Now that the SSH backend's user_input bufchain is no longer needed for
handling userpass input, it doesn't have to be awkwardly shared
between all the packet protocol layers any more. So we can turn the
want_user_input and got_user_input methods of PacketProtocolLayer into
methods of ConnectionLayer, and then only the two connection layers
have to bother implementing them, or store a pointer to the bufchain
they read from.
The system for handling seat_get_userpass_input has always been
structured differently between GUI PuTTY and CLI tools like Plink.
In the CLI tools, password input is read directly from the OS
terminal/console device by console_get_userpass_input; this means that
you need to ensure the same terminal input data _hasn't_ already been
consumed by the main event loop and sent on to the backend. This is
achieved by the backend_sendok() method, which tells the event loop
when the backend has finished issuing password prompts, and hence,
when it's safe to start passing standard input to backend_send().
But in the GUI tools, input generated by the terminal window has
always been sent straight to backend_send(), regardless of whether
backend_sendok() says it wants it. So the terminal-based
implementation of username and password prompts has to work by
consuming input data that had _already_ been passed to the backend -
hence, any backend that needs to do that must keep its input on a
bufchain, and pass that bufchain to seat_get_userpass_input.
It's awkward that these two totally different systems coexist in the
first place. And now that SSH proxying needs to present interactive
prompts of its own, it's clear which one should win: the CLI style is
the Right Thing. So this change reworks the GUI side of the mechanism
to be more similar: terminal data now goes into a queue in the Ldisc,
and is not sent on to the backend until the backend says it's ready
for it via backend_sendok(). So terminal-based userpass prompts can
now consume data directly from that queue during the connection setup
stage.
As a result, the 'bufchain *' parameter has vanished from all the
userpass_input functions (both the official implementations of the
Seat trait method, and term_get_userpass_input() to which some of
those implementations delegate). The only function that actually used
that bufchain, namely term_get_userpass_input(), now instead reads
from the ldisc's input queue via a couple of new Ldisc functions.
(Not _trivial_ functions, since input buffered by Ldisc can be a
mixture of raw bytes and session specials like SS_EOL! The input queue
inside Ldisc is a bufchain containing a fiddly binary encoding that
can represent an arbitrary interleaving of those things.)
This greatly simplifies the calls to seat_get_userpass_input in
backends, which now don't have to mess about with passing their own
user_input bufchain around, or toggling their want_user_input flag
back and forth to request data to put on to that bufchain.
But the flip side is that now there has to be some _other_ method for
notifying the terminal when there's more input to be consumed during
an interactive prompt, and for notifying the backend when prompt input
has finished so that it can proceed to the next stage of the protocol.
This is done by a pair of extra callbacks: when more data is put on to
Ldisc's input queue, it triggers a call to term_get_userpass_input,
and when term_get_userpass_input finishes, it calls a callback
function provided in the prompts_t.
Therefore, any use of a prompts_t which *might* be asynchronous must
fill in the latter callback when setting up the prompts_t. In SSH, the
callback is centralised into a common PPL helper function, which
reinvokes the same PPL's process_queue coroutine; in rlogin we have to
set it up ourselves.
I'm sorry for this large and sprawling patch: I tried fairly hard to
break it up into individually comprehensible sub-patches, but I just
couldn't tease out any part of it that would stand sensibly alone.
I did a horrible thing with a list macro which builds up a 256-bit
bitmap of known SSH-2 message types at compile time, by means of
evaluating a conditional expression per known message type and per
bitmap word which boils down to (in pseudocode)
(shift count in range ? 1 << shift count : 0)
I think this is perfectly valid C. If the shift count is out of range,
then the use of the << operator in the true branch of the ?: would
have undefined behaviour if it were executed - but that's OK, because
in that situation, the safe false branch is executed instead.
But when the whole thing is a compile-time evaluated constant
expression, the compiler can prove statically that the << in the true
branch is an out-of-range shift, and at least some compilers will warn
about it verbosely. The same compiler *could* also prove statically
that that branch isn't taken, and use that to suppress the warning -
but at least clang does not.
The solution is the same one I used in shift_right_by_one_word and
shift_left_by_one_word in mpint.c: inside the true branch, nest a
second conditional expression which coerces the shift count to always
be in range, by setting it to 0 if it's not. This doesn't affect the
output, because the only cases in which the output of the true branch
is altered by this transformation are the ones in which the true
branch wasn't taken anyway.
So this change should make no difference to the output of this macro
construction, but it suppresses about 350 pointless warnings from
clang.
This clears up another large pile of clutter at the top level, and in
the process, allows me to rename source files to things that don't all
have that annoying 'ssh' prefix at the top.