The entire concept has gone away in GTK3, which assumes that everyone
is now using modern true-colour video modes and so there's no longer
any reason you shouldn't just casually make up any RGB triple you like
without bothering to ask the display system's permission.
GDK3 now spells both of those as GDK_WINDOW_XID. (Of course 'drawable'
is no longer a relevant concept in GDK3, since pixmaps are no longer
supported and so all drawables are just windows.) We keep backwards
compatibility, of course.
This replaces GTK 1/2's "expose_event", and provides a ready-made
cairo_t to do the drawing with. My previous work has already separated
all constructions of a cairo_t from the subsequent drawing with it, so
the new draw event handlers just have to call the latter without the
former.
This is the new recommended approach since gdk_input_{add,remove} were
deprecated (and, honestly, seems a lot more sensible - why on earth
would those functions have lived in *GDK* of all places?). The old
implementation is preserved under ifdef for GTK1.
This was the last of the GDK deprecated functions to go! So GTK PuTTY
now compiles cleanly with -DGDK_DISABLE_DEPRECATED in addition to all
the other precautionary flags (though if you do that, you disable GDK
rendering, which greatly slows down server-side font handling). This
completes the GTK2-compatible preparation phase of the GTK 3 migration
guide.
In case a front end needs to store more than an integer id to be
returned to uxsel_input_remove, we now return a pointer to a
frontend-defined structure.
GTK is deprecating the use of gdk_window_set_icon(), in favour of a
method that doesn't have to drop down to the GDK level at all (and
also doesn't use a pixmap). No reason not to use that instead.
We still don't actually support more than one X display active at
once, so it's sufficient to replace every call to that macro with
GDK_DISPLAY_XDISPLAY(gdk_display_get_default()).
We won't be able to use them in GTK3, or when compiling with GTK2 and
-DGDK_DISABLE_DEPRECATED.
This applies to the one we use for the main terminal window, and also
the small one we use for the preview pane in the unified font selector.
A small bug in yesterday's work: since in Cairo mode
draw_stretch_before changes the transformation matrix, if we do it
before calling draw_clip then the clip region will be interpreted in
the transformed coordinates.
This caused a subtle display bug in yesterday's commit: drawing one
half of double-height text would have drawn _both_ halves of it on to
the window's backing pixmap, but only copied the correct half on to
the window proper - but the overdrawing on the pixmap would have shown
up if the window was hidden and re-exposed.
We were previously building our own mouse pointers out of pixmaps,
having first drawn characters from the X server standard font 'cursor'
on to those pixmaps, giving an effect almost exactly the same as just
calling gdk_cursor_new(some constant) except that we got to choose the
foreground and background colours of the resulting pointers.
But it's not clear why we needed to do that! In both GTK1 and GTK2 as
of my current testing, the standard colours appear to be just what I
wanted anyway (white pointer with black outline). The previous
implementation (and commit comment) was written in 2002, so perhaps it
was working around a GTK1 bug of the time.
So I've removed it completely, and replaced it with simple calls to
gdk_cursor_new (plus a workaround for GTK1's lack of GDK_BLANK_CURSOR,
but that's still much simpler than the previous code). If anyone does
report a colour problem, I may have to go back to doing something
clever, but if I can possibly arrange it, I'll want to do it by some
other technique, probably (as suggested in a comment in the previous
implementation) getting the underlying X cursor id and calling
XRecolorCursor.
We're going to have to use Cairo in the GTK3 port, because that's all
GTK3 supports; but we still need old-style GDK for GTK1 support, and
also for performance reasons in GTK2 (see below). Hence, this change
completely restructures GTK PuTTY's drawing code so that there's a
central 'drawing context' structure which contains a type code
indicating GDK or Cairo, and then either some GDK gubbins or some
Cairo gubbins as appropriate; all actual drawing is abstracted through
a set of routines which test the type code in that structure and do
one thing or another. And because the type code is tested at run time,
both sets of drawing primitives can be compiled in at once, and where
possible, they will be.
X server-side bitmap fonts are still supported in the Cairo world, but
because Cairo drawing is entirely client-side, they have to work by
cheekily downloading each glyph bitmap from the server when it's first
needed, and building up a client-side cache of 'cairo_surface_t's
containing the bitmaps with which we then draw on the window. This
technique works, but it's rather slow; hence, even in GTK2, we keep
the GDK drawing back end compiled in, and switch over to it when the
main selected font is a bitmap one.
One visible effect of the new Cairo routines is in the double-width
and double-height text you can get by sending ESC # 3, ESC # 4 and
ESC # 6 escape sequences. In GDK, that's always been done by a really
horrible process of manually scaling the bitmap, server-side, column
by column and row by row, causing each pixel to be exactly doubled or
quadrupled. But in Cairo, we can just set a transformation matrix, and
then that takes effect _before_ the scalable fonts are rendered - so
the results are visibly nicer, and use all the available resolution.
(Sadly, if you're using a server-side bitmap font as your primary one,
then the GDK backend will be selected for all drawing in the terminal
as a whole - so in that situation, even fallback characters absent
from the primary font and rendered by Pango will get the old GDK
scaling treatment. It's only if your main font is scalable, so that
the Cairo backend is selected, that DW/DH characters will come out
looking nice.)
GTK 2 has deprecated it and provided no replacement; a bug tracker
entry I found on the subject suggested that it was functionality that
didn't really belong in GTK, and glib ought to provide a replacement
instead, which would be a perfectly fine thing to suggest if they had
waited for glib to get round to doing so *before* throwing out a
function people were actually using. Sigh.
Anyway, it turns out that subsidiary invocations of gtk_main() don't
happen inside GTK as far as I can see, so all I need to do is to make
sure my own invocations of gtk_main() are followed by a cleanup
function which runs any quit functions that I've registered.
That was the last deprecated GTK function, so we now build cleanly
with -DGTK_DISABLE_DEPRECATED. (But, as mentioned a couple of commits
ago, we still don't build with -DGDK_DISABLE_DEPRECATED, because that
has migrating to Cairo drawing as a prerequisite.)
Now that I've got a general place to centralise handling of at least
the simple differences between GTK 1 and 2, I should use it wherever
possible. So this commit removes just a small number of ifdefs which
are either obsoleted by definitions already in gtkcompat.h (like
set_size_request vs set_usize), or can easily be replaced by adding
another (e.g. gtk_color_selection_set_has_opacity_control).
Building with -DGTK_DISABLE_DEPRECATED, we now suffer only one compile
failure, for the use of gtk_quit_add() in idle_toplevel_callback_func.
That function is apparently removed with no replacement in GTK 3, so
I'll need to find a completely different approach to getting toplevel
callbacks to run only in the outermost instance of gtk_main().
Also, this change doesn't do anything about the use of *GDK*
deprecated functions, because those include the entire family of
old-style drawing functions - i.e. the only way to build cleanly with
-DGDK_DISABLE_DEPRECATED will be to switch to Cairo drawing.
On GTK versions where it's available, this is a much nicer way of
handling the -geometry command-line option, since not only do we get
all the faffing about with gravity for free, it also automatically
sets the user-position WM hints.
All the things like GtkType, GtkObject, gtk_signal_connect and so on
should now consistently have the new-style glib names like GType,
GObject, g_signal_connect, etc.
A major aim of introducing GTK 3 support is to permit compiling for
non-X11 platforms that GTK 3 supports, so I'm going to need to be able
to build as a pure GTK application with no use of X11 internals.
Naturally, I don't intend to stop supporting the hybrid GTK+X11 mode
in which X server-side bitmap fonts are available.
Use of X11 can be removed by compiling with -DNOT_X_WINDOWS. That's
the same compatibility flag that was already used by the unfinished OS
X port to disable the X-specific parts of uxpty.c; now it just applies
to more source files.
(There's no 'configure' option to set this flag at present. I haven't
worked out whether we'll need one yet.)
GTK 2 doesn't _documentedly_ provide a helpful compile option to let
us check this one in advance of GTK 3, but you can fake one anyway by
compiling with -D__GDK_KEYSYMS_COMPAT_H__, so that gdkkeysyms-compat.h
will believe that it's already been included :-) We now build cleanly
under GTK 2 with that predefine.
This is the first of several cleanup steps recommended by the GTK 2->3
migration guide.
I intend to begin work towards compatibility with GTK 3, but without
breaking GTK 2 and even GTK 1 compatibility in the process; GTK 2 is
still useful to _me_ (not least because it permits much easier support
of old-style server-side X11 fonts), and I recall hearing a rumour
that at least one kind of strange system can only run GTK 1, so for
the moment I don't intend to stop supporting either.
Including gdkkeysyms.h is not optional in GTK 2, because gdk.h does
not include it. In GTK 3 it does, so we don't explicitly reinclude it
ourselves.
We now build cleanly in GTK2 with -DGTK_DISABLE_SINGLE_INCLUDES. (But
that doesn't say much, because we did already! Apparently gdkkeysyms.h
was a special case which that #define didn't forbid.)
Having found a lot of unfixed constness issues in recent development,
I thought perhaps it was time to get proactive, so I compiled the
whole codebase with -Wwrite-strings. That turned up a huge load of
const problems, which I've fixed in this commit: the Unix build now
goes cleanly through with -Wwrite-strings, and the Windows build is as
close as I could get it (there are some lingering issues due to
occasional Windows API functions like AcquireCredentialsHandle not
having the right constness).
Notable fallout beyond the purely mechanical changing of types:
- the stuff saved by cmdline_save_param() is now explicitly
dupstr()ed, and freed in cmdline_run_saved.
- I couldn't make both string arguments to cmdline_process_param()
const, because it intentionally writes to one of them in the case
where it's the argument to -pw (in the vain hope of being at least
slightly friendly to 'ps'), so elsewhere I had to temporarily
dupstr() something for the sake of passing it to that function
- I had to invent a silly parallel version of const_cmp() so I could
pass const string literals in to lookup functions.
- stripslashes() in pscp.c and psftp.c has the annoying strchr nature
I'm not actually sure why we've always had back ends notify ldisc of
changes to echo/edit settings by giving ldisc_send(ldisc,NULL,0,0) a
special meaning, instead of by having a separate dedicated notify
function with its own prototype and parameter set. Coverity's recent
observation that the two kinds of call don't even have the same
requirements on the ldisc (particularly, whether ldisc->term can be
NULL) makes me realise that it's really high time I separated the two
conceptually different operations into actually different functions.
While I'm here, I've renamed the confusing ldisc_update() function
which that special operation ends up feeding to, because it's not
actually a function applying to an ldisc - it applies to a front end.
So ldisc_send(ldisc,NULL,0,0) is now ldisc_echoedit_update(ldisc), and
that in turn figures out the current echo/edit settings before passing
them on to frontend_echoedit_update(). I think that should be clearer.
Robert de Bath points out that failure to remove the timer whose
callback returned FALSE may not have been the cause of runaway timer
explosion; another possibility is that a function called from
timer_trigger()'s call to run_timers() has already set a timer up by
the time run_timers() returns, and then we set another one up on top
of it. Fix that too.
[originally from svn r10206]
Mihkel Ader reports that on that system, timers apparently aren't
getting auto-destroyed when timer_trigger returns FALSE, so the change
in r10181 has caused GTK PuTTY to gradually allocate more and more
timers and consume more and more CPU as they all keep firing.
As far as I can see, this must surely be a bug in GTK 2 (the docs say
that timers _are_ auto-destroyed when their callback returns false),
and it doesn't seem to happen for me with GTK 2.4.23 on Ubuntu 14.04.
However, I'll try to work around it by _explicitly_ destroying each
old timer before we zero out the variable containing its id.
[originally from svn r10202]
[r10181 == e4c4bd2092]
Timer objects evaporate when our timer_trigger callback is called, and
therefore we should not remember their ids beyond that time and
attempt to cancel them later. Previous versions of GTK silently
ignored us doing that, but upgrading to Ubuntu Trusty has given me a
version of GTK that complains about it, so let's stop doing it.
[originally from svn r10181]
I had somehow missed this completely out of the GTK mouse-button
handling and never noticed until now!
Of course, like any other mouse action, if you want it to be handled
locally rather than passed through then you can hold down Shift.
[originally from svn r10139]
I found last week that when a local proxy process terminated
unexpectedly, Unix PuTTY went into a tight loop calling quit
functions, because if idle_toplevel_callback_func is called from
inside a subsidiary gtk_main then it will schedule a quit function and
_not_ disable itself, so that that quit function keeps being
rescheduled on subsequent calls.
To fix, I've tried to make the whole handling of idle and quit
functions more sensibly robust: we keep our own boolean flag
indicating whether each of our functions has already been scheduled
with GTK, and if so, we don't schedule the same one again. Also, when
idle_toplevel_callback_func schedules a quit function, it should
unschedule itself since it's now done everything it can until a
gtk_main instance quits.
[originally from svn r10100]
I've enabled gcc's format-string checking on dupprintf, by declaring
it in misc.h to have the appropriate GNU-specific attribute. This
pointed out a selection of warnings, which I've fixed.
[originally from svn r10084]
This change attempts to reinstate as a universal property something
which was sporadically true of the ad-hockery that came before
toplevel callbacks: that if there's a _very long_ queue of things to
be done through the callback mechanism, the doing of them will be
interleaved with re-checks of other event sources, which might (e.g.)
cause a flag to be set which makes the next callback decide not to do
anything after all.
[originally from svn r10040]
Again, I've removed the special-purpose ad-hockery from the assorted
front end message loops that dealt with deferred handling of socket
errors, and instead uxnet.c and winnet.c arrange that for themselves
by calling the new general top-level callback mechanism.
[originally from svn r10023]
Instead of having a special GTK idle function for dealing with session
closing, I now use the new top-level callback mechanism which is
slightly simpler for calling a one-off function.
Also in this commit, I've arranged for connection_fatal to queue a
call to the same session close function after displaying the message
box, with the effect that now all the same processing takes place no
matter whether the session closes cleanly or uncleanly - e.g. the SSH
specials submenu is cleaned out, as it should be.
[originally from svn r10022]
I've removed the ad-hoc front-end bodgery in the Windows and GTK ports
to arrange for term_paste to be called at the right moments, and
instead, terminal.c itself deals with knowing when to send the next
chunk of pasted data using a combination of timers and the new
top-level callback mechanism.
As a happy side effect, it's now all in one place so I can actually
understand what it's doing! It turns out that what all that confusing
code was up to is: send a line of pasted data, and delay sending the
next line until either a CR or LF is returned from the server
(typically indicating that the pasted text has been received and
echoed) or 450ms elapse, whichever comes first.
[originally from svn r10020]
This is a little like schedule_timer, in that the callback you provide
will be run from the top-level message loop of whatever application
you're in; but unlike the timer mechanism, it will happen
_immediately_.
The aim is to provide a general way to avoid re-entrance of code, in
cases where just _doing_ the thing you want done is liable to trigger
a confusing recursive call to the function in which you came to the
decision to do it; instead, you just request a top-level callback at
the message loop's earliest convenience, and do it then.
[originally from svn r10019]
immediately after conf_deserialise in the Duplicate Session receiver,
whereas I should have put it after the subsequent loop that extracts
the pty argv if any.
[originally from svn r9943]
[r9919 == ea301bdd9b]
segfaults if a PuTTY or pterm did not close on exit and then you
either typed something via input_method_commit_event or changed the
line editing or echo settings.
[originally from svn r9908]
and returns its error message as a string, instead of actually
printing it on standard error and exiting. Now we can preserve the
previous error behaviour when we get a nonexistent font name at
startup time, but no longer rudely terminate in mid-session if the
user configures a bogus font name in Change Settings.
[originally from svn r9745]
Well, at least across all command-line tools on both Windows and Unix,
and the GTK apps on Unix too. The Windows GUI apps fundamentally can't
write to standard output and it doesn't seem sensible to use message
boxes for these purposes :-)
[originally from svn r9673]
First, make absolute times unsigned. This means that it's safe to
depend on their overflow behaviour (which is undefined for signed
integers). This requires a little extra care in handling comparisons,
but I think I've correctly adjusted them all.
Second, functions registered with schedule_timer() are guaranteed to be
called with precisely the time that was returned by schedule_timer().
Thus, it's only necessary to check these values for equality rather than
doing risky range checks, so do that.
The timing code still does lots that's undefined, unnecessary, or just
wrong, but this is a good start.
[originally from svn r9667]
zero but does it in such a way that over-clever compilers hopefully
won't helpfully optimise the call away if you do it just before
freeing something or letting it go out of scope. Use this for
(hopefully) every memset whose job is to destroy sensitive data that
might otherwise be left lying around in the process's memory.
[originally from svn r9586]
piece of keyboard handling: if Num Lock is on, numeric keypad keys are
eaten by the IM, so we must avoid passing them to the IM in the first
place if we're in any non-default numeric keypad mode (application or
Nethack).
This is a grubby way to do it, but the more obvious approach of just
moving the Nethack and app-keypad if statements up to above the IM
call doesn't work because those statements depend on the generic
Alt-prefix handling that happens just _below_ the IM call. So instead
I just repeat the list of keystrokes and modes in an if statement
conditionalising the IM call.
[originally from svn r9573]
[r9567 == 7fc8db15b2]
a GtkIMMulticontext and having that filter most keypresses. I think
I've got this right so that it doesn't break any previous deliberate
keyboard-handling behaviour that's now _after_ the 'if (filter
keypress) return' statement.
[originally from svn r9567]