Now that the main source file of Plink in each platform directory has
the same name, we can put centralise the main definition of the
program in the main CMakeLists.txt, and in the platform directory,
just add the few extra modules needed to clear up platform-specific
details.
The same goes for psocks. And PSCP and PSFTP could have been moved to
the top level already - I just hadn't done it in the initial setup.
This applies to all of AES, SHA-1, SHA-256 and SHA-512. All those
source files previously contained multiple implementations of the
algorithm, enabled or disabled by ifdefs detecting whether they would
work on a given compiler. And in order to get advanced machine
instructions like AES-NI or NEON crypto into the output file when the
compile flags hadn't enabled them, we had to do nasty stuff with
compiler-specific pragmas or attributes.
Now we can do the detection at cmake time, and enable advanced
instructions in the more sensible way, by compile-time flags. So I've
broken up each of these modules into lots of sub-pieces: a file called
(e.g.) 'foo-common.c' containing common definitions across all
implementations (such as round constants), one called 'foo-select.c'
containing the top-level vtable(s), and a separate file for each
implementation exporting just the vtable(s) for that implementation.
One advantage of this is that it depends a lot less on compiler-
specific bodgery. My particular least favourite part of the previous
setup was the part where I had to _manually_ define some Arm ACLE
feature macros before including <arm_neon.h>, so that it would define
the intrinsics I wanted. Now I'm enabling interesting architecture
features in the normal way, on the compiler command line, there's no
need for that kind of trick: the right feature macros are already
defined and <arm_neon.h> does the right thing.
Another change in this reorganisation is that I've stopped assuming
there's just one hardware implementation per platform. Previously, the
accelerated vtables were called things like sha256_hw, and varied
between FOO-NI and NEON depending on platform; and the selection code
would simply ask 'is hw available? if so, use hw, else sw'. Now, each
HW acceleration strategy names its vtable its own way, and the
selection vtable has a whole list of possibilities to iterate over
looking for a supported one. So if someone feels like writing a second
accelerated implementation of something for a given platform - for
example, I've heard you can use plain NEON to speed up AES somewhat
even without the crypto extension - then it will now have somewhere to
drop in alongside the existing ones.
add_platform_sources_to_library() is now called
add_sources_from_current_dir(), so that it will make sense when I use
it in subdirectories that aren't for a particular platform.
On Windows, configure-style checks are a bit slow, so it's worth
avoiding unnecessary ones if possible. I was testing for three
different header file names that are alternatives to each other, so it
makes sense to stop as soon as we find a usable one.
This new implementation uses the same optimisation-barrier technique
that I used in various places in testsc: have a no-op function, and a
volatile function pointer pointing at it, and then call through the
function pointer, so that nothing actually happens (apart from the
physical call and return) but the compiler has to assume that
_anything_ might have happened.
Doing this just after a memset enforces that the compiler can't have
thrown away the memset, because the called function might (for
example) check that all the memory really is zero and abort if not.
I've been turning this over in my mind ever since coming up with the
technique for testsc. I think it's far more robust than the previous
smemclr technique: so much so that I'm switching to using it
_everywhere_, and no longer using platform alternatives like Windows's
SecureZeroMemory().
A couple of actual checks were missing (elf_aux_info, sysctlbyname).
Several more were accidentally left out of cmake.h.in, meaning they
wouldn't be propagated from cmake's variable space into the actual
compilation. And a handful of checks in the C source were still using
the autotools-style 'if defined' in place of the cmake-style "it's
always 0 or 1" plain #if.
It's had its day. It was there to support pre-WinNT platforms, on
which the security APIs don't exist - but more specifically, it was
there to support _build tools_ that only knew about pre-WinNT versions
of Windows, so that you couldn't even compile a program that would
_try_ to refer to the interprocess security APIs.
But we don't support those build systems any more in any case: more
recent changes like the assumption of (most of) C99 will have stopped
this code from building with compilers that old. So there's no reason
to clutter the code with backwards compatibility features that won't
help.
I left NO_SECURITY in place during the CMake migration, so that _just_
in case it needs resurrecting, some version of it will be available in
the git history. But I don't expect it to be needed, and I'm deleting
the whole thing now.
The _runtime_ check for interprocess security libraries is still in
place. So PuTTY tools built with a modern toolchain can still at least
try to run on the Win95/98/ME series, and they should detect that
those system DLLs don't exist and proceed sensibly in their absence.
That may also be a thing to throw out sooner or later, but I haven't
thrown it out as part of this commit.
This brings various concrete advantages over the previous system:
- consistent support for out-of-tree builds on all platforms
- more thorough support for Visual Studio IDE project files
- support for Ninja-based builds, which is particularly useful on
Windows where the alternative nmake has no parallel option
- a really simple set of build instructions that work the same way on
all the major platforms (look how much shorter README is!)
- better decoupling of the project configuration from the toolchain
configuration, so that my Windows cross-building doesn't need
(much) special treatment in CMakeLists.txt
- configure-time tests on Windows as well as Linux, so that a lot of
ad-hoc #ifdefs second-guessing a particular feature's presence from
the compiler version can now be replaced by tests of the feature
itself
Also some longer-term software-engineering advantages:
- other people have actually heard of CMake, so they'll be able to
produce patches to the new build setup more easily
- unlike the old mkfiles.pl, CMake is not my personal problem to
maintain
- most importantly, mkfiles.pl was just a horrible pile of
unmaintainable cruft, which even I found it painful to make changes
to or to use, and desperately needed throwing in the bin. I've
already thrown away all the variants of it I had in other projects
of mine, and was only delaying this one so we could make the 0.75
release branch first.
This change comes with a noticeable build-level restructuring. The
previous Recipe worked by compiling every object file exactly once,
and then making each executable by linking a precisely specified
subset of the same object files. But in CMake, that's not the natural
way to work - if you write the obvious command that puts the same
source file into two executable targets, CMake generates a makefile
that compiles it once per target. That can be an advantage, because it
gives you the freedom to compile it differently in each case (e.g.
with a #define telling it which program it's part of). But in a
project that has many executable targets and had carefully contrived
to _never_ need to build any module more than once, all it does is
bloat the build time pointlessly!
To avoid slowing down the build by a large factor, I've put most of
the modules of the code base into a collection of static libraries
organised vaguely thematically (SSH, other backends, crypto, network,
...). That means all those modules can still be compiled just once
each, because once each library is built it's reused unchanged for all
the executable targets.
One upside of this library-based structure is that now I don't have to
manually specify exactly which objects go into which programs any more
- it's enough to specify which libraries are needed, and the linker
will figure out the fine detail automatically. So there's less
maintenance to do in CMakeLists.txt when the source code changes.
But that reorganisation also adds fragility, because of the trad Unix
linker semantics of walking along the library list once each, so that
cyclic references between your libraries will provoke link errors. The
current setup builds successfully, but I suspect it only just manages
it.
(In particular, I've found that MinGW is the most finicky on this
score of the Windows compilers I've tried building with. So I've
included a MinGW test build in the new-look Buildscr, because
otherwise I think there'd be a significant risk of introducing
MinGW-only build failures due to library search order, which wasn't a
risk in the previous library-free build organisation.)
In the longer term I hope to be able to reduce the risk of that, via
gradual reorganisation (in particular, breaking up too-monolithic
modules, to reduce the risk of knock-on references when you included a
module for function A and it also contains function B with an
unsatisfied dependency you didn't really need). Ideally I want to
reach a state in which the libraries all have sensibly described
purposes, a clearly documented (partial) order in which they're
permitted to depend on each other, and a specification of what stubs
you have to put where if you're leaving one of them out (e.g.
nocrypto) and what callbacks you have to define in your non-library
objects to satisfy dependencies from things low in the stack (e.g.
out_of_memory()).
One thing that's gone completely missing in this migration,
unfortunately, is the unfinished MacOS port linked against Quartz GTK.
That's because it turned out that I can't currently build it myself,
on my own Mac: my previous installation of GTK had bit-rotted as a
side effect of an Xcode upgrade, and I haven't yet been able to
persuade jhbuild to make me a new one. So I can't even build the MacOS
port with the _old_ makefiles, and hence, I have no way of checking
that the new ones also work. I hope to bring that port back to life at
some point, but I don't want it to block the rest of this change.