wcrtomb returns a size_t, so it's silly to immediately assign it into
an int variable. Apparently running gcc with LTO enabled points this
out as an error.
This was benign as far as I can see: the obvious risk of integer
overflow could only happen if the OS wanted to convert a single wide
character into more than 2^31 bytes, and the test of the return value
against (size_t)-1 for an error check seems to work anyway in
practice, although I suspect that's only because of implementation-
defined behaviour in gcc at the point where the size_t is narrowed to
a signed int.
(cherry picked from commit 99f5fa34ab)
Mark Wooding points out that when running with the +ut flag, we close
pty_utmp_helper_pipe during pty backend setup, which causes the
previously forked helper process to terminate. If that termination
happens quickly enough, then the code later in pty_backend_create
won't have set up the SIGCHLD handler and its pipe yet, so when we get
to the main event loop, we'll fail to notice that subprocess waiting
to be reaped, and leave it lying around as a zombie.
An easy fix is to move the handler and pipe setup to before the code
that potentially closes pty_utmp_helper_pipe, so that there isn't a
race condition any more.
(cherry picked from commit 7ffa6ed41e)
Colin reports that on betas of Ubuntu 20.04, Pango has switched to
getting its font metrics from HarfBuzz, and a side effect is
apparently that they're being returned in the full precision of
PANGO_SCALE fixed point.
Previously, Pango appears to have been returning values that were
always a whole number of pixels scaled by PANGO_SCALE. Moreover, it
looks as if it was rounding the font ascent and descent _up_ to a
whole number of pixels, rather than rounding to nearest. But our code
rounds to nearest, which means that now the same font gets allocated
fewer vertical pixels, which can be enough to cut off some ascenders
or descenders.
Pango already provides the macro PANGO_PIXELS_CEIL, so it's easy to
switch over to using it. This should arrange that any text that fits
within the font's stated ascent/descent measurements will also fit in
the character cell.
(cherry picked from commit f9a46a9581)
If gdk_event_get_scroll_deltas() return failure for a given
GdkEventScroll, it doesn't follow that that event has no usable
scrolling action in it at all. The fallback is to call
gdk_event_get_scroll_direction() instead, which is less precise but
still gives _something_ you can use. So in that situation, instead of
just returning false, we can fall through to the handling we use for
pre-GTK3 scroll events (which are always imprecise).
In particular, I've noticed recently that if you run GTK 3 PuTTY in
the virtual X display created by vnc4server, and connect to it using
xtightvncviewer, then scroll-wheel actions passed through from the VNC
client will cause scroll_event() to receive low-res GdkEventScroll
structures of exactly this kind. So scroll-wheel activity on the
terminal window wasn't causing a scroll in that environment, and with
this patch, it does.
(cherry picked from commit 0fd30113f1)
That causes the config dialog to terminate with result -1, which
wasn't handled at all by the result-receiving code. So GTK PuTTY would
continue running its main loop even though it had no windows open and
wasn't ever planning to do anything.
(cherry picked from commit 4fc5d7a5f5)
This file exports several functions defined in sshserver.h, and the
declarations weren't being type-checked against the definitions.
(cherry picked from commit 37d91aabff)
I'm not really sure why that's necessary: by my understanding of the C
standard, it shouldn't be. But my observation is that when compiling
with {Address,Leak} Sanitiser enabled, pageant --askpass can somehow
manage to exit without having actually written the passphrase to its
standard output.
(cherry picked from commit c618d6baac)
On Windows, due to a copy-paste goof, the message that should have
read "Configuring n stop bits" instead ended with "data bits".
While I'm here, I've arranged that the "1 stop bit" case of that
message is in the singular. And then I've done the same thing again on
Unix, because I noticed that message was unconditionally plural too.
(cherry picked from commit bdb7b47a5e)
The sets of poll(2) events that we check in order to return SELECT_R
and SELECT_W overlap: to be precise, they have POLLERR in common. So
if an fd signals POLLERR, then pollwrap_get_fd_rwx will respond by
saying that it has both SELECT_R and SELECT_W available on it - even
if the caller had only asked for one of those.
In other words, you can get a spurious SELECT_W notification on an fd
that you never asked for SELECT_W on in the first place. This
definitely isn't what I'd meant that API to do.
In particular, if a socket in the middle of an asynchronous connect()
signals POLLERR, then Unix Plink will call select_result for it with
SELECT_R and then SELECT_W respectively. The former will notice that
it's got an error condition and call plug_closing - and _then_ the
latter will decide that it's writable and set s->connected! The plan
was to only select it for write until it was connected, but this bug
in pollwrap was defeating that plan.
Now pollwrap_get_fd_rwx should only ever return a set of rwx flags
that's a subset of the one that the client asked for via
pollwrap_add_fd_rwx.
(cherry picked from commit 78974fce89)
wcrtomb returns a size_t, so it's silly to immediately assign it into
an int variable. Apparently running gcc with LTO enabled points this
out as an error.
This was benign as far as I can see: the obvious risk of integer
overflow could only happen if the OS wanted to convert a single wide
character into more than 2^31 bytes, and the test of the return value
against (size_t)-1 for an error check seems to work anyway in
practice, although I suspect that's only because of implementation-
defined behaviour in gcc at the point where the size_t is narrowed to
a signed int.
Mark Wooding points out that when running with the +ut flag, we close
pty_utmp_helper_pipe during pty backend setup, which causes the
previously forked helper process to terminate. If that termination
happens quickly enough, then the code later in pty_backend_create
won't have set up the SIGCHLD handler and its pipe yet, so when we get
to the main event loop, we'll fail to notice that subprocess waiting
to be reaped, and leave it lying around as a zombie.
An easy fix is to move the handler and pipe setup to before the code
that potentially closes pty_utmp_helper_pipe, so that there isn't a
race condition any more.
Now you can see exactly what pathname the backend tried to open for
the serial port, and what error code it got back from the OS when it
tried. That should help users distinguish between (for example) a
permissions problem and a typo in the filename.
Now, instead of a 'const char *' in the static data segment, error
messages returned from backend setup are dynamically allocated and
freed by the caller.
This will allow me to make the messages much more specific (including
errno values and the like). However, this commit is pure refactoring:
I've _just_ changed the allocation policy, and left all the messages
alone.
Colin reports that on betas of Ubuntu 20.04, Pango has switched to
getting its font metrics from HarfBuzz, and a side effect is
apparently that they're being returned in the full precision of
PANGO_SCALE fixed point.
Previously, Pango appears to have been returning values that were
always a whole number of pixels scaled by PANGO_SCALE. Moreover, it
looks as if it was rounding the font ascent and descent _up_ to a
whole number of pixels, rather than rounding to nearest. But our code
rounds to nearest, which means that now the same font gets allocated
fewer vertical pixels, which can be enough to cut off some ascenders
or descenders.
Pango already provides the macro PANGO_PIXELS_CEIL, so it's easy to
switch over to using it. This should arrange that any text that fits
within the font's stated ascent/descent measurements will also fit in
the character cell.
If gdk_event_get_scroll_deltas() return failure for a given
GdkEventScroll, it doesn't follow that that event has no usable
scrolling action in it at all. The fallback is to call
gdk_event_get_scroll_direction() instead, which is less precise but
still gives _something_ you can use. So in that situation, instead of
just returning false, we can fall through to the handling we use for
pre-GTK3 scroll events (which are always imprecise).
In particular, I've noticed recently that if you run GTK 3 PuTTY in
the virtual X display created by vnc4server, and connect to it using
xtightvncviewer, then scroll-wheel actions passed through from the VNC
client will cause scroll_event() to receive low-res GdkEventScroll
structures of exactly this kind. So scroll-wheel activity on the
terminal window wasn't causing a scroll in that environment, and with
this patch, it does.
This is unlikely in most situations, but 'psusan' in particular is
intended to be run in a lot of weird environments where things aren't
properly set up yet. I just found out that if you use a Cygwin-built
psusan as the proxy process for Windows PuTTY (to get a local Cygwin
xterm) then it starts up with SHELL unset, and uxpty's forked
subprocess segfaults when it tries to exec a null pointer.
That causes the config dialog to terminate with result -1, which
wasn't handled at all by the result-receiving code. So GTK PuTTY would
continue running its main loop even though it had no windows open and
wasn't ever planning to do anything.
In commit 1f399bec58 I had the idea of generating the protocol radio
buttons in the GUI configurer by looping over the backends[] array,
which gets the reliably correct list of available backends for a given
binary rather than having to second-guess. That's given me an idea: we
can do the same for the per-backend config panels too.
Now the GUI config panel for every backend is guarded by a check of
backend_vt_from_proto, and we won't display the config for that
backend unless it's present.
In particular, this allows me to move the serial-port configuration
back into config.c from the separate file sercfg.c: we find out
whether to apply it by querying backend_vt_from_proto(PROT_SERIAL),
the same as any other backend.
In _particular_ particular, that also makes it much easier for me to
move the serial config up the pecking order, so that it's now second
only to SSH in the list of per-protocol config panes, which I think is
now where it deserves to be.
(A side effect of that is that I now have to come up with a different
method of having each serial backend specify the subset of parity and
flow control schemes it supports. I've done it by adding an extra pair
of serial-port specific bitmask fields to BackendVtable, taking
advantage of the new vtable definition idiom to avoid having to
boringly declare them as zero in all the other backends.)
This is a sweeping change applied across the whole code base by a spot
of Emacs Lisp. Now, everywhere I declare a vtable filled with function
pointers (and the occasional const data member), all the members of
the vtable structure are initialised by name using the '.fieldname =
value' syntax introduced in C99.
We were already using this syntax for a handful of things in the new
key-generation progress report system, so it's not new to the code
base as a whole.
The advantage is that now, when a vtable only declares a subset of the
available fields, I can initialise the rest to NULL or zero just by
leaving them out. This is most dramatic in a couple of the outlying
vtables in things like psocks (which has a ConnectionLayerVtable
containing only one non-NULL method), but less dramatically, it means
that the new 'flags' field in BackendVtable can be completely left out
of every backend definition except for the SUPDUP one which defines it
to a nonzero value. Similarly, the test_for_upstream method only used
by SSH doesn't have to be mentioned in the rest of the backends;
network Plugs for listening sockets don't have to explicitly null out
'receive' and 'sent', and vice versa for 'accepting', and so on.
While I'm at it, I've normalised the declarations so they don't use
the unnecessarily verbose 'struct' keyword. Also a handful of them
weren't const; now they are.
The motivation is for the SUPDUP protocol. The server may send a
signal for the terminal to reset any input buffers. After this, the
server will not know the state of the terminal, so it is required to
send its cursor position back.
This is built more or less entirely out of pieces I already had. The
SOCKS server code is provided by the dynamic forwarding code in
portfwd.c. When that accepts a connection request, it wants to talk to
an SSH ConnectionLayer, which is already a trait with interchangeable
implementations - so I just provide one of my own which only supports
the lportfwd_open() method. And that in turn returns an SshChannel
object, with a special trait implementation all of whose methods
just funnel back to an ordinary Socket.
Result: you get a Socket-to-Socket SOCKS implementation with no SSH
anywhere, and even a minimal amount of need to _pretend_ internally to
be an SSH implementation.
Additional features include the ability to log all the traffic in the
form of diagnostics to standard error, or log each direction of each
connection separately to a file, or for anything more general, to log
each direction of each connection through a pipe to a subcommand that
can filter out whatever you think are the interesting parts. Also, you
can spawn a subcommand after the SOCKS server is set up, and terminate
automatically when that subcommand does - e.g. you might use this to
wrap the execution of a single SOCKS-using program.
This is a modernisation of a diagnostic utility I've had kicking
around out-of-tree for a long time. With all of last year's
refactorings, it now becomes feasible to keep it in-tree without
needing huge amounts of scaffolding. Also, this version runs on
Windows, which is more than the old one did. (On Windows I haven't
implemented the subprocess parts, although there's no reason I
_couldn't_.)
As well as diagnostic uses, this may also be useful in some situations
as a thing to forward ports to: PuTTY doesn't currently support
reverse dynamic port forwarding (in which the remote listening port
acts as a SOCKS server), but you could get the same effect by
forwarding a remote port to a local instance of this. (Although, of
course, that's nothing you couldn't achieve using any other SOCKS
server.)
In the previous commit I introduced the ability for PuTTY to talk to a
server speaking the bare ssh-connection protocol, and listed several
applications for that ability. But none of those applications is any
use without a server that speaks the same protocol. Until now, the
only such server has been the Unix-domain socket presented by an
upstream connection-sharing PuTTY - and we already had a way to
connect to that.
So here's the missing piece: by reusing code that already existed for
the testing SSH server Uppity, I've created a program that will speak
the bare ssh-connection protocol on its standard I/O channels. If you
want to get a shell session over any of the transports I mentioned in
the last commit, this is the program you need to run at the far end of
it.
I have yet to write the documentation, but just in case I forget, the
name stands for 'Pseudo Ssh for Untappable, Separately Authenticated
Networks'.
The previous 'name' field was awkwardly serving both purposes: it was
a machine-readable identifier for the backend used in the saved
session format, and it was also used in error messages when Plink
wanted to complain that it didn't support a particular backend. Now
there are two separate name fields for those purposes.
Now you can type an absolute pathname (starting with '/') into the
hostname box in Unix GUI PuTTY, or into the hostname slot on the Unix
Plink command line, and the effect will be that PuTTY makes an AF_UNIX
connection to the specified Unix-domain socket in place of a TCP/IP
connection.
I don't _yet_ know of anyone running SSH on a Unix-domain socket, but
at the very least it'll be useful to me for debugging and testing, and
I'm pretty sure there will be other specialist uses sooner or later.
Sometimes, within a switch statement, you want to declare local
variables specific to the handler for one particular case. Until now
I've mostly been writing this in the form
switch (discriminant) {
case SIMPLE:
do stuff;
break;
case COMPLICATED:
{
declare variables;
do stuff;
}
break;
}
which is ugly because the two pieces of essentially similar code
appear at different indent levels, and also inconvenient because you
have less horizontal space available to write the complicated case
handler in - particuarly undesirable because _complicated_ case
handlers are the ones most likely to need all the space they can get!
After encountering a rather nicer idiom in the LLVM source code, and
after a bit of hackery this morning figuring out how to persuade
Emacs's auto-indent to do what I wanted with it, I've decided to move
to an idiom in which the open brace comes right after the case
statement, and the code within it is indented the same as it would
have been without the brace. Then the whole case handler (including
the break) lives inside those braces, and you get something that looks
more like this:
switch (discriminant) {
case SIMPLE:
do stuff;
break;
case COMPLICATED: {
declare variables;
do stuff;
break;
}
}
This commit is a big-bang change that reformats all the complicated
case handlers I could find into the new layout. This is particularly
nice in the Pageant main function, in which almost _every_ case
handler had a bundle of variables and was long and complicated. (In
fact that's what motivated me to get round to this.) Some of the
innermost parts of the terminal escape-sequence handling are also
breathing a bit easier now the horizontal pressure on them is
relieved.
(Also, in a few cases, I was able to remove the extra braces
completely, because the only variable local to the case handler was a
loop variable which our new C99 policy allows me to move into the
initialiser clause of its for statement.)
Viewed with whitespace ignored, this is not too disruptive a change.
Downstream patches that conflict with it may need to be reapplied
using --ignore-whitespace or similar.
This links up the new re-encryption facilities to the Unix Pageant
client-mode command line. Analogously to -d and -D, 'pageant -r key-id'
re-encrypts a single key, and 'pageant -R' re-encrypts everything.
This reads data from standard input, turns it into an SSH-2 sign
request, and writes the resulting signature blob to standard output.
I don't really anticipate many uses for this other than testing. But
it _is_ convenient for testing changes to Pageant itself: it lets me
ask for a signature without first having to construct a pointless SSH
session that will accept the relevant key.
When I came to actually remove the global 'flags' word, I found that I
got compile failures in two functions that should never have been
accessing it at all, because they forgot to declare _local_ variables
of the same name. Yikes!
(Of course, _now_ that's harmless, because I've just removed all the
actual semantics from the global variable. But I'm about to remove the
variable too, so these bugs would become compile failures.)
(cherry picked from commit 33715c07e3)
Those chomp operations in wincons.c and uxcons.c looked ugly, and I'm
not totally convinced they couldn't underrun the buffer by 1 byte in
weird circumstances. strbuf_chomp is neater.
(cherry picked from commit 7590d0625b)
UBsan pointed out another memcpy from NULL (again with length 0) in
the prompts_t system. When I looked at it, I realised that firstly
prompt_ensure_result_size was an early not-so-good implementation of
sgrowarray_nm that would benefit from being replaced with a call to
the real one, and secondly, the whole system for storing prompt
results should really have been replaced with strbufs with the no-move
option, because that's doing all the same jobs better.
So, now each prompt_t holds a strbuf in place of its previous manually
managed string. prompt_ensure_result_size is gone (the console
prompt-reading functions use strbuf_append, and everything else just
adds to the strbuf in the usual marshal.c way). New functions exist to
retrieve a prompt_t's result, either by reference or copied.
(cherry picked from commit cd6bc14f04)
These are better than my previous approach of just assigning to
sb->len, because firstly they check by assertion that the new length
is within range, and secondly they preserve the invariant that the
byte stored in the buffer just after the length runs out is \0.
Switched to using the new functions everywhere a grep could turn up
opportunities.
(cherry picked from commit 5891142aee)
This makes all the new deferred-decryption business actually _useful_
for the first time: you can now load an encrypted key file and then
get a prompt to decrypt it on first use, without Pageant being in the
low-usability debug mode.
Currently, the option to present runtime prompts is enabled if Pageant
is running with an X display detected, regardless of lifetime mode.
I'm not really sure why that's necessary: by my understanding of the C
standard, it shouldn't be. But my observation is that when compiling
with {Address,Leak} Sanitiser enabled, pageant --askpass can somehow
manage to exit without having actually written the passphrase to its
standard output.
This applies to both server modes ('pageant -E key.ppk [lifetime]')
and client mode ('pageant -a -E key.ppk').
I'm not completely confident that the CLI syntax is actually right
yet, but for the moment, it's enough that it _exists_. Now I don't
have to test the encrypted-key loading via manually mocked-up agent
requests.
On Windows, due to a copy-paste goof, the message that should have
read "Configuring n stop bits" instead ended with "data bits".
While I'm here, I've arranged that the "1 stop bit" case of that
message is in the singular. And then I've done the same thing again on
Unix, because I noticed that message was unconditionally plural too.
Now I've got an enum for PlugLogType, it's easier to add things to it.
We were giving a blow-by-blow account of each connection attempt, and
when it failed, saying what went wrong before we moved on to the next
candidate address, but when one finally succeeded, we never logged
_that_. Now we do.
Unix Plink, Unix Pageant in server mode, Uppity, and the post-
connection form of PSFTP's command-line reading code all had very
similar loops in them, which run a pollwrapper and mediate between
that, timers, and toplevel callbacks. It's long past time the common
code between all of those became a reusable shared routine.
So, this commit introduces uxcliloop.c, and turns all the previous
copies of basically the same loop into a call to cli_main_loop with
various callback functions to configure the parts that differ.
The sets of poll(2) events that we check in order to return SELECT_R
and SELECT_W overlap: to be precise, they have POLLERR in common. So
if an fd signals POLLERR, then pollwrap_get_fd_rwx will respond by
saying that it has both SELECT_R and SELECT_W available on it - even
if the caller had only asked for one of those.
In other words, you can get a spurious SELECT_W notification on an fd
that you never asked for SELECT_W on in the first place. This
definitely isn't what I'd meant that API to do.
In particular, if a socket in the middle of an asynchronous connect()
signals POLLERR, then Unix Plink will call select_result for it with
SELECT_R and then SELECT_W respectively. The former will notice that
it's got an error condition and call plug_closing - and _then_ the
latter will decide that it's writable and set s->connected! The plan
was to only select it for write until it was connected, but this bug
in pollwrap was defeating that plan.
Now pollwrap_get_fd_rwx should only ever return a set of rwx flags
that's a subset of the one that the client asked for via
pollwrap_add_fd_rwx.
I've often found it useful that you can make symlinks to Unix-domain
sockets, and then connect() on the symlink path will redirect to the
original socket.
This commit adds an option to Unix Pageant which will make it symlink
its socket path to a link location of your choice. My initial use case
is when running Pageant in debug mode during development: if you run a
new copy of it every few minutes after making a code change, then it's
annoying to have it change its socket path every time so you have to
keep pasting its setup command into your test shell. Not any more! Now
you can run 'pageant --debug --symlink fixed-location', and then your
test shell can point its SSH_AUTH_SOCK at the fixed location all the
time.
There are very likely other use cases too, but that's the one that
motivated me to add the option.
This is the easiest place to implement _something_ that will work as a
runtime passphrase prompt, which means I get to use it to test the
code I'm about to add to the Pageant core to make use of those
prompts. Once that's working, we can think about adding prompts for
the 'proper' usage modes.
The debug-mode passphrase prompts are implemented by simply reading
from standard input, having emitted a log message mentioning that a
prompt is impending. We put standard input into non-echoing mode, but
otherwise don't print any visible prompt (because standard output will
in general receive further log messages, which would break it anyway).
This is only just good enough for initial testing. In particular, it
won't cope if two prompts are in flight at the same time. But good
enough for initial testing is better than nothing!
This begins to head towards the goal of storing a key file encrypted
in Pageant, and decrypting it on demand via a GUI prompt the first
time a client requests a signature from it. That won't be a facility
available in all situations, so we have to be able to return failure
from the prompt.
More precisely, there are two versions of this API, one in
PageantClient and one in PageantListenerClient: the stream
implementation of PageantClient implements the former API and hands it
off to the latter. Windows Pageant has to directly implement both (but
they will end up funnelling to the same function within winpgnt.c).
NFC: for the moment, the new API functions are never called, and every
implementation of them returns failure.
In the previous trawl of this, I didn't bother with the statics in
main-program modules, on the grounds that my main aim was to avoid
'library' objects (shared between multiple programs) from polluting
the global namespace. But I think it's worth being more strict after
all, so this commit adds 'static' to a lot more file-scope variables
that aren't needed outside their own module.
Now it's no longer used, we can get rid of it, and better still, get
rid of every #define PUTTY_DO_GLOBALS in the many source files that
previously had them.
It's now a static in the main source file of each application that
uses it, and isn't accessible from any other source file unless the
main one passes it by reference.
In fact, there were almost no instances of the latter: only the
config-box functions in windlg.c were using 'conf' by virtue of its
globalness, and it's easy to make those take it as a parameter.
These global variables are only ever used by load_settings, which uses
them to vary the default protocol and port number in the absence of
any specification elsewhere. So there's no real need for them to be
universally accessible via the awkward GLOBAL mechanism: they can be
statics inside settings.c, with accessor functions that can set them.
That was the last GLOBAL in putty.h, so I've removed the definition of
the macro GLOBAL itself as well. There are still some GLOBALs in the
Windows subdirectory, though.
I haven't managed to make this one _not_ be a mutable variable, but at
least it's not global across all tools any more: it lives in cmdline.c
along with the code that decides what to set it to, and cmdline.c
exports a query method to ask for its value.
Another ugly mutable global variable gone: now, instead of this
variable being defined in cmdline.c and written to by everyone's
main(), it's defined _alongside_ everyone's main() as a constant, and
cmdline.c just refers to it.
A bonus is that now nocmdline.c doesn't have to define it anyway for
tools that don't use cmdline.c. But mostly, it didn't need to be
mutable, so better for it not to be.
While I'm at it, I've also fiddled with the bit flags that go in it,
to define their values automatically using a list macro instead of
manually specifying each one to be a different power of 2.
When I came to actually remove the global 'flags' word, I found that I
got compile failures in two functions that should never have been
accessing it at all, because they forgot to declare _local_ variables
of the same name. Yikes!
(Of course, _now_ that's harmless, because I've just removed all the
actual semantics from the global variable. But I'm about to remove the
variable too, so these bugs would become compile failures.)
It really had no need to be a global process flag at all: it's used to
signal to uxcons.c that stderr_tty_init() ought to check whether
stderr is a tty (in order to save its termios across interactive
prompts and so forth). But the only _caller_ of stderr_tty_init is
Unix Plink, which always sets that flag! So we already have a
perfectly good system for signalling to uxcons.c that you'd like
stderr_tty_init to do something: _whether you call it or not_.
The global 'int flags' has always been an ugly feature of this code
base, and I suddenly thought that perhaps it's time to start throwing
it out, one flag at a time, until it's totally unused.
My first target is FLAG_VERBOSE. This was usually set by cmdline.c
when it saw a -v option on the program's command line, except that GUI
PuTTY itself sets it unconditionally on startup. And then various bits
of the code would check it in order to decide whether to print a given
message.
In the current system of front-end abstraction traits, there's no
_one_ place that I can move it to. But there are two: every place that
checked FLAG_VERBOSE has access to either a Seat or a LogPolicy. So
now each of those traits has a query method for 'do I want verbose
messages?'.
A good effect of this is that subsidiary Seats, like the ones used in
Uppity for the main SSH server module itself and the server end of
shell channels, now get to have their own verbosity setting instead of
inheriting the one global one. In fact I don't expect any code using
those Seats to be generating any messages at all, but if that changes
later, we'll have a way to control it. (Who knows, perhaps logging in
Uppity might become a thing.)
As part of this cleanup, I've added a new flag to cmdline_tooltype,
called TOOLTYPE_NO_VERBOSE_OPTION. The unconditionally-verbose tools
now set that, and it has the effect of making cmdline.c disallow -v
completely. So where 'putty -v' would previously have been silently
ignored ("I was already verbose"), it's now an error, reminding you
that that option doesn't actually do anything.
Finally, the 'default_logpolicy' provided by uxcons.c and wincons.c
(with identical definitions) has had to move into a new file of its
own, because now it has to ask cmdline.c for the verbosity setting as
well as asking console.c for the rest of its methods. So there's a new
file clicons.c which can only be included by programs that link
against both cmdline.c _and_ one of the *cons.c, and I've renamed the
logpolicy to reflect that.
A trawl through the code with -Wmissing-prototypes and
-Wmissing-variable-declarations turned up a lot of things that should
have been internal to a particular source file, but were accidentally
global. Keep the namespace clean by making them all static.
(Also, while I'm here, a couple of them were missing a 'const': the
ONE and ZERO arrays in sshcrcda.c, and EMPTY_WINDOW_TITLE in
terminal.c.)
These are all intended to ensure that the declarations of things in
header files are in scope where the same thing is subsequently
defined, to make it harder to define it in a way that doesn't match.
(For example, the new #include in winnet.c would have caught the
just-fixed mis-definition of platform_get_x11_unix_address.)
In commit 09954a87c I introduced the portfwdmgr_connect_socket()
system, which opened a port forwarding given a callback to create the
Socket itself, with the aim of using it to make forwardings to Unix-
domain sockets and Windows named pipes (both initially for agent
forwarding).
But I forgot that a year and a bit ago, in commit 834396170, I already
introduced a similar low-level system for creating a PortForwarding
around an unusual kind of socket: the portfwd_raw_new() system, which
in place of a callback uses a two-phase setup protocol (you create the
socket in between the two setup calls, and can roll it back if the
socket can't be created).
There's really no need to have _both_ these systems! So now I'm
merging them, which is to say, I'm enhancing portfwd_raw_new to have
the one new feature it needs, and throwing away the newer system
completely. The new feature is to be able to control the initial state
of the 'ready' flag: portfwd_raw_new was always used for initiating
port forwardings in response to an incoming local connection, which
means you need to start off with ready=false and set it true when the
other end of the SSH connection sends back OPEN_CONFIRMATION. Now it's
being used for initiating port forwardings in response to a
CHANNEL_OPEN, we need to be able to start with ready=true.
This commit reverts 09954a87c2 and its
followup fix 12aa06ccc9, and simplifies
the agent_connect system down to a single trivial function that makes
a Socket given a Plug.
This is a pure refactoring: no functional change expected.
This commit introduces two new small vtable-style APIs. One is
PageantClient, which identifies a particular client of the Pageant
'core' (meaning the code that handles each individual request). This
changes pageant_handle_msg into an asynchronous operation: you pass in
an agent request message and an identifier, and at some later point,
the got_response method in your PageantClient will be called with the
answer (and the same identifier, to allow you to match requests to
responses). The trait vtable also contains a logging system.
The main importance of PageantClient, and the reason why it has to
exist instead of just passing pageant_handle_msg a bare callback
function pointer and context parameter, is that it provides robustness
if a client stops existing while a request is still pending. You call
pageant_unregister_client, and any unfinished requests associated with
that client in the Pageant core will be cleaned up, so that you're
guaranteed that after the unregister operation, no stray callbacks
will happen with a stale pointer to that client.
The WM_COPYDATA interface of Windows Pageant is a direct client of
this API. The other client is PageantListener, the system that lives
in pageant.c and handles stream-based agent connections for both Unix
Pageant and the new Windows named-pipe IPC. More specifically, each
individual connection to the listening socket is a separate
PageantClient, which means that if a socket is closed abruptly or
suffers an OS error, that client can be unregistered and any pending
requests cancelled without disrupting other connections.
Users of PageantListener have a second client vtable they can use,
called PageantListenerClient. That contains _only_ logging facilities,
and at the moment, only Unix Pageant bothers to use it (and even that
only in debugging mode).
Finally, internally to the Pageant core, there's a new trait called
PageantAsyncOp which describes an agent request in the process of
being handled. But at the moment, it has only one trivial
implementation, which is handed the full response message already
constructed, and on the next toplevel callback, passes it back to the
PageantClient.
Those chomp operations in wincons.c and uxcons.c looked ugly, and I'm
not totally convinced they couldn't underrun the buffer by 1 byte in
weird circumstances. strbuf_chomp is neater.
UBsan pointed out another memcpy from NULL (again with length 0) in
the prompts_t system. When I looked at it, I realised that firstly
prompt_ensure_result_size was an early not-so-good implementation of
sgrowarray_nm that would benefit from being replaced with a call to
the real one, and secondly, the whole system for storing prompt
results should really have been replaced with strbufs with the no-move
option, because that's doing all the same jobs better.
So, now each prompt_t holds a strbuf in place of its previous manually
managed string. prompt_ensure_result_size is gone (the console
prompt-reading functions use strbuf_append, and everything else just
adds to the strbuf in the usual marshal.c way). New functions exist to
retrieve a prompt_t's result, either by reference or copied.
These are better than my previous approach of just assigning to
sb->len, because firstly they check by assertion that the new length
is within range, and secondly they preserve the invariant that the
byte stored in the buffer just after the length runs out is \0.
Switched to using the new functions everywhere a grep could turn up
opportunities.
This bug applies to both the new stream-based agent forwarding, and
ordinary remote->local TCP port forwardings, because it was introduced
by the preliminary infrastructure in commit 09954a87c.
new_connection() and sk_new() accept a SockAddr *, and take ownership
of it. So it's a mistake to make an address, connect to it, and then
sk_addr_free() it: the free will decrement its reference count to
zero, and then the Socket made by the connection will be holding a
stale pointer. But that's exactly what I was doing in the version of
portfwdmgr_connect() that I rewrote in that refactoring. And then I
made the same error again in commit ae1148267 in the Unix stream-based
agent forwarding.
Now both fixed. Rather than remove the sk_addr_free() to make the code
look more like it used to, I've instead solved the problem by adding
an sk_addr_dup() at the point of making the connection. The idea is
that that should be more robust, in that it will still do the right
thing if portfwdmgr_connect_socket should later change so as not to
call its connect helper function at all.
The new Windows stream-based agent forwarding is unaffected by this
bug, because it calls new_named_pipe_client() with a pathname in
string format, without first wrapping it into a SockAddr.
Now they have names that are more consistent (no more userkey_this but
that_userkey); a bit shorter; and, most importantly, all the current
functions end in _f to indicate that they deal with keys stored in
disk files. I'm about to add a second set of entry points that deal
with keys via the more general BinarySource / BinarySink interface,
which will sit alongside these with a different suffix.
Historically, because of the way Windows Pageant's IPC works, PuTTY's
agent forwarding has always been message-oriented. The channel
implementation in agentf.c deals with receiving a data stream from the
remote agent client and breaking it up into messages, and then it
passes each message individually to agent_query().
On Unix, this is more work than is really needed, and I've always
meant to get round to doing the more obvious thing: making an agent
forwarding channel into simply a stream-oriented proxy, passing raw
data back and forth between the SSH channel and the local AF_UNIX
socket without having to know or care about the message boundaries in
the stream.
The portfwdmgr_connect_socket() facility introduced by the previous
commit is the missing piece of infrastructure to make that possible.
Now, the agent client module provides an API that includes a callback
you can pass to portfwdmgr_connect_socket() to open a streamed agent
connection, and the agent forwarding setup function tries to use that
where possible, only falling back to the message-based agentf.c system
if it can't be done. On Windows, the new piece of agent-client API
returns failure, so we still fall back to agentf.c there.
There are two benefits to doing it this way. One is that it's just
simpler and more robust: if PuTTY isn't trying to parse the agent
connection, then it has less work to do and fewer places to introduce
bugs. The other is that it's futureproof against changes in the agent
protocol: if any kind of extension is ever introduced that requires
keeping state within a single agent connection, or that changes the
protocol itself so that agentf's message-boundary detection stops
working, then this forwarding system will still work.
In commit 105672e32 I added the pty_backend_exit_signame() function,
which constructs the SSH wire name of the signal that terminated the
pty session process. I did it by having a sequence of inline #ifdefs
for all the translatable signal names, each one guarding the code that
expected that signal to be defined in <signal.h>.
But there was no need to write all that out longhand, because in the
preceding commit 72eca76d2, I made a central list of signal names in
sshsignals.h, so all I should have needed to do was to set up the
macros that header expects, and let _it_ do the iteration over the
locally defined subset of signal ids! So now I do that instead.
When I'm declaring a local instance of some context structure type to
pass to a function which will pass it in turn to a callback, I've
tended to use a declaration of the form
struct context actx, *ctx = &actx;
so that the outermost caller can initialise the context, and/or read
out fields of it afterwards, by the same syntax 'ctx->foo' that the
callback function will be using. So you get visual consistency between
the two functions that share this context.
It only just occurred to me that there's a much neater way to declare
a context struct of this kind, which still makes 'ctx' behave like a
pointer in the owning function, and doesn't need all that weird
verbiage or a spare variable name:
struct context ctx[1];
That's much nicer! I've switched to doing that in all existing cases I
could find, and also in a couple of cases where I hadn't previously
bothered to do the previous more cumbersome idiom.
When I reworked the 'selparams' array in commit e790adec4 to contain
pointers to 'struct selparam' rather than directly containing
structures, I missed this one case where I should have removed an &.
As a result the GTK1 signal handler that deals with clicks on the
config-pane selection treeview was getting a pointer to a pointer and
treating it as a pointer to an object. Nothing good happened.
I was testing some upcoming new GTK code against all GTK versions,
which for once was interesting enough to make nontrivial use of
g_object_ref_sink, and I found that I hadn't implemented the GTK1
fallback version right. GTK1 has no ref_sink call, but it does have
ref and sink, so the right thing seems to be to just call them in
succession.
If you go to Change Settings in Unix PuTTY or pterm, and change the
'Gap between text and window edge' setting but not the width and
height, then change_settings_menuitem() correctly sets the physical
window to a new size, but drawing_area_setup() was not recreating the
backing surface / pixmap in the same way, because it hadn't spotted
that the border size might be relevant.
Now I unconditionally work out what the exact size of the backing
surface _ought_ to be, before reaching the potential early exit path,
and never take the early exit if the backing area needs resizing for
any reason at all.
(I think this probably ought to have been part of commit 528513dde.)
I'm about to rearrange this function, and the patch that actually does
work will be easier to read if mass reindentation isn't combined with
it.
The braces I've just removed were necessary when we hadn't yet
committed to requiring (most of) C99 from all our build platforms. Now
they aren't.
Up until now, it's been a variadic _function_, whose argument list
consists of 'const char *' ASCIZ strings to concatenate, terminated by
one containing a null pointer. Now, that function is dupcat_fn(), and
it's wrapped by a C99 variadic _macro_ called dupcat(), which
automatically suffixes the null-pointer terminating argument.
This has three benefits. Firstly, it's just less effort at every call
site. Secondly, it protects against the risk of accidentally leaving
off the NULL, causing arbitrary words of stack memory to be
dereferenced as char pointers. And thirdly, it protects against the
more subtle risk of writing a bare 'NULL' as the terminating argument,
instead of casting it explicitly to a pointer. That last one is
necessary because C permits the macro NULL to expand to an integer
constant such as 0, so NULL by itself may not have pointer type, and
worse, it may not be marshalled in a variadic argument list in the
same way as a pointer. (For example, on a 64-bit machine it might only
occupy 32 bits. And yet, on another 64-bit platform, it might work
just fine, so that you don't notice the mistake!)
I was inspired to do this by happening to notice one of those bare
NULL terminators, and thinking I'd better check if there were any
more. Turned out there were quite a few. Now there are none.
When I introduced the unreachable() macro in commit 0112936ef, I
searched the source code for assert(0) and assert(false), together
with their variant form assert(0 && "explanatory text"). But I didn't
search for assert(!"explanatory text"), which is the form I used to
use before finding that assert(0 && "text") seemed to be preferred in
other code bases.
So, here's a belated replacement of all the assert(!"stuff") macros
with further instances of unreachable().
The number of people has been steadily increasing who read our source
code with an editor that thinks tab stops are 4 spaces apart, as
opposed to the traditional tty-derived 8 that the PuTTY code expects.
So I've been wondering for ages about just fixing it, and switching to
a spaces-only policy throughout the code. And I recently found out
about 'git blame -w', which should make this change not too disruptive
for the purposes of source-control archaeology; so perhaps now is the
time.
While I'm at it, I've also taken the opportunity to remove all the
trailing spaces from source lines (on the basis that git dislikes
them, and is the only thing that seems to have a strong opinion one
way or the other).
Apologies to anyone downstream of this code who has complicated patch
sets to rebase past this change. I don't intend it to be needed again.
It's silly to use the higher-level name_lookup(), because the way in
which they differ is that name_lookup() allows DNS lookups to be
deferred to the other side of a network proxy over which your
connection is travelling - and when you're trying to find out your own
host name for use as a database key, there's no _connection_ involved
at all, and no potential proxy either.
I've only just noticed that it doesn't do anything at all!
Almost every implementation of the Socket vtable provides a flush()
method which does nothing, optionally with a comment explaining why
it's OK to do nothing. The sole exception is the wrapper Proxy_Socket,
which implements the method during its setup phase by setting a
pending_flush flag, so that when its sub-socket is later created, it
can call sk_flush on that. But since the sub-socket's sk_flush will do
nothing, even that is completely pointless!
Source control history says that sk_flush was introduced by Dave
Hinton in 2001 (commit 7b0e08270), who was going to use it for some
purpose involving the SSL Telnet support he was working on at the
time. That SSL support was never finished, and its vestigial
declarations in network.h were removed in 2015 (commit 42334b65b). So
sk_flush is just another vestige of that abandoned work, which I
should have removed in the latter commit but overlooked.
At Coverity's urging, I put in an instance of the Fortuna PRNG in
place of the use of rand() to select which drawing area to light up
next on a keypress. But Coverity turns out to be unhappy that I'm
still using rand() to select the _initial_ area, before the user
enters any input at all.
It's even harder to imagine this being a genuine information leak than
the previous complaint. But I don't really see a reason _not_ to
switch it over, now it's been pointed out.
Introduced by 61f3e3e29, as part of my periodic efforts to make the
GTK front end work usefully on OS X: the 'Unable to open connection to
[host]: [error]' message box is accidentally passed through two layers
of printf format-string parsing, the second of which has no argument
list. So if you pass in a host name like '%s' on the command line,
bad things will happen when that error message is constructed.
This happened because in that commit I changed a call to
fatal_message_box() into a call to connection_fatal(), without
noticing that the latter was printf-style variadic and the former
wasn't. On the plus side, that means now I can remove the explicit
dupprintf/free around the error message.
If you select an entry in the saved sessions list box, but without
double-clicking to actually load it, and then you hit OK, the config-
box code will automatically load it. That just saves one click in a
common situation.
But in order to load that session, the config-box system first has to
ask the list-box control _which_ session is selected. On Windows, this
causes an assertion failure if the user has switched away from the
Session panel to some other panel of the config box, because when the
list box isn't on screen, its Windows control object is actually
destroyed.
I think a sensible answer is that we shouldn't be doing that implicit
load behaviour in any case if the list box isn't _visible_: silently
loading and launching a session someone selected a lot of UI actions
ago wasn't really the point. So now I make that behaviour only happen
when the list box (i.e. the Session panel) _is_ visible. That should
prevent the assertion failure on Windows, but the UI effect is cross-
platform, applying even on GTK where the control objects for invisible
panels persist and so the assertion failure didn't happen. I think
it's a reasonable UI change to make globally.
In order to implement it, I've had to invent a new query function so
that config.c can tell whether a given control is visible. In order to
do that on GTK, I had to give each control a pointer to the 'selparam'
structure describing its config-box pane, so that query function could
check it against the current one - and in order to do _that_, I had to
first arrange that those 'selparam' structures have stable addresses
from the moment they're first created, which meant adding a layer of
indirection so that the array of them in the top-level dlgparam
structure is now an array of _pointers_ rather than of actual structs.
(That way, realloc half way through config box creation can't
invalidate the important pointer values.)
Having decided that the terminal's local echo setting shouldn't be
allowed to propagate through to termios, I think the local edit
setting shouldn't either. Also, no other terminal emulator I know
seems to implement this sequence, and if you enable it, things get
very confused in general. I think it's generally better off absent; if
somebody turns out to have been using it, then we'll at least be able
to find out what it's good for.
The functions that previously lived in it now live in terminal.c
itself; they've been renamed term_keyinput and term_keyinputw, and
their function is to add data to the terminal's user input buffer from
a char or wchar_t string respectively.
They sit more comfortably in terminal.c anyway, because their whole
point is to translate into the character encoding that the terminal is
currently configured to use. Also, making them part of the terminal
code means they can also take care of calling term_seen_key_event(),
which simplifies most of the call sites in the GTK and Windows front
ends.
Generation of text _inside_ terminal.c, from responses to query escape
sequences, is therefore not done by calling those external entry
points: we send those responses directly to the ldisc, so that they
don't count as keypresses for all the user-facing purposes like bell
overload handling and scrollback reset. To make _that_ convenient,
I've arranged that most of the code that previously lived in
lpage_send and luni_send is now in separate translation functions, so
those can still be called from situations where you're not going to do
the default thing with the translated data.
(However, pasted data _does_ still count as close enough to a keypress
to call term_seen_key_event - but it clears the 'interactive' flag
when the data is passed on to the line discipline, which tweaks a
minor detail of control-char handling in line ending mode but mostly
just means pastes aren't interrupted.)
If the user closes the Change Settings dialog box using the close
button provided by the window manager (or some analogous thing that
generates the same X11 event) instead of using the Cancel button
within the dialog itself, then after_change_settings_dialog() gets
called with retval < 0, which triggers an early return path in which
we forget to call unregister_dialog(), and as a result, assertions
fail all over the place the _next_ time you try to put up a Change
Settings dialog.
Also, the early return causes ctx.newconf to be memory-leaked. So
rather than just moving the unregister_dialog() call to above the
early return, a better fix is to remove the early return completely,
and simply treat retval<0 the same as retval==0: it doesn't matter
_how_ the user closed the config box without committing the changes,
it only matters that they did.
When I start Uppity in listening mode, it's useful to have it
acknowledge that it _has_ started up in that mode, and isn't (for
example) stuck somewhere in my local wrapper script.
Coverity complained that it was wrong to use rand() in a security
context, and although in this case it's _very_ marginal, I can't
actually disagree that the choice of which light to light up to avoid
giving information about passphrase length is a security context.
So, no more rand(); instead we instantiate a shiny Fortuna PRNG
instance, seed it in more or less the usual way, and use that as an
overkill-level method of choosing which light to light up next.
(Acknowledging that this is a slightly unusual application and less
critical than most, I don't actually put the passphrase characters
themselves into the PRNG, and I don't use a random-seed file.)
It's identical in uxnoise and winnoise, being written entirely in
terms of existing cross-platform functions. Might as well centralise
it into sshrand.c.
We have to use the file name we just failed to open to format an error
message _before_ freeing it, not after. If that use-after-free managed
not to cause a crash, we'd also leak the file descriptor 'outfd'.
Both spotted by Coverity (which is probably the first thing in years
to look seriously at any of the code designed for Ben's AFL exercise).
The recent rewriting in both the GTK and Windows keyboard handlers
left the keypad 'Enter' key in a bad state, when no override is
enabled that causes it to generate an escape sequence.
On Windows, a series of fallbacks was causing it to generate \r
regardless of configuration, whereas in Telnet mode it should default
to generating the special Telnet new-line sequence, and in response to
ESC[20h (enabling term->cr_lf_return) it should generate \r\n.
On GTK, it wasn't generating anything _at all_, and also, I can't see
any evidence that the GTK keyboard handler had ever remembered to
implement the cr_lf_return mode.
Now Keypad Enter in non-escape-sequence mode should behave just like
Return, on both platforms.
With this and the ciphers, I think we've now got the full range of
SSH-1 config options (such as they are) that correspond to varying the
KEXINIT strings in SSH-2.
Despite the name, AuthPolicy in uxserver.c was also holding the state
of the current connection, including in particular how far through the
multi-step test keyboard-interactive interaction we are. But now that
Uppity can handle multiple connections in the same run, we need to
reset that state between connections. So the tree234s of acceptable
user keys now live in an AuthPolicyShared structure, and AuthPolicy
proper is a field of server_instance.
All my instincts expect the shell subprocesses to start off in ~, so
it's confusing if they start off in some random PuTTY checkout
directory. So now we default to $HOME, and if I really do want the
latter, I can use the new config option to reselect '.'.
My helper scripts for invoking Uppity have been manually unsetting
things like XAUTHORITY and SSH_AUTH_SOCK, to avoid accidentally
passing them through from my primary login session, so that I don't
get confused about whether agent forwarding is happening, or end up
with one DISPLAY going with a different XAUTHORITY.
Now I clear these within Uppity itself, so the wrapping script won't
have to.
In some contexts (namely pterm on a pure Wayland system, and Uppity),
seat_get_x_display() will return NULL. In that situation uxpty.c was
cheerfully passing it to dupprintf regardless, which in principle is
undefined behaviour and in practice was causing it to construct the
silly environment string "DISPLAY=(null)".
Now we handle that case by unsetenv("DISPLAY") instead.
I've been busily adding new options, and forgot to document them all,
which will annoy me the next time I haven't used it for a week or two
if I don't write them all up now.
As and when I make this SSH server into a test suite, I'm not going to
want to wait for a gratuitous RSA key generation in every test run. So
now you can provide one in advance.
It has to be in SSH-1 format, because that's the format for which I
happen to already have internal API routines that return an RSAKey
instead of an opaque ssh_key. But since you also have to store it
without a passphrase, that doesn't really matter anyway.
I remembered to strbuf_free(realhost) on the IPv4-only error exit path
if gethostbyname() returns failure, but not on the _default_ one if
getaddrinfo() does.
There was no way to enable it for testing purposes at all until now.
Overriding the server KEX string to mention it doesn't help when it
was prevented from getting into the list that scan_kexinit_lists will
go through afterwards to find pointers to algorithm structures.
Uppity is not secure enough to listen on a TCP port as if it was a
normal SSH server. Until now, I've been using it by means of a local
proxy command, i.e. PuTTY invokes Uppity in the same way it might
invoke 'plink -nc'. This rigorously prevents any hostile user from
connecting to my utterly insecure test server, but it's a thundering
inconvenience as soon as you want to attach a debugger to the Uppity
process itself - you have to stick a gdbserver somewhere in the middle
of your already complicated shell pipeline, and then find a way to
connect back to it from a gdb in a terminal window.
So I've added an option to make Uppity listen on a TCP port in the
normal way - but it's protected using that /proc/net/tcp trick I just
added in the previous commit.
This is a Linux-specific trick that I'm quite fond of: I've used it
before in 'agedu' and a lot of my unpublished personal scriptery.
Suppose you want to run a listening network server in such a way that
it can only accept connections from processes under your own control.
Often it's not convenient to do this by adding an authentication step
to the protocol itself (either because the password management gets
hairy or because the protocol is already well defined). The 'right'
answer is to switch from TCP to Unix-domain sockets, because then you
can use the file permissions on the path leading to the socket inode
to ensure that no other user id can connect to it - but that's often
inconvenient as well, because if any _client_ of the server is not
already prepared to speak AF_UNIX your control then you can only trick
it into connecting to an AF_UNIX socket instead of TCP by applying a
downstream patch or resorting to LD_PRELOAD shenanigans.
But on Linux, there's an alternative shenanigan available, in the form
of /proc/net/tcp (or tcp6), which lists every currently active TCP
endpoint known to the kernel, and for each one, lists an owning uid.
Listen on localhost only. Then, when a connection comes in, look up
the far end of it in that file and see if the owning uid is the right
one!
I've always vaguely wondered if there would be uses for this trick in
PuTTY. One potentially useful one might be to protect the listening
sockets created by local-to-remote port forwarding. But for the
moment, I'm only planning to use it for a less security-critical
purpose, which will appear in the next commit.
This is an obviously useful test feature, since if nothing else it
will let me exercise every individual crypto primitive, even the ones
that the client-side configuration is too coarse-grained to describe
in detail (such as the difference between CBC and CTR mode versions of
the same cipher).
This mimics a bug in some old SSH servers for which PuTTY contains
compensation code (parsing an incoming "exit-signal" two ways and
seeing which one worked). I completely rewrote that code in commit
7535f645a, as part of the BinarySource rework. Now I can finally test
it sensibly.
Replaces a couple of existing strcmp, and does just slightly better
because as well as matching "--verbose" (say) it also matches
"--verbose=foo" and gives a comprehensible error message about it.
I've had to test banner handling several times recently, what with
trust sigils and the fix for CONF_ssh_show_banner. So it's the thing
I've most wanted to keep reconfiguring about Uppity so far.
This is much simpler than Conf, because I don't expect to have to copy
it around, load or save it to disk (or the Windows registry), or
serialise it between processes. So it can be a straightforward struct.
As yet there's nothing actually _in_ it. I've just created the
structure and arranged to pass it through to all the SSH layers. But
now it's here, it will be a place I can add configuration items as I
find I need them.
glob.h is another missing facility in Android+Termux.
The workaround is to condition out local wildcard support completely,
so that PSFTP commands like 'mput *.txt' won't manage to do anything.
But at least the program will compile.
Test-building inside Termux on Android, it seems that <pwd.h> in that
environment defines the important functions getpwnam and getpwuid, but
not the setpwent/endpwent with which we bookend them. Tolerate their
absence.
uClibc-ng does not provide <sys/auxv.h>, and a non-Linux-kernel-based
Unixlike system running on Arm will probably not provide
<asm/hwcap.h>. Now we check for both of those headers at autoconf
time, and if either one is absent, we don't do the runtime test for
Arm crypto acceleration.
This should only make a difference on systems where this module
previously failed to compile at all. But obviously it would be nicer
to find alternative ways to check for crypto acceleration on such
systems; patches welcome.
Not every system provides it (e.g. uClibc-ng); if one does not, the
Uppity SFTP server should now degrade sensibly to refusing attempts to
set the utimes on an already-open file.
Baruch Siach reports that in a uClibc-ng build environment, POLLRDNORM
and friends are only defined by poll.h if you #define _XOPEN_SOURCE
before including it. So now we do that, in case it helps - and we also
cope with those #defines still being absent, in case on some other
system even that doesn't help.
In my eagerness to make sure we didn't _accidentally_ change the
seat's trust status back to trusted at any point, I forgot to do it on
purpose if a second SSH login phase is legitimately run in the same
terminal after the first session has ended.
According to POSIX, this can legally not be defined 'where the [...]
value is equal to or greater than the stated minimum, but where the
value can vary depending on the file to which it is applied'. So if
limits.h hasn't defined PIPE_BUF, we define it ourself to the stated
minimum, to wit, _POSIX_PIPE_BUF.
Apparently it is actually undefined by <limits.h> on GNU/Hurd: Debian
has been carrying this patch downstream for that reason.
At the point when we change over the seat's trust status to untrusted
for the last time, to finish authentication, Plink will now present a
final interactive prompt saying 'Press Return to begin session'. This
is a hint that anything after that that resembles an auth prompt
should be treated with suspicion, because _PuTTY_ thinks it's finished
authenticating.
This is of course an annoying inconvenience for interactive users, so
I've tried to reduce its impact as much as I can. It doesn't happen in
GUI PuTTY at all (because the trust sigil system is used instead); it
doesn't happen if you use plink -batch (because then the user already
knows that they _never_ expect an interactive prompt); and it doesn't
happen if Plink's standard input is being redirected from anywhere
other than the terminal / console (because then it would be pointless
for the server to try to scam passphrases out of the user anyway,
since the user isn't in a position to enter one in response to a spoof
prompt). So it should only happen to people who are using Plink in a
terminal for interactive login purposes, and that's not _really_ what
I ever intended Plink to be used for (which is why it's never had any
out-of-band control UI like OpenSSH's ~ system).
If anyone _still_ doesn't like this new prompt, it can also be turned
off using the new -no-antispoof flag, if the user is willing to
knowingly assume the risk.
In terminal-based GUI applications, this is passed through to
term_set_trust_status, to toggle whether lines are prefixed with the
new trust sigil. In console applications, the function returns false,
indicating to the backend that it should employ some other technique
for spoofing protection.
This is not yet used by anything, but the idea is that it'll be a
graphic in the terminal window that can't be replicated by a server
sending escape sequences, and hence can be used as a reliable
indication that the text on a particular terminal line is generated by
PuTTY itself and not passed through from the server. This will make it
possible to detect a malicious server trying to mimic local prompts to
trick you out of information that shouldn't be sent over the wire
(such as private-key passphrases).
The trust sigil I've picked is a small copy of the PuTTY icon, which
is thematically nice (it can be read as if the PuTTY icon is the name
of the speaker in a dialogue) and also convenient because we had that
graphic available already on all platforms. (Though the contortions I
had to go through to make the GTK 1 code draw it were quite annoying.)
The trust sigil has the same dimensions as a CJK double-width
character, i.e. it's 2 character cells wide by 1 high.
Now, instead of each seat's prompt-handling function doing the
control-char sanitisation of prompt text, the SSH code does it. This
means we can do it differently depending on the prompt.
In particular, prompts _we_ generate (e.g. a genuine request for your
private key's passphrase) are not sanitised; but prompts coming from
the server (in keyboard-interactive mode, or its more restricted SSH-1
analogues, TIS and CryptoCard) are not only sanitised but also
line-length limited and surrounded by uncounterfeitable headers, like
I've just done to the authentication banners.
This should mean that if a malicious server tries to fake the local
passphrase prompt (perhaps because it's somehow already got a copy of
your _encrypted_ private key), you can tell the difference.
This goes with the existing 'to_server' flag (indicating whether the
values typed by the user are going to be sent over the wire or remain
local), to indicate whether the _text of the prompts_ has come over
the wire or is originated locally.
Like to_server, nothing yet uses this. It's a hedge against the
possibility of maybe having an option for all the auth prompts to work
via GUI dialog boxes.
When we're displaying double-width text as a result of the VT100 ESC#6
escape sequence or its friends, and the terminal width is an odd
number of columns, we divide by 2 the number of characters we'll even
try to display, and round _down_: if there's a rightmost odd column,
it stays blank, and doesn't show the left half of a double-width char.
In the GTK redraw function, that rounding-down can set the 'len'
variable to zero. But when we're displaying a character with Unicode
combining chars on top, that fails an assertion that len == 1, because
at the top of the function we set it to 1.
The fix is just to return early if len is reduced to zero by that
rounding: if we're not displaying any characters, then we don't have
to do anything at all.
I've always thought poll was more hassle to set up, because if you
want to reuse part of your pollfds list between calls then you have to
index every fd by its position in the list as well as the fd number
itself, which gives you twice as many indices to keep track of than if
the fd is always its own key.
But the problem is that select is fundamentally limited to the range
of fds that can fit in an fd_set, which is not the range of fds that
can _exist_, so I've had a change of heart and now have to go with
poll.
For the moment, I've surrounded it with a 'pollwrapper' structure that
lets me treat it more or less like select, containing a tree234 that
maps each fd to its location in the list, and also translating between
the simple select r/w/x classification and the richer poll flags.
That's let me do the migration with minimal disruption to the call
sites.
In future perhaps I can start using poll more directly, and/or using
the richer flag system (though the latter might be fiddly because of
sometimes being constrained to use the glib event loop). But this will
do for now.
My previous dodge to make the GTK 1 headers work with modern compilers
was to manually reset to -std=gnu89, which changed the semantics of
'inline' back to what glib.h was expecting. But that doesn't work now
the PuTTY code base expects to be able to use the rest of C99, so
instead I have to manually override the specific #defines that glib.h
uses to know how 'inline' works.
Also, moved that code in configure.ac out of the fallback branch that
manually detects GTK1, so that it will fire even if autoconf is run on
a system that still has the genuine GTK1 detection code. (Amazingly,
one still exists that I have access to!)
With that fixed, there's one more problem: the nethack_mode and
app_keypad_mode flags in gtkwin.c's key_event() are only used in the
GTK >= 2 branch of the ifdefs, so they should only be declared and set
in that branch as well, on pain of a -Wunused complaint.
Now instead of taking raw arguments to configure the output
StripCtrlChars with, it takes an enumerated value giving the context
of what's being sanitised, and allows the seat to decide what the
output parameters for that context should be.
The only context currently used is SIC_BANNER (SSH login banners).
I've also added a not-yet-used one for keyboard-interactive prompts.
Now if a pathname ends with a slash already, we detect that (using the
shiny new ptrlen_endswith), and don't bother putting another one in.
No functional change, but this should improve the occasional error
message, e.g. 'pscp remote:some.filename /' will now say it can't
create /some.filename instead of //some.filename.
Local functions in uxcons.c and wincons.c were calling the old
simplistic sanitise_term_data to print console-based prompts. Now they
use the same new system as everything else.
This removes the last use of the ASCII-centric sanitise_term_data.
If centralised code like the SSH implementation wants to sanitise
escape sequences out of a piece of server-provided text, it will need
to do it by making a locale-based StripCtrlChars if it's running in a
console context, or a Terminal-based one if it's in a GUI terminal-
window application.
All the other changes of behaviour needed between those two contexts
are handled by providing reconfigurable methods in the Seat vtable;
this one is no different. So now there's a new method in the Seat
vtable that will construct a StripCtrlChars appropriate to that kind
of seat. Terminal-window seats (gtkwin.c, window.c) implement it by
calling the new stripctrl_new_term(), and console ones use the locale-
based stripctrl_new().
The _nm strategy is slower, so I don't want to just change everything
over no matter what its contents. In this pass I've tried to catch
everything that holds the _really_ sensitive things like passwords,
private keys and session keys.
If a proxy command jabbers on standard error in a way that doesn't
involve any newline characters, we now won't keep buffering data for
ever.
(Not that I've heard of it happening, but I noticed the theoretical
possibility on the way past in a recent cleanup pass.)
The idea of these is that they centralise the common idiom along the
lines of
if (logical_array_len >= physical_array_size) {
physical_array_size = logical_array_len * 5 / 4 + 256;
array = sresize(array, physical_array_size, ElementType);
}
which happens at a zillion call sites throughout this code base, with
different random choices of the geometric factor and additive
constant, sometimes forgetting them completely, and generally doing a
lot of repeated work.
The new macro sgrowarray(array,size,n) has the semantics: here are the
array pointer and its physical size for you to modify, now please
ensure that the nth element exists, so I can write into it. And
sgrowarrayn(array,size,n,m) is the same except that it ensures that
the array has size at least n+m (so sgrowarray is just the special
case where m=1).
Now that this is a single centralised implementation that will be used
everywhere, I've also gone to more effort in the implementation, with
careful overflow checks that would have been painful to put at all the
previous call sites.
This commit also switches over every use of sresize(), apart from a
few where I really didn't think it would gain anything. A consequence
of that is that a lot of array-size variables have to have their types
changed to size_t, because the macros require that (they address-take
the size to pass to the underlying function).
The live versions of the dmemdump macros had a trailing semicolon in
the expansion, which would cause them to break if used in the wrong
syntactic context (e.g. between if and else with the natural semicolon
at the call site). The conditioned-out versions of those and of
debug() itself expanded to the empty string in place of the more usual
((void)0). And SECOND_PASS_ONLY in gtkmain.c's command-line handling
should have had the standard do ... while(0) wrapper to make it
reliably a single statement.