That's one fewer anonymous 'void *' which might be accidentally
confused with some other pointer type if I misremember the order of
function arguments.
While I'm here, I've made its pointer-nature explicit - that is,
'Ldisc' is now a typedef for the structure type itself rather than a
pointer to it. A stylistic change only, but it feels more natural to
me these days for a thing you're going to eventually pass to a 'free'
function.
A few variables that gcc couldn't tell I'd initialised on all the
important paths, a variable that didn't really need to be there
anyway, and yet another use of GET_WINDOWS_FUNCTION_NO_TYPECHECK.
Rather than squelching the warning, I'm actually paying attention to
the deprecation, in that I'm allowing for the possibility that the
function might stop existing or stop returning success.
Like the corresponding rewrite of conf serialisation, this affects not
just conf_deserialise itself but also the per-platform filename and
fontspec deserialisers.
This is a cleanup I started to notice a need for during the BinarySink
work. It removes a lot of faffing about casting things to char * or
unsigned char * so that some API will accept them, even though lots of
such APIs really take a plain 'block of raw binary data' argument and
don't care what C thinks the signedness of that data might be - they
may well reinterpret it back and forth internally.
So I've tried to arrange for all the function call APIs that ought to
have a void * (or const void *) to have one, and those that need to do
pointer arithmetic on the parameter internally can cast it back at the
top of the function. That saves endless ad-hoc casts at the call
sites.
There was a time, back when the USA was more vigorously against
cryptography, when we toyed with the idea of having a version of PuTTY
that outsourced its cryptographic primitives to the Microsoft optional
encryption API, which would effectively create a tool that acted like
PuTTY proper on a system with that API installed, but automatically
degraded to being PuTTYtel on a system without, and meanwhile (so went
the theory) it could be moved freely across national borders with
crypto restrictions, because it didn't _contain_ any of the actual
crypto.
I don't recall that we ever got it working at all. And certainly the
vestiges of it here and there in the current code are completely
unworkable - they refer to an 'mscrypto.c' that doesn't even exist,
and the ifdefs in the definitions of structures like RSAKey and
MD5Context are not matched by any corresponding ifdefs in the code. So
I ought to have got round to removing it long ago, in order to avoid
misleading anyone.
Now instead of iterating through conf twice in separate functions,
once to count up the size of the serialised data and once to write it
out, I just go through once and dump it all in a strbuf.
(Of course, I could still do a two-pass count-then-allocate approach
easily enough in this system; nothing would stop me writing a
BinarySink implementation that didn't actually store any data and just
counted its size, and then I could choose at each call site whether I
preferred to do it that way.)
NFC for the moment, because the bufchain is always specially
constructed to hold exactly the same data that would have been passed
in to the function as a (pointer,length) pair. But this API change
allows get_userpass_input to express the idea that it consumed some
but not all of the data in the bufchain, which means that later on
I'll be able to point the same function at a longer-lived bufchain
containing the full stream of keyboard input and avoid dropping
keystrokes that arrive too quickly after the end of an interactive
password prompt.
On all platforms, you can now configure which clipboard the mouse
pastes from, which clipboard Ctrl-Ins and Shift-Ins access, and which
Ctrl-Shift-C and Ctrl-Shift-V access. In each case, the options are:
- nothing at all
- a clipboard which is implicitly written by the act of mouse
selection (the PRIMARY selection on X, CLIP_LOCAL everywhere else)
- the standard clipboard written by explicit copy/paste UI actions
(CLIPBOARD on X, the unique system clipboard elsewhere).
Also, you can control whether selecting text with the mouse _also_
writes to the explicitly accessed clipboard.
The wording of the various messages changes between platforms, but the
basic UI shape is the same everywhere.
This lays some groundwork for making PuTTY's cut and paste handling
more flexible in the area of which clipboard(s) it reads and writes,
if more than one is available on the system.
I've introduced a system of list macros which define an enumeration of
integer clipboard ids, some defined centrally in putty.h (at present
just a CLIP_NULL which never has any text in it, because that seems
like the sort of thing that will come in useful for configuring a
given copy or paste UI action to be ignored) and some defined per
platform. All the front end functions that copy and paste take a
clipboard id, and the Terminal structure is now configured at startup
to tell it which clipboard id it should paste from on a mouse click,
and which it should copy from on a selection.
However, I haven't actually added _real_ support for multiple X11
clipboards, in that the Unix front end supports a single CLIP_SYSTEM
regardless of whether it's in OS X or GTK mode. So this is currently a
NFC refactoring which does nothing but prepare the way for real
changes to come.
Previously, both the Unix and Windows front ends would respond to a
paste action by retrieving data from the system clipboard, converting
it appropriately, _storing_ it in a persistent dynamic data block
inside the front end, and then calling term_do_paste(term), which in
turn would call back to the front end via get_clip() to retrieve the
current contents of that stored data block.
But, as far as I can tell, this was a completely pointless mechanism,
because after a data block was written into this storage area, it
would be immediately used for exactly one paste, and then never
accessed again until the next paste action caused it to be freed and
replaced with a new chunk of pasted data.
So why on earth was it stored persistently at all, and why that
callback mechanism from frontend to terminal back to frontend to
retrieve it for the actual paste action? I have no idea. This change
removes the entire system and replaces it with the completely obvious
alternative: the character-set-converted version of paste data is
allocated in a _local_ variable in the frontend paste functions,
passed directly to term_do_paste which now takes (buffer,length)
parameters, and freed immediately afterwards. get_clip() is gone.
This is another piece of long-overdue refactoring similar to the
recent commit e3796cb77. But where that one dealt with normalisation
of stuff already stored _in_ a Conf by whatever means (including, in
particular, handling a user typing 'username@host.name' into the
Hostname box of the GUI session dialog box), this one deals with
handling argv entries and putting them into the Conf.
This isn't exactly a pure no-functional-change-at-all refactoring. On
the other hand, it isn't a full-on cleanup that completely
rationalises all the user-visible behaviour as well as the code
structure. It's somewhere in between: I've preserved all the behaviour
quirks that I could imagine a reason for having intended, but taken
the opportunity to _not_ faithfully replicate anything I thought was
clearly just a bug.
So, for example, the following inconsistency is carefully preserved:
the command 'plink -load session nextword' treats 'nextword' as a host
name if the loaded session hasn't provided a hostname already, and
otherwise treats 'nextword' as the remote command to execute on the
already-specified remote host, but the same combination of arguments
to GUI PuTTY will _always_ treat 'nextword' as a hostname, overriding
a hostname (if any) in the saved session. That makes some sense to me
because of the different shapes of the overall command lines.
On the other hand, there are two behaviour changes I know of as a
result of this commit: a third argument to GUI PuTTY (after a hostname
and port) now provokes an error message instead of being silently
ignored, and in Plink, if you combine a -P option (specifying a port
number) with the historical comma-separated protocol selection prefix
on the hostname argument (which I'd completely forgotten even existed
until this piece of work), then the -P will now override the selected
protocol's default port number, whereas previously the default port
would win. For example, 'plink -P 12345 telnet,hostname' will now
connect via Telnet to port 12345 instead of to port 23.
There may be scope for removing or rethinking some of the command-
line syntax quirks in the wake of this change. If we do decide to do
anything like that, then hopefully having it all in one place will
make it easier to remove or change things consistently across the
tools.
A more or less identical piece of code to sanitise the CONF_host
string prior to session launch existed in Windows PuTTY and both
Windows and Unix Plink. It's long past time it was centralised.
While I'm here, I've added a couple of extra comments in the
centralised version, including one that - unfortunately - tries _but
fails_ to explain why a string of the form "host.name:1234" doesn't
get the suffix moved into CONF_port the way "user@host" moves the
prefix into CONF_username. Commit c1c1bc471 is the one I'm referring
to in the comment, and unfortunately it has an unexplained one-liner
log message from before I got into the habit of being usefully
verbose.
It's an incoherent concept! There should not be any such thing as an
error box that terminates the entire program but is not modal. If it's
bad enough to terminate the whole program, i.e. _all_ currently live
connections, then there's no point in permitting progress to continue
in windows other than the affected one, because all windows are
affected anyway.
So all previous uses of fatalbox() have become modalfatalbox(), except
those which looked to me as if they shouldn't have been fatal in the
first place, e.g. lingering pieces of error handling in winnet.c which
ought to have had the severity of 'give up on this particular Socket
and close it' rather than 'give up on the ENTIRE UNIVERSE'.
ATTR_REVERSE was being handled in the front ends, and was causing the
foreground and background colours to be switched. (I'm not completely
sure why I made that design decision; it might be purely historical,
but then again, it might also be because reverse video is one effect
on the fg and bg colours that must still be performed even in unusual
frontend-specific situations like display-driven monochrome mode.)
This affected both explicit reverse video enabled using SGR 7, and
also the transient reverse video arising from mouse selection. Thanks
to Markus Gans for reporting the bug in the latter, which when I
investigated it turned out to affect the former as well.
I've done this on a 'where possible' basis: in Windows paletted mode
(in case anyone is still using an old enough graphics card to need
that!) I simply haven't bothered, and will completely ignore the dim
flag.
Markus Gans points out that some applications which (not at all
unreasonably) don't trust $TERM to tell them the full capabilities of
their terminal will use the sequence "OSC 4 ; nn ; ? BEL" to ask for
the colour-palette value in position nn, and they may not particularly
care _what_ the results are but they will use them to decide whether
the right number of colour palette entries even exist.
Otherwise, moving the cursor (at least in active, filled-cell mode) on
to a true-coloured character cell causes it to vanish completely
because the cell's colours override the thing that differentiates the
cursor.
I'm not sure if any X11 monochrome visuals or Windows paletted display
modes are still around, but just in case they are, we shouldn't
attempt true colour on either kind of display.
This is a heavily rewritten version of a patch originally by Lorenz
Diener; it was tidied up somewhat by Christian Brabandt, and then
tidied up more by me. The basic idea is to add to the termchar
structure a pair of small structs encoding 24-bit RGB values, each
with a flag indicating whether it's turned on; if it is, it overrides
any other specification of fg or bg colour for that character cell.
I've added a test line to colours.txt containing a few example colours
from /usr/share/X11/rgb.txt. In fact it makes quite a good demo to run
the whole of rgb.txt through this treatment, with a command such as
perl -pe 's!^\s*(\d+)\s+(\d+)\s+(\d+).*$!\e[38;2;$1;$2;$3m$&\e[m!' rgb.txt
Ilya Shipitsin sent me a list of errors reported by a tool 'cppcheck',
which I hadn't seen before, together with some fixes for things
already taken off that list. This change picks out all the things from
the remaining list that I could quickly identify as actual errors,
which it turns out are all format-string goofs along the lines of
using a %d with an unsigned int, or a %u with a signed int, or (in the
cases in charset/utf8.c) an actual _size_ mismatch which could in
principle have caused trouble on a big-endian target.
This too is not in the list of known DLLs on Windows 10. I don't know
of any actual viable hijacking attack based on it, which according to
my reading of MSDN (specifically, a rather vague hint in
https://msdn.microsoft.com/library/ff919712) _may_ be because we
mention the common controls assembly in our application manifest; but
better safe than sorry.
Now the entire list of remaining DLLs that PuTTY links against at load
time is a subset of the Win10 known DLLs list, so that _should_ mean
that everything we load before we've deployed our own defence
(SetDefaultDllDirectories) is defended against for us by Windows
itself.
It's not on the default list of important system 'known DLLs' stored
at HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs (see
https://isc.sans.edu/forums/diary/DLL+hijacking+vulnerabilities/9445/ )
which apparently makes it exempt from Windows's standard DLL hijacking
defence, i.e. if an executable links against it in the normal way then
that executable will be vulnerable to DLL hijacking from a file called
winmm.dll in the same directory as it.
The solution is to load it dynamically _after_ we've locked down our
DLL search path, which fortunately PuTTY's code base is well used to
doing already for other DLLs.
I think all of the cases in this switch must have originally said
(shift_state ? 'this' : 'that'), and in all but the VK_NUMPAD5 case
the two options were different, and I left VK_NUMPAD5 containing a
redundant ?: just to make it line up in a nice table with the others.
But now the others all have more options than that because I had to
support Ctrl as well as Shift modifiers, so there's no reason to have
that silly ?: lingering around (and it annoys Coverity).
Avoided referring to some functions and header files that aren't there
in the winelib world (_vsnprintf, _stricmp, SecureZeroMemory,
multimon.h), and worked around a really amazingly annoying issue in
which Winelib objects to you using the type 'fd_set' unless you
included winsock2.h before stdlib.h.
Partly to reassure the user that they got what they asked for, and
partly so that's a clue for us in the logs when we get bug reports.
This involved repurposing platform_psftp_post_option_setup() (no longer
used since e22120fe) as platform_psftp_pre_conn_setup(), and moving it
to after logging is set up.
These are benign, I think. clang warns about casting non-pointer-sized
integers to pointers, but the Windows API actually does sometimes
involve values that are either pointers or _small_ integers, so in the
two cases involved I just cast through ULONG_PTR to silence the
warning. And clang insists that the integer whose address I give to
sk_getxdmdata is still uninitialised afterwards, which is just a lie.
This change applies to every situation when GUI PuTTY knowingly spawns
another GUI PuTTY, to wit, the System menu options 'New Session',
'Duplicate Session' and the 'Saved Sessions' submenu.
(Literally speaking, what we actually pass through to the sub-PuTTY's
command line is not the "-restrict-acl" option itself, but a special
prefix "&R", which has the same meaning but which lives in the special
pre-argv-splitting command-line namespace like the magic options used
for Duplicate Session and the old '@sessionname' prefix which the
Saved Sessions submenu still uses. Otherwise, by the time we split up
argv and recognised -restrict-acl, it would be too late to parse those
other options.)
One case in which PuTTY spawns a subprocess and this change _doesn't_
apply is when the subprocess is a proxy command which happens to be a
Plink. Recognising Plink commands in that situation would be fragile
and unreliable, and in any case if the user wants a proxy Plink to be
ACL-restricted, they are in control of its exact command line so they
can add -restrict-acl themselves.
These ones are stylistic rather than potential bugs: mostly signedness
of char pointers in cases where they clearly aren't going to cause the
wrong thing to actually happen, and one thing in winsecur.c where
clang would have preferred an extra pair of braces around some
initialisers but it's legal with or without. But since some of clang's
warnings turn out to be quite useful, it seems worth silencing these
harmless ones so as to be able to see the rest.
As documented in bug 'win-process-acl-finesse', we've had enough
assorted complaints about it breaking various non-malicious pieces of
Windows process interaction (ranging from git->plink integration to
screen readers for the vision-impaired) that I think it's more
sensible to set the process back to its default level of protection.
This precaution was never a fully effective protection anyway, due to
the race condition at process startup; the only properly effective
defence would have been to prevent malware running under the same user
ID as PuTTY in the first place, so in that sense, nothing has changed.
But people who want the arguable defence-in-depth advantage of the ACL
restriction can now turn it on with the '-restrict-acl' command-line
option, and it's up to them whether they can live with the assorted
inconveniences that come with it.
In the course of this change, I've centralised a bit more of the
restriction code into winsecur.c, to avoid repeating the error
handling in multiple places.
The algorithm Windows uses to generate AppUserModelIDs "hangs on" to
removable media (CDs/DVDs) if PuTTY is launched with a CD/DVD in a drive.
Set the AppUserModelID explicitly to avoid using this algorithm.
At least on systems providing SetDefaultDllDirectories, this should
stop PuTTY from being willing to load DLLs from its containing
directory - which makes no difference when it's been properly
installed (in which case the application dir contains no DLLs anyway),
but does if it's being run from somewhere uncontrolled like a browser
downloads directory.
Preliminary testing suggests that this shouldn't break any existing
deliberate use of DLLs, including GSSAPI providers.
Previously only Unix front ends bothered to include it, on the basis
that only the pty backend needed it (to set IUTF8 in the pty). We're
about to need it everywhere else too.
These integer types are correct for the id/handle parameter to
AppendMenu / InsertMenu / DeleteMenu, and also for the return type of
dialog box procedures.
We also have the special-purpose -DUNPROTECT to disable just the ACL
changes, but if you want to compile without any Windows security API
support at all (e.g. experimentally building against winelib) then
it's easier not to have to specify both defines separately.
logevent() doesn't do printf-style formatting (though the logeventf
wrapper in ssh.c does), so if you need to format a message, it has to
be done separately with dupprintf.
By default Windows processes have wide open ACLs which allow interference
by other processes running as the same user. Adjust our ACL to make this
a bit harder.
Because it's useful to protect PuTTYtel as well, carve winsecur.c into
advapi functions and wincapi.c for crypt32 functions.
This is generated in response to the SendInput() Windows API call, if
that in turn is passed an KEYBDINPUT structure with KEYEVENTF_UNICODE
set. That method of input generation is used by programs such as
'WinCompose' to send an arbitrary Unicode character as if it had been
typed at the keyboard, even if the keyboard doesn't actually provide a
key for it.
Like VK_PROCESSKEY, this key code is an exception to our usual policy
of manually translating keystrokes: we handle it by calling
TranslateMessage, to get back the Unicode character it contains as a
WM_CHAR message.
(If that Unicode character in turn is outside the BMP, it may come
back as a pair of WM_CHARs in succession containing UTF-16 surrogates;
if so, that's OK, because the new Unicode WM_CHAR handler can cope.)
This causes WM_CHAR messages sent to us to have a wParam containing a
16-bit value encoded in UTF-16, rather than an 8-bit value encoded in
the system code page.
As far as I can tell, there aren't many other knock-on effects - e.g.
you can still interact with the window using ordinary char-based API
functions such as SetWindowText, and the Windows API will do the
necessary conversions behind the scenes. However, even so, I'm half
expecting some sort of unforeseen bug to show up as a result of this.
Having found a lot of unfixed constness issues in recent development,
I thought perhaps it was time to get proactive, so I compiled the
whole codebase with -Wwrite-strings. That turned up a huge load of
const problems, which I've fixed in this commit: the Unix build now
goes cleanly through with -Wwrite-strings, and the Windows build is as
close as I could get it (there are some lingering issues due to
occasional Windows API functions like AcquireCredentialsHandle not
having the right constness).
Notable fallout beyond the purely mechanical changing of types:
- the stuff saved by cmdline_save_param() is now explicitly
dupstr()ed, and freed in cmdline_run_saved.
- I couldn't make both string arguments to cmdline_process_param()
const, because it intentionally writes to one of them in the case
where it's the argument to -pw (in the vain hope of being at least
slightly friendly to 'ps'), so elsewhere I had to temporarily
dupstr() something for the sake of passing it to that function
- I had to invent a silly parallel version of const_cmp() so I could
pass const string literals in to lookup functions.
- stripslashes() in pscp.c and psftp.c has the annoying strchr nature