Naturally, there's one really glaring goof I find out instants after
'git push'! If Pageant starts a watchdog subprocess which will wait
until the main process terminates and then clean up the socket, then
it had better not have that subprocess keep the standard I/O handles
open, or else commands like eval $(pageant -X) won't terminate.
I've applied the same fix in the X11 socket creation, though I think
it's less critical there.
Unlike the traditional Unix SSH server organisation, the SFTP server
is built into the same process as all the rest of the code. sesschan.c
spots a subsystem request for "sftp", and responds to it by
instantiating an SftpServer object and swapping out its own vtable for
one that talks to it.
(I rather like the idea of an object swapping its own vtable for a
different one in the middle of its lifetime! This is one of those
tricks that would be absurdly hard to implement in a 'proper' OO
language, but when you're doing vtables by hand in C, it's no more
difficult than any other piece of ordinary pointer manipulation. As
long as the methods in both vtables expect the same physical structure
layout, it doesn't cause a problem.)
The SftpServer object doesn't deal directly with SFTP packet formats;
it implements the SFTP server logic in a more abstract way, by having
a vtable method for each SFTP request type with an appropriate
parameter list. It sends its replies by calling methods in another
vtable called SftpReplyBuilder, which in the normal case will write an
SFTP reply packet to send back to the client. So SftpServer can focus
more or less completely on the details of a particular filesystem API
- and hence, the implementation I've got lives in the unix source
directory, and works directly with file descriptors and struct stat
and the like.
(One purpose of this abstraction layer is that I may well want to
write a second dummy implementation, for test-suite purposes, with
completely controllable behaviour, and now I have a handy place to
plug it in in place of the live filesystem.)
In between sesschan's parsing of the byte stream into SFTP packets and
the SftpServer object, there's a layer in the new file sftpserver.c
which does the actual packet decoding and encoding: each request
packet is passed to that, which pulls the fields out of the request
packet and calls the appropriate method of SftpServer. It also
provides the default SftpReplyBuilder which makes the output packet.
I've moved some code out of the previous SFTP client implementation -
basic packet construction code, and in particular the BinarySink/
BinarySource marshalling fuinction for fxp_attrs - into sftpcommon.c,
so that the two directions can share as much as possible.
This server is NOT SECURE! If anyone is reading this commit message,
DO NOT DEPLOY IT IN A HOSTILE-FACING ENVIRONMENT! Its purpose is to
speak the server end of everything PuTTY speaks on the client side, so
that I can test that I haven't broken PuTTY when I reorganise its
code, even things like RSA key exchange or chained auth methods which
it's hard to find a server that speaks at all.
(For this reason, it's declared with [UT] in the Recipe file, so that
it falls into the same category as programs like testbn, which won't
be installed by 'make install'.)
Working title is 'Uppity', partly for 'Universal PuTTY Protocol
Interaction Test Yoke', but mostly because it looks quite like the
word 'PuTTY' with part of it reversed. (Apparently 'test yoke' is a
very rarely used term meaning something not altogether unlike 'test
harness', which is a bit of a stretch, but it'll do.)
It doesn't actually _support_ everything I want yet. At the moment,
it's a proof of concept only. But it has most of the machinery
present, and the parts it's missing - such as chained auth methods -
should be easy enough to add because I've built in the required
flexibility, in the form of an AuthPolicy object which can request
them if it wants to. However, the current AuthPolicy object is
entirely trivial, and will let in any user with the password "weasel".
(Another way in which this is not a production-ready server is that it
also has no interaction with the OS's authentication system. In
particular, it will not only let in any user with the same password,
but it won't even change uid - it will open shells and forwardings
under whatever user id you started it up as.)
Currently, the program can only speak the SSH protocol on its standard
I/O channels (using the new FdSocket facility), so if you want it to
listen on a network port, you'll have to run it from some kind of
separate listening program similar to inetd. For my own tests, I'm not
even doing that: I'm just having PuTTY spawn it as a local proxy
process, which also conveniently eliminates the risk of anyone hostile
connecting to it.
The bulk of the actual code reorganisation is already done by previous
commits, so this change is _mostly_ just dropping in a new set of
server-specific source files alongside the client-specific ones I
created recently. The remaining changes in the shared SSH code are
numerous, but all minor:
- a few extra parameters to BPP and PPL constructors (e.g. 'are you
in server mode?'), and pass both sets of SSH-1 protocol flags from
the login to the connection layer
- in server mode, unconditionally send our version string _before_
waiting for the remote one
- a new hook in the SSH-1 BPP to handle enabling compression in
server mode, where the message exchange works the other way round
- new code in the SSH-2 BPP to do _deferred_ compression the other
way round (the non-deferred version is still nicely symmetric)
- in the SSH-2 transport layer, some adjustments to do key derivation
either way round (swapping round the identifying letters in the
various hash preimages, and making sure to list the KEXINITs in the
right order)
- also in the SSH-2 transport layer, an if statement that controls
whether we send SERVICE_REQUEST and wait for SERVICE_ACCEPT, or
vice versa
- new ConnectionLayer methods for opening outgoing channels for X and
agent forwardings
- new functions in portfwd.c to establish listening sockets suitable
for remote-to-local port forwarding (i.e. not under the direction
of a Conf the way it's done on the client side).
If the child process's standard input is provided by a pipe that's
separate from its output channels, we can - and should - honour a
request to cause that process to receive input EOF, by closing the
output end of that pipe.
As usual, we do this by setting a pending-EOF flag and calling
try_write, to ensure that any buffered output data is sent before the
pipe actually closes.
Not every "session" channel in SSH allocates a pty at all, of course,
and so I'll need a way to run a subprocess without doing so. The
simplest approach seems to be to expand uxpty's remit so that the pty
is optional: now it can open either a pty or a set of pipes for
stdin/out/err, according to an option provided to pty_backend_create.
(It amuses me that without this option I'd have an SSH server which is
incapable of _not_ honouring the "pty-req" channel request. That's
normally the easy part!)
This breaks the previous one-to-one coupling between pty backend
instances and file descriptors passed to uxsel, which I was using to
look up the Pty structure in a tree234 indexed by fd when an uxsel
notification came back. So now each Pty structure contains a
collection of subobjects of a new type PtyFd, and _those_ are what's
stored in the fd-indexed tree.
Another awkward part is that uxsel_set is not incremental: the rwx
flags you pass to it completely supersede the previous set for that
file descriptor, so I had to set up the logic that decides whether
we're trying to read or write each fd in a way that can cope equally
well with the fd aliasing another one (if it's the pty master) or not
(if there are three completely separate pipes).
The SS_SIGFOO family are implemented by sending a signal directly to
the pid of the immediate child process.
I had had the vague idea that it might be more desirable to send the
specified signal to the foreground process group in the tty. That way,
you'd be able to SIGINT (say) the foreground job in a shell session,
and return to the shell _prompt_ without terminating the whole
session, and you could do this in an emergency even if the job was a
full-screen application which had configured termios so that no
keystroke generated SIGINT.
But as far as I can see there's no actual way to do that. I wasn't
able to find any ioctl or termios call to send a signal to a pty's
foreground pgrp, and you can't even do it manually via kill(2) because
first you'd have to find out what the pgrp id _is_, and according to
the man pages, you can only call tcgetpgrp on the slave end of the pty
and even then only if it's your controlling terminal.
So SS_SIGFOO goes to the child process, because that's the only place
I can find that I _can_ send it to sensibly.
SS_BRK translates to tcsendbreak, of course (though I haven't actually
seen any effect of calling this on a pty master, not even if I set
PARMRK on the slave end which by my understanding _ought_ to show me
when break events occur).
This will be applied to the pty's termios settings at creation time,
superseding the default settings uxpty has always used. It works by
including the new sshttymodes.h with TTYMODES_LOCAL_ONLY defined, so
that modes not supported by a particular Unix system are automatically
quietly ignored.
Of course, a struct ssh_ttymodes always has the option of representing
"please make no change to the defaults", and of course, that's
precisely what is done by the one that pty_init constructs for clients
that aren't calling pty_backend_create directly.
The function that does the main pty setup is now called
pty_backend_create(), and has an API better suited to uxpty in
particular than the standard backend_init() virtual constructor. It
leaves off a load of standard parameters to backend_init() which
aren't really relevant to this backend, and it adds the 'argv'
parameter to pass in a split-up command line, which is unique to it.
The old creation function still exists, as a tiny wrapper that calls
the new pty_backend_create. And that version still gets the argv
parameter from the process-global variable pty_argv[], so the call
sites in pterm haven't had to change for this.
This will make it possible to instantiate a pty backend directly from
the SSH server code, without having to do anything really excessively
cumbersome to pass in a subcommand in the form of pre-split argv. (And
I'll add a few more specialist parameters to the new function shortly.)
There was a bit of a race condition depending on whether uxpty spotted
the EOF/EIO on the process's output first, or the SIGCHLD for its
actual termination: if the former came first, it would never bother to
reap the exit code at all.
It still doesn't bother if it's closing the session immediately and
the process genuinely _hasn't_ died (say, if it detaches itself
completely from the controlling tty to run in the background like a
weird parody of an old DOS TSR). But now when we see EOF, we make an
immediate (but nonblocking) attempt to wait for the child process, in
case its exit code was already available and we just hadn't noticed
yet.
The uxpty backend is going to be reused to implement the "session"
channel type in the upcoming SSH server implementation, which puts
quite a few new requirements on it. The first of them is that when we
get EOF from the subprocess's output channel (or rather, EIO from the
pty), we should actually notify the Seat of this.
In principle we should have been doing this all along, I'm pretty
sure. It hasn't happened to matter until now because the receiving
Seats haven't done much with that notification. But it will matter
when that's what controls the sending of SSH_MSG_CHANNEL_EOF.
ssh2connection.c now knows how to unmarshal the message formats for
all the channel requests we'll need to handle when we're the server
and a client sends them. Each one is translated into a call to a new
method in the Channel vtable, which is implemented by a trivial
'always fail' routine in every channel type we know about so far.
This will be used for the server side of X forwarding. It wraps up the
mechanics of listening on the right TCP port and (if possible) the
associated AF_UNIX socket, and also creates an appropriate X authority
file containing authorisation data provided by its caller.
Like the new platform_create_agent_socket, this function spawns a
watchdog subprocess to clean up the mess afterwards, in the hope of at
least _most_ of the time not leaving old sockets and authority files
lying around /tmp,
The code in Pageant that sets up the Unix socket and its containing
directory now lives in a separate file, uxagentsock.c, where it will
also be callable from the upcoming new SSH server when it wants to
create a similar socket for agent forwarding.
While I'm at it, I've also added a feature to create a watchdog
subprocess that will try to clean up the socket and directory once
Pageant itself terminates, in the hope of leaving less cruft lying
around /tmp.
Some kinds of channel, even after they've sent EOF in both directions,
still have something to do before they initiate the CLOSE mechanism
and wind up the channel completely. For example, a session channel
with a subprocess running inside it will want to be sure to send the
"exit-status" or "exit-signal" notification, even if that happens
after bidirectional EOF of the data channels.
Previously, the SSH-2 connection layer had the standard policy that
once EOF had been both sent and received, it would start the final
close procedure. There's a method chan_want_close() by which a Channel
could vary this policy in one direction, by indicating that it wanted
the close procedure to commence after EOF was sent in only one
direction. Its parameters are a pair of booleans saying whether EOF
has been sent, and whether it's been received.
Now chan_want_close can vary the policy in the other direction as
well: if it returns FALSE even when _both_ parameters are true, the
connection layer will honour that, and not send CHANNEL_CLOSE. If it
does that, the Channel is responsible for indicating when it _does_
want close later, by calling sshfwd_initiate_close.
Previously, it returned a human-readable string suitable for log
files, which tried to say something useful about the remote end of a
socket. Now it returns a whole SocketPeerInfo structure, of which that
human-friendly log string is just one field, but also some of the same
information - remote IP address and port, in particular - is provided
in machine-readable form where it's available.
That's more directly useful in uxpty.c (which is currently the only
actual client of the function), and also matches the data that SSH
clients send in "pty-req". Also, it makes that method behave more like
the GUI query function get_window_pixels used by terminal.c (with the
sole exception that unlike g_w_p it's allowed to return failure), so
it becomes even more trivial to implement in the GUI front ends.
The new FdSocket just takes an arbitrary pair of file descriptors to
read and write, optionally with an extra input fd providing the
standard error output from a command. uxproxy.c now just does the
forking and pipe setup, and once it's got all its fds, it hands off to
FdSocket to actually do the reading and writing.
This is very like the reorganisation I did on the Windows side in
commit 98a6a3553 (back in 2013, in preparation for named-pipe sockets
and connection sharing). The idea is that it should enable me to make
a thing that the PuTTY code base sees as a Socket, but which actually
connects to the standard I/O handles of the process it lives in.
Each of the new subroutines corresponds to one of the channel types
for which we know how to parse a CHANNEL_OPEN, and has a collection of
parameters corresponding to the fields of that message structure.
ssh2_connection_filter_queue now confines itself to parsing the
message, calling one of those functions, and constructing an
appropriate reply message if any.
Instead of the central code in ssh2_connection_filter_queue doing both
the job of parsing the channel request and deciding whether it's
acceptable, each Channel vtable now has a method for every channel
request type we recognise.
This is a new vtable-based abstraction which is passed to a backend in
place of Frontend, and it implements only the subset of the Frontend
functions needed by a backend. (Many other Frontend functions still
exist, notably the wide range of things called by terminal.c providing
platform-independent operations on the GUI terminal window.)
The purpose of making it a vtable is that this opens up the
possibility of creating a backend as an internal implementation detail
of some other activity, by providing just that one backend with a
custom Seat that implements the methods differently.
For example, this refactoring should make it feasible to directly
implement an SSH proxy type, aka the 'jump host' feature supported by
OpenSSH, aka 'open a secondary SSH session in MAINCHAN_DIRECT_TCP
mode, and then expose the main channel of that as the Socket for the
primary connection'. (Which of course you can already do by spawning
'plink -nc' as a separate proxy process, but this would permit it in
the _same_ process without anything getting confused.)
I've centralised a full set of stub methods in misc.c for the new
abstraction, which allows me to get rid of several annoying stubs in
the previous code. Also, while I'm here, I've moved a lot of
duplicated modalfatalbox() type functions from application main
program files into wincons.c / uxcons.c, which I think saves
duplication overall. (A minor visible effect is that the prefixes on
those console-based fatal error messages will now be more consistent
between applications.)
This was used by ldisc to communicate back to the front end that a key
had been pressed (or rather, that a keypress had caused a nonzero
amount of session input data). Its only nontrivial implementation was
in gtkwin.c, which used that notification to implement the Unix GUI's
"close window on keypress, if the session was already over" policy.
(Which in turn is Unix-specific, because the rationale is that
sometimes X servers don't have a functioning window manager, so it's
useful to have a way of telling any application to close without using
WM-provided facilities like a close button.)
But gtkwin.c doesn't need to be told by the ldisc that a keypress
happened - it's the one _sending_ those keypresses to ldisc in the
first place! So I've thrown away the three stub implementations of
frontend_keypress, removed the call to it in ldisc.c, and replaced it
with calls in gtkwin.c at all the points during keypress handling
that call ldisc_send.
A visible effect is that pterm's close-on-keypress behaviour will now
only trigger on an actual (input-generating) _keypress_, and not on
other input generation such as a paste action. I think that's an
improvement.
LogContext is now the owner of the logevent() function that back ends
and so forth are constantly calling. Previously, logevent was owned by
the Frontend, which would store the message into its list for the GUI
Event Log dialog (or print it to standard error, or whatever) and then
pass it _back_ to LogContext to write to the currently open log file.
Now it's the other way round: LogContext gets the message from the
back end first, writes it to its log file if it feels so inclined, and
communicates it back to the front end.
This means that lots of parts of the back end system no longer need to
have a pointer to a full-on Frontend; the only thing they needed it
for was logging, so now they just have a LogContext (which many of
them had to have anyway, e.g. for logging SSH packets or session
traffic).
LogContext itself also doesn't get a full Frontend pointer any more:
it now talks back to the front end via a little vtable of its own
called LogPolicy, which contains the method that passes Event Log
entries through, the old askappend() function that decides whether to
truncate a pre-existing log file, and an emergency function for
printing an especially prominent message if the log file can't be
created. One minor nice effect of this is that console and GUI apps
can implement that last function subtly differently, so that Unix
console apps can write it with a plain \n instead of the \r\n
(harmless but inelegant) that the old centralised implementation
generated.
One other consequence of this is that the LogContext has to be
provided to backend_init() so that it's available to backends from the
instant of creation, rather than being provided via a separate API
call a couple of function calls later, because backends have typically
started doing things that need logging (like making network
connections) before the call to backend_provide_logctx. Fortunately,
there's no case in the whole code base where we don't already have
logctx by the time we make a backend (so I don't actually remember why
I ever delayed providing one). So that shortens the backend API by one
function, which is always nice.
While I'm tidying up, I've also moved the printf-style logeventf() and
the handy logevent_and_free() into logging.c, instead of having copies
of them scattered around other places. This has also let me remove
some stub functions from a couple of outlying applications like
Pageant. Finally, I've removed the pointless "_tag" at the end of
LogContext's official struct name.
This is the structure that stores the truncated version of the Event
Log data to be displayed by the GTK Event Log dialog. It persists for
the lifetime of the parent SSH window, so it was deliberate that it
wasn't freed on destruction of the dialog itself, but I also forgot to
free it on destruction of the SSH window. (This will be more important
in multi-connection process architectures like the OS X port, of
course.)
While I'm at it, I'll follow my recent practice by exposing the
structure tag outside gtkdlg.c so that callers can more easily not
confuse it with some other kind of void *.
Looks as if I introduced this in commit 733fcca2c, where the pointer
returned from enum_settings_start() stopped being the same thing as
the underlying 'DIR *' - I needed to retain a check for the outer
containing structure not being NULL but the DIR * being NULL inside
it.
These are things where no fix was actually necessary in the code, but
the FIXME indicated that the comment itself was either in need of a
rewrite or removal.
It's never set to anything but NULL at any call site, and there's been
a FIXME comment in uxucs.c for ages saying it should be removed. I
think it only existed in the first place because it was a facility
supported by the underlying Windows API function and we couldn't see a
reason _not_ to pass it through. But I'm cleaning up FIXMEs, so we
should get rid of it.
(It stood for 'default used', incidentally - as in 'did the function
at any point have to make use of the parameter providing a default
fallback character?'. Nothing to do with _defusing_ things :-)
Ian Jackson points out that the Linux kernel has a macro of this name
with the same purpose, and suggests that it's a good idea to use the
same name as they do, so that at least some people reading one code
base might recognise it from the other.
I never really thought very hard about what order FROMFIELD's
parameters should go in, and therefore I'm pleasantly surprised to
find that my order agrees with the kernel's, so I don't have to
permute every call site as part of making this change :-)
I don't actually know why this was ever here; it appeared in the very
first commit that invented Plug in the first place (7b0e08270) without
explanation. Perhaps Dave's original idea was that sometimes you'd
need those macros _not_ to be defined so that the same names could be
reused as the methods for a particular Plug instance? But I don't
think that ever actually happened, and the code base builds just fine
with those macros defined unconditionally just like all the other sets
of method macros we now have, so let's get rid of this piece of cruft
that was apparently unnecessary all along.
I think that means that _every_ one of my traitoids is now a struct
containing a vtable pointer as one of its fields (albeit sometimes the
only field), and never just a bare pointer.
Now that I'm doing that in so many of the new classes as a more
type-safe alternative to ordinary C casts, I should make sure all the
old code is also reaping the benefits. This commit converts the system
of unifont vtables in the GTK front end, and also the 'unifontsel'
structure that exposes only a few of its fields outside gtkfont.c.
All the main backend structures - Ssh, Telnet, Pty, Serial etc - now
describe structure types themselves rather than pointers to them. The
same goes for the codebase-wide trait types Socket and Plug, and the
supporting types SockAddr and Pinger.
All those things that were typedefed as pointers are older types; the
newer ones have the explicit * at the point of use, because that's
what I now seem to be preferring. But whichever one of those is
better, inconsistently using a mixture of the two styles is worse, so
let's make everything consistent.
A few types are still implicitly pointers, such as Bignum and some of
the GSSAPI types; generally this is either because they have to be
void *, or because they're typedefed differently on different
platforms and aren't always pointers at all. Can't be helped. But I've
got rid of the main ones, at least.
Otherwise we loop round repeatedly with the event loop continuing to
report the same EOF condition on them over and over again, consuming
CPU pointlessly and probably causing other knock-on trouble too.
Without this, we don't receive EOF notifications on pipes, because gtk
uses poll rather than select, which separates those out into distinct
event types.
If you call plug_closing directly from localproxy_try_send, which can
in turn be called directly from sk_write, then the plug's
implementation of plug_closing may well free things that the caller of
sk_write expected not to have vanished.
The corresponding routine in uxnet.c pushes that call to plug_closing
into a toplevel callback, so let's do that here too.
In order to list cross-certifiable host keys in the GUI specials menu,
the SSH backend has been inventing new values on the end of the
Telnet_Special enumeration, starting from the value TS_LOCALSTART.
This is inelegant, and also makes it awkward to break up special
handlers (e.g. to dispatch different specials to different SSH
layers), since if all you know about a special is that it's somewhere
in the TS_LOCALSTART+n space, you can't tell what _general kind_ of
thing it is. Also, if I ever need another open-ended set of specials
in future, I'll have to remember which TS_LOCALSTART+n codes are in
which set.
So here's a revamp that causes every special to take an extra integer
argument. For all previously numbered specials, this argument is
passed as zero and ignored, but there's a new main special code for
SSH host key cross-certification, in which the integer argument is an
index into the backend's list of available keys. TS_LOCALSTART is now
a thing of the past: if I need any other open-ended sets of specials
in future, I can add a new top-level code with a nicely separated
space of arguments.
While I'm at it, I've removed the legacy misnomer 'Telnet_Special'
from the code completely; the enum is now SessionSpecialCode, the
struct containing full details of a menu entry is SessionSpecial, and
the enum values now start SS_ rather than TS_.
Originally, it controlled whether ssh.c should send terminal messages
(such as login and password prompts) to terminal.c or to stderr. But
we've had the from_backend() abstraction for ages now, which even has
an existing flag to indicate that the data is stderr rather than
stdout data; applications which set FLAG_STDERR are precisely those
that link against uxcons or wincons, so from_backend will do the
expected thing anyway with data sent to it with that flag set. So
there's no reason ssh.c can't just unconditionally pass everything
through that, and remove the special case.
FLAG_STDERR was also used by winproxy and uxproxy to decide whether to
capture standard error from a local proxy command, or whether to let
the proxy command send its diagnostics directly to the usual standard
error. On reflection, I think it's better to unconditionally capture
the proxy's stderr, for three reasons. Firstly, it means proxy
diagnostics are prefixed with 'proxy:' so that you can tell them apart
from any other stderr spew (which used to be particularly confusing if
both the main application and the proxy command were instances of
Plink); secondly, proxy diagnostics are now reliably copied to packet
log files along with all the other Event Log entries, even by
command-line tools; and thirdly, this means the option to suppress
proxy command diagnostics after the main session starts will actually
_work_ in the command-line tools, which it previously couldn't.
A more minor structure change is that copying of Event Log messages to
stderr in verbose mode is now done by wincons/uxcons, instead of
centrally in logging.c (since logging.c can now no longer check
FLAG_STDERR to decide whether to do it). The total amount of code to
do this is considerably smaller than the defensive-sounding comment in
logevent.c explaining why I did it the other way instead :-)
Now there's a centralised routine in misc.c to do the sanitisation,
which copies data on to an outgoing bufchain. This allows me to remove
from_backend_untrusted() completely from the frontend API, simplifying
code in several places.
Two use cases for untrusted-terminal-data sanitisation were in the
terminal.c prompts handler, and in the collection of SSH-2 userauth
banners. Both of those were writing output to a bufchain anyway, so
it was very convenient to just replace a bufchain_add with
sanitise_term_data and then not have to worry about it again.
There was also a simplistic sanitiser in uxcons.c, which I've now
replaced with a call to the good one - and in wincons.c there was a
FIXME saying I ought to get round to that, which now I have!
Clients outside ssh.c - all implementations of Channel - will now not
see the ssh_channel data type itself, but only a subobject of the
interface type SshChannel. All the sshfwd_* functions have become
methods in that interface type's vtable (though, wrapped in the usual
kind of macros, the call sites look identical).
This paves the way for me to split up the SSH-1 and SSH-2 connection
layers and have each one lay out its channel bookkeeping structure as
it sees fit; as long as they each provide an implementation of the
sshfwd_ method family, the types behind that need not look different.
A minor good effect of this is that the sshfwd_ methods are no longer
global symbols, so they don't have to be stubbed in Unix Pageant to
get it to compile.
Most of these were 'void *' because they weren't even reliably a
structure type underneath - the per-OS storage systems would directly
cast read/write/enum settings handles to and from random things like
FILE *, Unix DIR *, or Windows HKEY. So I've wrapped them in tiny
structs for the sake of having a sensible structure tag visible
elsewhere in the code.
'struct draw_ctx' has a structure tag inside gtkwin.c, so as per this
week's standard practice, let's expose the tag elsewhere so that
pointers declared that way can't be confused with anything else.
This was a particularly confusing piece of type-danger, because three
different types were passed outside sshshare.c as 'void *' and only
human vigilance prevented one coming back as the wrong one. Now they
all keep their opaque structure tags when they move through other
parts of the code.
There's now an interface called 'Channel', which handles the local
side of an SSH connection-layer channel, in terms of knowing where to
send incoming channel data to, whether to close the channel, etc.
Channel and the previous 'struct ssh_channel' mutually refer. The
latter contains all the SSH-specific parts, and as much of the common
logic as possible: in particular, Channel doesn't have to know
anything about SSH packet formats, or which SSH protocol version is in
use, or deal with all the fiddly stuff about window sizes - with the
exception that x11fwd.c's implementation of it does have to be able to
ask for a small fixed initial window size for the bodgy system that
distinguishes upstream from downstream X forwardings.
I've taken the opportunity to move the code implementing the detailed
behaviour of agent forwarding out of ssh.c, now that all of it is on
the far side of a uniform interface. (This also means that if I later
implement agent forwarding directly to a Unix socket as an
alternative, it'll be a matter of changing just the one call to
agentf_new() that makes the Channel to plug into a forwarding.)
This is another major source of unexplained 'void *' parameters
throughout the code.
In particular, the currently unused testback.c actually gave the wrong
pointer type to its internal store of the frontend handle - it cast
the input void * to a Terminal *, from which it got implicitly cast
back again when calling from_backend, and nobody noticed. Now it uses
the right type internally as well as externally.
Nearly every part of the code that ever handles a full backend
structure has historically done it using a pair of pointer variables,
one pointing at a constant struct full of function pointers, and the
other pointing to a 'void *' state object that's passed to each of
those.
While I'm modernising the rest of the code, this seems like a good
time to turn that into the same more or less type-safe and less
cumbersome system as I'm using for other parts of the code, such as
Socket, Plug, BinaryPacketProtocol and so forth: the Backend structure
contains a vtable pointer, and a system of macro wrappers handles
dispatching through that vtable.
Same principle again - the more of these structures have globally
visible tags (even if the structure contents are still opaque in most
places), the fewer of them I can mistake for each other.
That's one fewer anonymous 'void *' which might be accidentally
confused with some other pointer type if I misremember the order of
function arguments.
While I'm here, I've made its pointer-nature explicit - that is,
'Ldisc' is now a typedef for the structure type itself rather than a
pointer to it. A stylistic change only, but it feels more natural to
me these days for a thing you're going to eventually pass to a 'free'
function.
This commit adds the new ids and fingerprints in the keys appendix of
the manual, and moves the old ones down into the historic-keys
section. I've tweaked a few pieces of wording for ongoing use, so that
they don't imply a specific number of past key rollovers.
The -pgpfp option in all the tools now shows the new Master Key
fingerprint and the previous (2015) one. I've adjusted all the uses of
the #defines in putty.h so that future rollovers should only have to
modify the #defines themselves.
Most importantly, sign.sh bakes in the ids of the current release and
snapshot keys, so that snapshots will automatically be signed with the
new snapshot key and the -r option will invoke the new release key.
This formalises my occasional habit of using a single malloc to make a
block that contains a header structure and a data buffer that a field
of the structure will point to, allowing it to be freed in one go
later. Previously I had to do this by hand, losing the type-checking
advantages of snew; now I've written an snew-style macro to do the
job, plus an accessor macro to cleanly get the auxiliary buffer
pointer afterwards, and switched existing instances of the pattern
over to using that.
The general wisdom these days - in particular as given by the Linux
urandom(4) man page - seems to be that there's no need to use the
blocking /dev/random any more unless you're running at very early boot
time when the system random pool is at serious risk of not having any
entropy in it at all.
In case of non-Linux systems that don't think /dev/urandom is a
standard name, I fall back to /dev/random if /dev/urandom can't be
found.
This parameter returned a substring of the input, which was used for
two purposes. Firstly, it was used to hash the host and server keys
during the initial SSH-1 key setup phase; secondly, it was used to
check the keys in Pageant against the public key blob of a key
specified on the command line.
Unfortunately, those two purposes didn't agree! The first one needs
just the bare key modulus bytes (without even the SSH-1 mpint length
header); the second needs the entire key blob. So, actually, it seems
to have never worked in SSH-1 to say 'putty -i keyfile' and have PuTTY
find that key in Pageant and not have to ask for the passphrase to
decrypt the version on disk.
Fixed by removing that parameter completely, which simplifies all the
_other_ call sites, and replacing it by custom code in those two
places that each does the actually right thing.
There are several old functions that the previous commits have removed
all, or nearly all, of the references to. match_ssh_id is superseded
by ptrlen_eq_string; get_ssh_{string,uint32} is yet another replicated
set of decode functions (this time _partly_ centralised into misc.c);
the old APIs for the SSH-1 RSA decode functions are gone (together
with their last couple of holdout clients), as are
ssh{1,2}_{read,write}_bignum and ssh{1,2}_bignum_length.
Particularly odd was the use of ssh1_{read,write}_bignum in the SSH-2
Diffie-Hellman implementation. I'd completely forgotten I did that!
Now replaced with a raw bignum_from_bytes, which is simpler anyway.
Like the corresponding rewrite of conf serialisation, this affects not
just conf_deserialise itself but also the per-platform filename and
fontspec deserialisers.
Now I've got FROMFIELD, I can rework it so that structures providing
an implementation of the Socket or Plug trait no longer have to have
the vtable pointer as the very first thing in the structure. In
particular, this means that the ProxySocket structure can now directly
implement _both_ the Socket and Plug traits, which is always
_logically_ how it's worked, but previously it had to be implemented
via two separate structs linked to each other.
This is a cleanup I started to notice a need for during the BinarySink
work. It removes a lot of faffing about casting things to char * or
unsigned char * so that some API will accept them, even though lots of
such APIs really take a plain 'block of raw binary data' argument and
don't care what C thinks the signedness of that data might be - they
may well reinterpret it back and forth internally.
So I've tried to arrange for all the function call APIs that ought to
have a void * (or const void *) to have one, and those that need to do
pointer arithmetic on the parameter internally can cast it back at the
top of the function. That saves endless ad-hoc casts at the call
sites.
This removes a lot of pointless duplications of those constants.
Of course, _ideally_, I should upgrade to C99 bool throughout the code
base, replacing TRUE and FALSE with true and false and tagging
variables explicitly as bool when that's what they semantically are.
But that's a much bigger piece of work, and shouldn't block this
trivial cleanup!
This simplifies the client code both in ssh.c and in the client side
of Pageant.
I've cheated a tiny bit by preparing agent requests in a strbuf that
has space reserved at the front for the packet frame, which makes life
easier for the code that sends them off.
This affects all the functions that generate public and private key
and signature blobs of all kinds, plus ssh_ecdhkex_getpublic. Instead
of returning a bare block of memory and taking an extra 'int *length'
parameter, all these functions now write to a BinarySink, and it's the
caller's job to have prepared an appropriate one where they want the
output to go (usually a strbuf).
The main value of this change is that those blob-generation functions
were chock full of ad-hoc length-counting and data marshalling. You
have only to look at rsa2_{public,private}_blob, for example, to see
the kind of thing I was keen to get rid of!
Now instead of iterating through conf twice in separate functions,
once to count up the size of the serialised data and once to write it
out, I just go through once and dump it all in a strbuf.
(Of course, I could still do a two-pass count-then-allocate approach
easily enough in this system; nothing would stop me writing a
BinarySink implementation that didn't actually store any data and just
counted its size, and then I could choose at each call site whether I
preferred to do it that way.)
In fact, those functions don't even exist any more. The only way to
get data into a primitive hash state is via the new put_* system. Of
course, that means put_data() is a viable replacement for every
previous call to one of the per-hash update functions - but just
mechanically doing that would have missed the opportunity to simplify
a lot of the call sites.
This centralises a few things that multiple header files were
previously defining, and were protecting against each other's
redefinition with ifdefs - small things like structs and typedefs. Now
all those things are in a defs.h which is by definition safe to
include _first_ (out of all the codebase-local headers) and only need
to be defined once.
Lots of functions had really generic names (like 'makekey'), or names
that missed out an important concept (like 'rsakey_pubblob', which
loads a public blob from a _file_ and doesn't generate it from an
in-memory representation at all). Also, the opaque 'int order' that
distinguishes the two formats of public key blob is now a mnemonic
enumeration, and while I'm at it, rsa_ssh1_public_blob takes one of
those as an extra argument.
This seems to be a knock-on effect of my recent reworking of the SSH
code to be based around queues and callbacks. The loop iteration
function in uxsftp.c (ssh_sftp_do_select) would keep going round its
select loop until something had happened on one of its file
descriptors, and then return to the caller in the assumption that the
resulting data might have triggered whatever condition the caller was
waiting for - and if not, then the caller checks, finds nothing
interesting has happened, and resumes looping with no harm done.
But now, when something happens on an fd, it doesn't _synchronously_
trigger the follow-up condition PSFTP was waiting for (which, at
startup time, happens to be back->sendok() starting to return TRUE).
Instead, it schedules a callback, which will schedule a callback,
which ... ends up setting that flag. But by that time, the loop
function has already returned, the caller has found nothing
interesting and resumed looping, and _now_ the interesting thing
happens but it's too late because ssh_sftp_do_select will wait until
the next file descriptor activity before it next returns.
Solution: give run_toplevel_callbacks a return value which says
whether it's actually done something, and if so, return immediately in
case that was the droid the caller was looking for. As it were.
In commit 528513dde I absentmindedly replaced a write to the local
variable 'need_size' of drawing_area_setup with a write to
inst->drawing_area_setup_needed, imagining that they had the same
effect. But actually, need_size was doing two jobs and I only replaced
one of them: it was also the variable that indicated that the logical
terminal size had changed and so we had to call term_size() to make
the terminal.c data structures resize themselves appropriately. The
loss of that call also inhibited generation of SIGWINCH.
NFC for the moment, because the bufchain is always specially
constructed to hold exactly the same data that would have been passed
in to the function as a (pointer,length) pair. But this API change
allows get_userpass_input to express the idea that it consumed some
but not all of the data in the bufchain, which means that later on
I'll be able to point the same function at a longer-lived bufchain
containing the full stream of keyboard input and avoid dropping
keystrokes that arrive too quickly after the end of an interactive
password prompt.
NFC: this is a preliminary refactoring, intended to make my life
easier when I start changing around the APIs used to pass user
keyboard input around. The fewer functions even _have_ such an API,
the less I'll have to do at that point.
Changing the window's font size with Alt-< or Alt-> was not setting
any of the flags that make drawing_area_setup consider itself to have
been non-spuriously called, so the real window would enlarge without
the backing surface also doing so.
Since Pageant contains its own passphrase prompt system rather than
delegating it to another process, it's not trivial to use it in other
contexts. But having gone to the effort of coming up with my own
askpass system that (I think) does a better job at not revealing the
length of the password, I _want_ to use it in other contexts where a
GUI passphrase or password prompt is needed. Solution: an --askpass
option.
Mostly for debugging purposes, because I'm tired of having to use
'setsid' to force Pageant to select the GUI passphrase prompt when I'm
trying to fix bugs in gtkask.c. But I can also imagine situations in
which the ability to force a GUI prompt window might be useful to end
users, for example if the process does _technically_ have a
controlling terminal but it's not a user-visible one (say, in the back
end of some automation tool like expect(1)).
For symmetry, I also provide an option to force the tty prompt. That's
less obviously useful, because that's already the preferred prompt
type when both methods are available - so the only use for it would be
if you wanted to ensure that Pageant didn't _accidentally_ try to
launch a GUI prompt, and aborted with an error if it couldn't use a
tty prompt.
I've found Unix Pageant's GTK password prompt to be a bit flaky on
Ubuntu 18.04. Part of the reason for that seems to be (I _think_) that
GTK has changed its internal order of setting things up, so that you
can no longer call gtk_widget_show_now() and expect that when it
returns everything is ready to do a gdk_seat_grab. Another part is
that - completely mysteriously as far as I can see - a _failed_
gdk_seat_grab(GDK_SEAT_CAPABILITY_KEYBOARD) has the side effect of
calling gdk_window_hide on the window you gave it!
So I've done a considerable restructuring that means we no longer
attempt to do the keyboard grab synchronously in gtk_askpass_setup.
Instead, we make keyboard grab attempts during the run of gtk_main,
scheduling each one on a timer if the previous attempt fails.
This means I need a visual indication of 'not ready for you to type
anything yet', which I've arranged by filling in the three drawing
areas to mid-grey. At the point when the keyboard grab completes and
the window becomes receptive to input, they turn into the usual one
black and two white.
In GTK 3.10 and above, high-DPI support is arranged by each window
having a property called a 'scale factor', which translates logical
pixels as seen by most of the GTK API (widget and window sizes and
positions, coordinates in the "draw" event, etc) into the physical
pixels on the screen. This is handled more or less transparently,
except that one side effect is that your Cairo-based drawing code had
better be able to cope with that scaling without getting confused.
PuTTY's isn't, because we do all our serious drawing on a separate
Cairo surface we made ourselves, and then blit subrectangles of that
to the window during updates. This has two bad consequences. Firstly,
our surface has a size derived from what GTK told us the drawing area
size is, i.e. corresponding to GTK's _logical_ pixels, so when the
scale factor is (say) 2, our drawing takes place at half size and then
gets scaled up by the final blit in the draw event, making it look
blurry and unpleasant. Secondly, those final blits seem to end up
offset by half a pixel, so that a second blit over the same
subrectangle doesn't _quite_ completely wipe out the previously
blitted data - so there's a ghostly rectangle left behind everywhere
the cursor has been.
It's not that GTK doesn't _let_ you find out the scale factor; it's
just that it's in an out-of-the-way piece of API that you have to call
specially. So now we do: our backing surface is now created at a pixel
resolution matching the screen's real pixels, and we translate GTK's
scale factor into an ordinary cairo_scale() before we commence
drawing. So we still end up drawing the same text at the same size -
and this strategy also means that non-text elements like cursor
outlines and underlining will be scaled up with the screen DPI rather
than stubbornly staying one physical pixel thick - but now it's nice
and sharp at full screen resolution, and the subrectangle blits in the
draw event are back to affecting the exact set of pixels we expect
them to.
One silly consequence is that, immediately after removing the last
one, I've installed a handler for the GTK "configure-event" signal!
That's because the GTK 3 docs claim that that's how you get notified
that your scale factor has changed at run time (e.g. if you
reconfigure the scale factor of a whole monitor in the GNOME settings
dialog). Actually in practice I seem to find out via the "draw" event
before "configure" bothers to tell me, but now I've got a usefully
idempotent function for 'check whether the scale factor has changed
and sort it out if so', I don't see any harm in calling it from
anywhere it _might_ be useful.
I've been using that signal since the very first commit of this source
file, as a combined way to be notified when the size of the drawing
area changes (typically due to user window resizing actions) and also
when the drawing area is first created and available to be drawn on.
Unfortunately, testing on Ubuntu 18.04, I ran into an oddity, in which
the call to gtk_widget_show(inst->window) in new_session_window() has
the side effect of delivering a spurious configure_event on the
drawing area with size 1x46 pixels. This causes the terminal to resize
itself to 1 column wide, and the mistake isn't rectified until a
followup configure-event arrives after new_session_window returns to
the GTK main loop. But that means terminal output can occur between
those two configure events (the connection-sharing "Reusing a shared
connection to host.name" is a good example), and when it does, it gets
embarrassingly wrapped at one character per line down the left column.
I briefly tried to bodge around this by trying to heuristically guess
which configure events were real and which were spurious, but I have
no faith in that strategy continuing to work. I think a better
approach is to abandon configure-event completely, and move to a
system in which the two purposes I was using it for are handled by two
_different_ GTK signals, namely "size-allocate" (for knowing when we
get resized) and "realize" (for knowing when the drawing area
physically exists for us to start setting up Cairo or GDK machinery).
The result seems to have fixed the silly one-column wrapping bug, and
retained the ability to handle window resizes, on every GTK version I
have conveniently available to test on, including GTK 3 both before
and after these spurious configures started to happen.
GTK 3 PuTTY/pterm has always assumed that if it was compiled with
_support_ for talking to the raw X11 layer underneath GTK and GDK,
then it was entitled to expect that raw X11 layer to exist at all
times, i.e. that GDK_DISPLAY_XDISPLAY would return a meaningful X
display that it could do useful things with. So if you ran it over the
GDK Wayland backend, it would immediately segfault.
Modern GTK applications need to cope with multiple GDK backends at run
time. It's fine for GTK PuTTY to _contain_ the code to find and use
underlying X11 primitives like the display and the X window id, but it
should be prepared to find that it's running on Wayland (or something
else again!) so those functions don't return anything useful - in
which case it should degrade gracefully to the subset of functionality
that can be accessed through backend-independent GTK calls.
Accordingly, I've centralised the use of GDK_DISPLAY_XDISPLAY into a
support function get_x_display() in gtkmisc.c, which starts by
checking that there actually is one first. All previous direct uses of
GDK_*_XDISPLAY now go via that function, and check the result for NULL
afterwards. (To save faffing about calling that function too many
times, I'm also caching the display pointer in more places, and
passing it as an extra argument to various subfunctions, mostly in
gtkfont.c.)
Similarly, the get_windowid() function that retrieves the window id to
put in the environment of pterm's child process has to be prepared for
there not to be a window id.
This isn't a complete fix for all Wayland-related problems. The other
one I'm currently aware of is that the default font is "server:fixed",
which is a bad default now that it won't be available on all backends.
And I expect that further problems will show up with more testing. But
it's a start.
This is a heavily edited (by me) version of a patch originally due to
Nico Williams and Viktor Dukhovni. Their comments:
* Don't delegate credentials when rekeying unless there's a new TGT
or the old service ticket is nearly expired.
* Check for the above conditions more frequently (every two minutes
by default) and rekey when we would delegate credentials.
* Do not rekey with very short service ticket lifetimes; some GSSAPI
libraries may lose the race to use an almost expired ticket. Adjust
the timing of rekey checks to try to avoid this possibility.
My further comments:
The most interesting thing about this patch to me is that the use of
GSS key exchange causes a switch over to a completely different model
of what host keys are for. This comes from RFC 4462 section 2.1: the
basic idea is that when your session is mostly bidirectionally
authenticated by the GSSAPI exchanges happening in initial kex and
every rekey, host keys become more or less vestigial, and their
remaining purpose is to allow a rekey to happen if the requirements of
the SSH protocol demand it at an awkward moment when the GSS
credentials are not currently available (e.g. timed out and haven't
been renewed yet). As such, there's no need for host keys to be
_permanent_ or to be a reliable identifier of a particular host, and
RFC 4462 allows for the possibility that they might be purely
transient and only for this kind of emergency fallback purpose.
Therefore, once PuTTY has done a GSS key exchange, it disconnects
itself completely from the permanent host key cache functions in
storage.h, and instead switches to a _transient_ host key cache stored
in memory with the lifetime of just that SSH session. That cache is
populated with keys received from the server as a side effect of GSS
kex (via the optional SSH2_MSG_KEXGSS_HOSTKEY message), and used if
later in the session we have to fall back to a non-GSS key exchange.
However, in practice servers we've tested against do not send a host
key in that way, so we also have a fallback method of populating the
transient cache by triggering an immediate non-GSS rekey straight
after userauth (reusing the code path we also use to turn on OpenSSH
delayed encryption without the race condition).
Colin Watson reports that on pre-releases of Ubuntu 18.04, configure
events which don't actually involve a change of window size show up
annoyingly often. Our handling of configure events involves throwing
away the backing Cairo surface, making a fresh blank one, and
scheduling a top-level callback to get terminal.c to do a repaint and
populate the new surface; so a draw event before that callback occurs
causes the window contents to flicker off and on again, not to mention
wasting a lot of time.
The simplest solution is to spot spurious configures, and respond by
not throwing away the previous Cairo surface in the first place.
Except in GTK1 (which doesn't have the former), via a gtkcompat.h
workaround.
Up-to-date GTK3 has deprecated gdk_beep(), causing build failures due
to the default -Werror setting.
Looks as if I haven't retried the GTK1 build for a while, and recent
GTK frontend development has broken it. The selection revamp has
pointed out that GTK1 didn't have the accessor function
gtk_selection_data_get_selection(), the standard GdkAtom value
GDK_SELECTION_CLIPBOARD, or keysyms for alphabetic characters; and
also I had an initialisation of one of my own structure fields
(dp->selparams) accidentally not guarded by the same GTK-versioning
ifdef that controls whether or not it was defined.
Ahem. I _spotted_ this in code review, and forgot to make the change
before pushing!
Because it's legitimate for a C implementation to define 'NULL' so
that it expands to just 0, it follows that if you use NULL in a
variadic argument list where the callee will expect to extract a
pointer, you run the risk of putting an int-sized rather than
pointer-sized argument on the list and causing the consumer to get out
of sync. So you have to add an explicit cast.
The PuTTY GUIs (Unix and Windows) maintain an in-memory event log
for display to users as they request. This uses ints for tracking
eventlog size, which is subject to memory exhaustion and (given
enough heap space) overflow attacks by servers (via, e.g., constant
rekeying).
Also a bounded log is more user-friendly. It is rare to want more
than the initial logging and the logging from a few recent rekey
events.
The Windows fix has been tested using Dr. Memory as a valgrind
substitute. No errors corresponding to the affected code showed up.
The Dr. Memory results.txt was split into a file per-error and then
grep Error $(grep -l windlg *)|cut -d: -f3-|sort |uniq -c
was used to compare. Differences arose from different usage of the GUI,
but no error could be traced to the code modified in this commit.
The Unix fix has been tested using valgrind. We don't destroy the
eventlog_stuff eventlog arrays, so we can't be entirely sure that we
don't leak more than we did before, but from code inspection it looks
like we don't (and anyways, if we leaked as much as before, just without
the integer overflow, well, that's still an improvement).
Now we don't annoyingly print the 'askappend' prompt if you ask a
PuTTY tool to write its packet log to something that's not a regular
file, such as /dev/fd/1 or /dev/tty or a named pipe.
(In the case of a named pipe, another annoyance fixed by this change
is that we also don't open it for reading in the course of the
existence test.)
Apparently I haven't tried a GTK2 build since the most recent set of
GTK-related code reorganisation. Some functions that were ifdef'ed out
in GTK3 builds were now unused even in GTK2 builds (and, because they
were also declared static, caused a -Werror build failure); and the
pointless stub version of gtkapp.c was missing a stub version of a
recently added function referred to from another module.
gtk_application_set_accels_for_action() is new in Gtk 3.12, but (e.g.)
Ubuntu 14.04 LTS still ships with Gtk 3.10.
On the other hand, the function I've used instead,
gtk_application_add_accelerator(), is deprecated from Gtk 3.14 onwards,
indicating that it will disappear in some future version, so I've left
the newer code in against that day.
It actually doesn't seem to be necessary: running 'otool -L' on the
real binary in the application bundle (Pterm-bin or PuTTY-bin) lists a
lot of paths starting with "@executable_path/../Resources/", which I
take to mean that the application is already set up to automatically
load the GTK shared libraries out of its own bundle directory, without
me having to give it the extra hint of DYLD_LIBRARY_PATH.
Moreover, I just got round to upgrading my Mac to High Sierra, and now
the version of osxlaunch _with_ DYLD_LIBRARY_PATH is causing a crash
at program load time, when the libpng in the MacOS system library
directory tries to use the libz in the application bundle and finds
that it doesn't provide an entry point it was expecting
('inflateValidate'). I could try to fix that by updating the libz
version in my OS X PuTTY build environment, but that seems to me to
set a precedent of running to keep up with any further dependencies
the system libraries happen to acquire in later releases. Better to
reset DYLD_LIBRARY_PATH so that the system libpng will load the system
libz and not get confused in the first place.
I've been having intermittent segfaults in this launcher program, and
by means of the new TEST_COMPILE_ON_LINUX facility introduced by
commit eef8cac28, I ran it under valgrind which helpfully pointed out
several pointers between linked-list nodes which I'd been relying on
OS memory allocation to happen to have zeroed for me.
By default, the program still builds on Linux to a stub that just
prints 'nothing to see here'. But if you compile with
-DTEST_COMPILE_ON_LINUX, it compiles to a program that still doesn't
do anything _actually_ useful, but goes through all the same motions
that real osxlaunch would go through, until the final execv(2) fails
because of course it's not _really_ living in an application bundle
directory of the right shape.
That allows me to run all the setup code under the debugging tools I'm
most used to, in my preferred environment. (Same rationale as having
puttyapp / ptermapp build for Linux too.)
I've filled in the results of some not-entirely-conclusive
investigation into the trackpad scrolling issue, some thoughts on
resizing, and reordered the items into what currently seems the most
sensible order to me.
This still isn't complete: I also need to add the variable collections
of things like mid-session special commands and saved session names,
and also I need to try to grey out menu items when they're not
applicable. But it's a start.
Just to avoid an endless proliferation of functions too small to see,
I've arranged an enumeration of action ids and a single
app_menu_action function on the receiving end, and in gtkapp.c, a list
macro that means I at least don't have to define the tiny callback
functions and the GActionEntry records by hand and keep them in sync.