It's another file that should have been subdivided into lots of tiny
separate things in the utils library - especially since for some
reason I made a completely separate 'guimisc' cmake-level library for
it when there was no need.
This applies to all of AES, SHA-1, SHA-256 and SHA-512. All those
source files previously contained multiple implementations of the
algorithm, enabled or disabled by ifdefs detecting whether they would
work on a given compiler. And in order to get advanced machine
instructions like AES-NI or NEON crypto into the output file when the
compile flags hadn't enabled them, we had to do nasty stuff with
compiler-specific pragmas or attributes.
Now we can do the detection at cmake time, and enable advanced
instructions in the more sensible way, by compile-time flags. So I've
broken up each of these modules into lots of sub-pieces: a file called
(e.g.) 'foo-common.c' containing common definitions across all
implementations (such as round constants), one called 'foo-select.c'
containing the top-level vtable(s), and a separate file for each
implementation exporting just the vtable(s) for that implementation.
One advantage of this is that it depends a lot less on compiler-
specific bodgery. My particular least favourite part of the previous
setup was the part where I had to _manually_ define some Arm ACLE
feature macros before including <arm_neon.h>, so that it would define
the intrinsics I wanted. Now I'm enabling interesting architecture
features in the normal way, on the compiler command line, there's no
need for that kind of trick: the right feature macros are already
defined and <arm_neon.h> does the right thing.
Another change in this reorganisation is that I've stopped assuming
there's just one hardware implementation per platform. Previously, the
accelerated vtables were called things like sha256_hw, and varied
between FOO-NI and NEON depending on platform; and the selection code
would simply ask 'is hw available? if so, use hw, else sw'. Now, each
HW acceleration strategy names its vtable its own way, and the
selection vtable has a whole list of possibilities to iterate over
looking for a supported one. So if someone feels like writing a second
accelerated implementation of something for a given platform - for
example, I've heard you can use plain NEON to speed up AES somewhat
even without the crypto extension - then it will now have somewhere to
drop in alongside the existing ones.
Now that the new CMake build system is encouraging us to lay out the
code like a set of libraries, it seems like a good idea to make them
look more _like_ libraries, by putting things into separate modules as
far as possible.
This fixes several previous annoyances in which you had to link
against some object in order to get a function you needed, but that
object also contained other functions you didn't need which included
link-time symbol references you didn't want to have to deal with. The
usual offender was subsidiary supporting programs including misc.c for
some innocuous function and then finding they had to deal with the
requirements of buildinfo().
This big reorganisation introduces three new subdirectories called
'utils', one at the top level and one in each platform subdir. In each
case, the directory contains basically the same files that were
previously placed in the 'utils' build-time library, except that the
ones that were extremely miscellaneous (misc.c, utils.c, uxmisc.c,
winmisc.c, winmiscs.c, winutils.c) have been split up into much
smaller pieces.