I've tried to separate out as many individually coherent changes from
this work as I could into their own commits, but here's where I run
out and have to commit the rest of this major refactoring as a
big-bang change.
Most of ssh.c is now no longer in ssh.c: all five of the main
coroutines that handle layers of the SSH-1 and SSH-2 protocols now
each have their own source file to live in, and a lot of the
supporting functions have moved into the appropriate one of those too.
The new abstraction is a vtable called 'PacketProtocolLayer', which
has an input and output packet queue. Each layer's main coroutine is
invoked from the method ssh_ppl_process_queue(), which is usually
(though not exclusively) triggered automatically when things are
pushed on the input queue. In SSH-2, the base layer is the transport
protocol, and it contains a pair of subsidiary queues by which it
passes some of its packets to the higher SSH-2 layers - first userauth
and then connection, which are peers at the same level, with the
former abdicating in favour of the latter at the appropriate moment.
SSH-1 is simpler: the whole login phase of the protocol (crypto setup
and authentication) is all in one module, and since SSH-1 has no
repeat key exchange, that setup layer abdicates in favour of the
connection phase when it's done.
ssh.c itself is now about a tenth of its old size (which all by itself
is cause for celebration!). Its main job is to set up all the layers,
hook them up to each other and to the BPP, and to funnel data back and
forth between that collection of modules and external things such as
the network and the terminal. Once it's set up a collection of packet
protocol layers, it communicates with them partly by calling methods
of the base layer (and if that's ssh2transport then it will delegate
some functionality to the corresponding methods of its higher layer),
and partly by talking directly to the connection layer no matter where
it is in the stack by means of the separate ConnectionLayer vtable
which I introduced in commit 8001dd4cb, and to which I've now added
quite a few extra methods replacing services that used to be internal
function calls within ssh.c.
(One effect of this is that the SSH-1 and SSH-2 channel storage is now
no longer shared - there are distinct struct types ssh1_channel and
ssh2_channel. That means a bit more code duplication, but on the plus
side, a lot fewer confusing conditionals in the middle of half-shared
functions, and less risk of a piece of SSH-1 escaping into SSH-2 or
vice versa, which I remember has happened at least once in the past.)
The bulk of this commit introduces the five new source files, their
common header sshppl.h and some shared supporting routines in
sshcommon.c, and rewrites nearly all of ssh.c itself. But it also
includes a couple of other changes that I couldn't separate easily
enough:
Firstly, there's a new handling for socket EOF, in which ssh.c sets an
'input_eof' flag in the BPP, and that responds by checking a flag that
tells it whether to report the EOF as an error or not. (This is the
main reason for those new BPP_READ / BPP_WAITFOR macros - they can
check the EOF flag every time the coroutine is resumed.)
Secondly, the error reporting itself is changed around again. I'd
expected to put some data fields in the public PacketProtocolLayer
structure that it could set to report errors in the same way as the
BPPs have been doing, but in the end, I decided propagating all those
data fields around was a pain and that even the BPPs shouldn't have
been doing it that way. So I've reverted to a system where everything
calls back to functions in ssh.c itself to report any connection-
ending condition. But there's a new family of those functions,
categorising the possible such conditions by semantics, and each one
has a different set of detailed effects (e.g. how rudely to close the
network connection, what exit status should be passed back to the
whole application, whether to send a disconnect message and/or display
a GUI error box).
I don't expect this to be immediately perfect: of course, the code has
been through a big upheaval, new bugs are expected, and I haven't been
able to do a full job of testing (e.g. I haven't tested every auth or
kex method). But I've checked that it _basically_ works - both SSH
protocols, all the different kinds of forwarding channel, more than
one auth method, Windows and Linux, connection sharing - and I think
it's now at the point where the easiest way to find further bugs is to
let it out into the wild and see what users can spot.
Having redesigned it a few days ago in commit 562cdd4df, I'm changing
it again, this time to fix a potential race condition on the _output_
side: the last change was intended to cope with a server sending an
asynchronous message like IGNORE immediately after enabling
compression, and this one fixes the case in which _we_ happen to
decide to send an IGNORE while a compression request is still pending.
I couldn't fix this until after the BPP was reorganised to have an
explicit output queue of packets, but now it does, I can simply defer
processing that queue on to the output raw-data bufchain if we're
waiting for a compression request to be answered. Once it is answered,
the BPP can release any pending packets.
This is a convenient place for it because it abstracts away the
difference in disconnect packet formats between SSH-1 and -2, so when
I start restructuring, I'll be able to call it even from places that
don't know which version of SSH they're running.
Now, instead of writing each packet straight on to the raw output
bufchain by calling the BPP's format_packet function, the higher
protocol layers will put the packets on to a queue, which will
automatically trigger a callback (using the new mechanism for
embedding a callback in any packet queue) to make the BPP format its
queue on to the raw-output bufchain. That in turn triggers a second
callback which moves the data to the socket.
This means in particular that the CBC ignore-message workaround can be
moved into the new BPP routine to process the output queue, which is a
good place for it because then it can easily arrange to only put an
ignore message at the start of any sequence of packets that are being
formatted as a single output blob.
Now the three 'proper' BPPs each have a BPP_READ() macro that wraps up
the fiddly combination of crMaybeWaitUntilV and bufchainery they use
to read a fixed-length amount of input data. The sshverstring 'BPP'
doesn't read fixed-length data in quite the same way, but it has a
similar BPP_WAITFOR macro.
No functional change. Mostly this is just a cleanup to make the code
more legible, but also, the new macros will be a good place to
centralise anything else that needs doing on every read, such as EOF
checking.
This is a new idea I've had to make memory-management of PktIn even
easier. The idea is that a PktIn is essentially _always_ an element of
some linked-list queue: if it's not one of the queues by which packets
move through ssh.c, then it's a special 'free queue' which holds
packets that are unowned and due to be freed.
pq_pop() on a PktInQueue automatically relinks the packet to the free
queue, and also triggers an idempotent callback which will empty the
queue and really free all the packets on it. Hence, you can pop a
packet off a real queue, parse it, handle it, and then just assume
it'll get tidied up at some point - the only constraint being that you
have to finish with it before returning to the application's main loop.
The exception is that it's OK to pq_push() the packet back on to some
other PktInQueue, because a side effect of that will be to _remove_ it
from the free queue again. (And if _all_ the incoming packets get that
treatment, then when the free-queue handler eventually runs, it may
find it has nothing to do - which is harmless.)
Vtable objects only need to be globally visible throughout the code if
they're used directly in some interchangeable way, e.g. by passing
them to a constructor like cipher_new that's the same for all
implementations of the vtable, or by directly looking up public data
fields in the vtable itself.
But the BPPs are never used like that: each BPP has its own
constructor function with a different type signature, so the BPP types
are not interchangeable in any way _before_ an instance of one has
been constructed. Hence, their vtable objects don't need external
linkage.
I've just noticed that we call ssh1_bpp_start_compression even if the
server responded to our compression request with SSH1_SMSG_FAILURE!
Also, while I'm here, there's a potential race condition if the server
were to send an unrelated message (such as SSH1_MSG_IGNORE)
immediately after the SSH1_SMSG_SUCCESS that indicates compression
being enabled - the BPP would try to decode the compressed IGNORE
message before the SUCCESS got to the higher layer that would tell the
BPP it should have enabled compression. Fixed that by changing the
method by which we tell the BPP what's going on.
This was mildly fiddly because there's a single vtable structure that
implements two distinct interface types, one for compression and one
for decompression - and I have actually confused them before now
(commit d4304f1b7), so I think it's important to make them actually be
separate types!
The interchangeable system of SSH-1 ciphers previously followed the
same pattern as the backends and the public-key algorithms, in that
all the clients would maintain two separate pointers, one to the
vtable and the other to the individual instance / context. Now I've
merged them, just as I did with those other two, so that you only cart
around a single pointer, which has a vtable pointer inside it and a
type distinguishing it from an instance of any of the other
interchangeable sets of algorithms.
Now when we construct a packet containing sensitive data, we just set
a field saying '... and make it take up at least this much space, to
disguise its true size', and nothing in the rest of the system worries
about that flag until ssh2bpp.c acts on it.
Also, I've changed the strategy for doing the padding. Previously, we
were following the real packet with an SSH_MSG_IGNORE to make up the
size. But that was only a partial defence: it works OK against passive
traffic analysis, but an attacker proxying the TCP stream and
dribbling it out one byte at a time could still have found out the
size of the real packet by noting when the dribbled data provoked a
response. Now I put the SSH_MSG_IGNORE _first_, which should defeat
that attack.
But that in turn doesn't work when we're doing compression, because we
can't predict the compressed sizes accurately enough to make that
strategy sensible. Fortunately, compression provides an alternative
strategy anyway: if we've got zlib turned on when we send one of these
sensitive packets, then we can pad out the compressed zlib data as
much as we like by adding empty RFC1951 blocks (effectively chaining
ZLIB_PARTIAL_FLUSHes). So both strategies should now be dribble-proof.
I think ever since commit 679fa90df last month, PuTTY has been
forgetting to free any of its outgoing packet structures after turning
them into their encrypted wire format. And apparently no users of the
development snapshots have noticed - including me!
sshbpp.h now defines a classoid that encapsulates both directions of
an SSH binary packet protocol - that is, a system for reading a
bufchain of incoming data and turning it into a stream of PktIn, and
another system for taking a PktOut and turning it into data on an
outgoing bufchain.
The state structure in each of those files contains everything that
used to be in the 'rdpkt2_state' structure and its friends, and also
quite a lot of bits and pieces like cipher and MAC states that used to
live in the main Ssh structure.
One minor effect of this layer separation is that I've had to extend
the packet dispatch table by one, because the BPP layer can no longer
directly trigger sending of SSH_MSG_UNIMPLEMENTED for a message too
short to have a type byte. Instead, I extend the PktIn type field to
use an out-of-range value to encode that, and the easiest way to make
that trigger an UNIMPLEMENTED message is to have the dispatch table
contain an entry for it.
(That's a system that may come in useful again - I was also wondering
about inventing a fake type code to indicate network EOF, so that that
could be propagated through the layers and be handled by whichever one
currently knew best how to respond.)
I've also moved the packet-censoring code into its own pair of files,
partly because I was going to want to do that anyway sooner or later,
and mostly because it's called from the BPP code, and the SSH-2
version in particular has to be called from both the main SSH-2 BPP
and the bare unencrypted protocol used for connection sharing. While I
was at it, I took the opportunity to merge the outgoing and incoming
censor functions, so that the parts that were common between them
(e.g. CHANNEL_DATA messages look the same in both directions) didn't
need to be repeated.