrypt / cryptsuite: another set of Python 3 fixes.
One of these days I'll manage not to mess this up in every new test
I add ... perhaps.
2019-01-23 23:40:32 +00:00
Simon Tatham
986508a570 Merge the ssh1_cipher type into ssh2_cipher.
The aim of this reorganisation is to make it easier to test all the
ciphers in PuTTY in a uniform way. It was inconvenient that there were
two separate vtable systems for the ciphers used in SSH-1 and SSH-2
with different functionality.

Now there's only one type, called ssh_cipher. But really it's the old
ssh2_cipher, just renamed: I haven't made any changes to the API on
the SSH-2 side. Instead, I've removed ssh1_cipher completely, and
adapted the SSH-1 BPP to use the SSH-2 style API.

(The relevant differences are that ssh1_cipher encapsulated both the
sending and receiving directions in one object - so now ssh1bpp has to
make a separate cipher instance per direction - and that ssh1_cipher
automatically initialised the IV to all zeroes, which ssh1bpp now has
to do by hand.)

The previous ssh1_cipher vtable for single-DES has been removed
completely, because when converted into the new API it became
identical to the SSH-2 single-DES vtable; so now there's just one
vtable for DES-CBC which works in both protocols. The other two SSH-1
ciphers each had to stay separate, because 3DES is completely
different between SSH-1 and SSH-2 (three layers of CBC structure
versus one), and Blowfish varies in endianness and key length between
the two.

(Actually, while I'm here, I've only just noticed that the SSH-1
Blowfish cipher mis-describes itself in log messages as Blowfish-128.
In fact it passes the whole of the input key buffer, which has length
SSH1_SESSION_KEY_LENGTH == 32 bytes == 256 bits. So it's actually
Blowfish-256, and has been all along!)
2019-01-18 19:41:23 +00:00
Simon Tatham
ee8025dd1c testcrypt: allow ssh2_cipher_new to return NULL.
No cipher construction function _currently_ returns NULL, but one's
about to start, so the testcrypt system will have to be able to cope.

This is the first time a function in the testcrypt API has had an
'opt' type as its return value rather than an argument. But it works
just the same in reverse: the wire protocol emits the special
identifer "NULL" when the optional return value is absent, and the
Python module catches that and rewrites it as Python 'None'.
2019-01-13 13:42:05 +00:00
Simon Tatham
fdc4800669 Build testcrypt on Windows.
The bulk of this commit is the changes necessary to make testcrypt
compile under Visual Studio. Unfortunately, I've had to remove my
fiddly clever uses of C99 variadic macros, because Visual Studio does
something unexpected when a variadic macro's expansion puts
__VA_ARGS__ in the argument list of a further macro invocation: the
commas don't separate further arguments. In other words, if you write

  #define INNER(x,y,z) some expansion involving x, y and z
  #define OUTER(...) INNER(__VA_ARGS__)
  OUTER(1,2,3)

then gcc and clang will translate OUTER(1,2,3) into INNER(1,2,3) in
the obvious way, and the inner macro will be expanded with x=1, y=2
and z=3. But try this in Visual Studio, and you'll get the macro
parameter x expanding to the entire string 1,2,3 and the other two
empty (with warnings complaining that INNER didn't get the number of
arguments it expected).

It's hard to cite chapter and verse of the standard to say which of
those is _definitely_ right, though my reading leans towards the
gcc/clang behaviour. But I do know I can't depend on it in code that
has to compile under both!

So I've removed the system that allowed me to declare everything in
testcrypt.h as FUNC(ret,fn,arg,arg,arg), and now I have to use a
different macro for each arity (FUNC0, FUNC1, FUNC2 etc). Also, the
WRAPPED_NAME system is gone (because that too depended on the use of a
comma to shift macro arguments along by one), and now I put a custom C
wrapper around a function by simply re-#defining that function's own
name (and therefore the subsequent code has to be a little more
careful to _not_ pass functions' names between several macros before
stringifying them).

That's all a bit tedious, and commits me to a small amount of ongoing
annoyance because now I'll have to add an explicit argument count
every time I add something to testcrypt.h. But then again, perhaps it
will make the code less incomprehensible to someone trying to
understand it!
2019-01-12 08:07:44 +00:00
Simon Tatham
47ca2e98a5 testcrypt.py: look past 'opt_' prefix on argument types.
When testcrypt.h lists a function argument as 'opt_val_foo', it means
that the argument is optional in the sense that the C function can
take a null pointer in place of a valid foo, and so the Python wrapper
module should accept None in the corresponding argument slot from the
client code and translate it into the special string "NULL" in the
wire protocol.

This works fine at argument translation time, but the code that reads
testcrypt.h wasn't looking at it, so if you said 'opt_val_foo_suffix'
in place of 'opt_val_foo' (indicating that that argument is optional
_and_ the C function expects it in a translated form), then the
initial pass over testcrypt.h wouldn't strip the _suffix, and would
set up data structures with mismatched type names.
2019-01-12 08:11:14 +00:00
Simon Tatham
5b14abc30e New test system for mp_int and cryptography.
I've written a new standalone test program which incorporates all of
PuTTY's crypto code, including the mp_int and low-level elliptic curve
layers but also going all the way up to the implementations of the
MAC, hash, cipher, public key and kex abstractions.

The test program itself, 'testcrypt', speaks a simple line-oriented
protocol on standard I/O in which you write the name of a function
call followed by some inputs, and it gives you back a list of outputs
preceded by a line telling you how many there are. Dynamically
allocated objects are assigned string ids in the protocol, and there's
a 'free' function that tells testcrypt when it can dispose of one.

It's possible to speak that protocol by hand, but cumbersome. I've
also provided a Python module that wraps it, by running testcrypt as a
persistent subprocess and gatewaying all the function calls into
things that look reasonably natural to call from Python. The Python
module and testcrypt.c both read a carefully formatted header file
testcrypt.h which contains the name and signature of every exported
function, so it costs minimal effort to expose a given function
through this test API. In a few cases it's necessary to write a
wrapper in testcrypt.c that makes the function look more friendly, but
mostly you don't even need that. (Though that is one of the
motivations between a lot of API cleanups I've done recently!)

I considered doing Python integration in the more obvious way, by
linking parts of the PuTTY code directly into a native-code .so Python
module. I decided against it because this way is more flexible: I can
run the testcrypt program on its own, or compile it in a way that
Python wouldn't play nicely with (I bet compiling just that .so with
Leak Sanitiser wouldn't do what you wanted when Python loaded it!), or
attach a debugger to it. I can even recompile testcrypt for a
different CPU architecture (32- vs 64-bit, or even running it on a
different machine over ssh or under emulation) and still layer the
nice API on top of that via the local Python interpreter. All I need
is a bidirectional data channel.
2019-01-03 16:56:02 +00:00