1
0
mirror of https://git.tartarus.org/simon/putty.git synced 2025-01-10 01:48:00 +00:00
Commit Graph

21 Commits

Author SHA1 Message Date
Simon Tatham
fb663d4761 Promote ssh2_userauth_antispoof_msg into utils.
It doesn't actually do anything specific to the userauth layer; it's
just a helper function that deals with the mechanics of printing an
unspoofable message on various kinds of front end, and the only
parameters it needs are a Seat and a message.

Currently, it's used for 'here is the start/end of the server banner'
only. But it's also got all the right functionality to be used for the
(still missing) messages about which proxy SSH server the next set of
login prompts are going to refer to.
2021-09-16 17:49:31 +01:00
Simon Tatham
ac47e550c6 seat_output: add an output type for SSH banners. (NFC)
The jump host system ought really to be treating SSH authentication
banners as a distinct thing from the standard-error session output, so
that the former can be presented to the user in the same way as the
auth banner for the main session.

This change converts the 'bool is_stderr' parameter of seat_output()
into an enumerated type with three values. For the moment, stderr and
banners are treated the same, but the plan is for that to change.
2021-09-16 17:24:42 +01:00
Simon Tatham
7a02234353 userauth2: add a missing free_prompts().
If a userauth layer is destroyed while userpass input is still
ongoing, ssh2_userauth_free forgot to free the active prompts_t,
leaking memory.

But adding the missing free_prompts call to ssh2_userauth_free results
in a double-free, because another thing I forgot was to null out that
pointer field everywhere _else_ it's freed. Fixed that too.
2021-09-16 13:55:10 +01:00
Simon Tatham
99b4229abf Make all Plugs have a log function, even if no-op.
Commit 8f5e9a4f8d introduced a segfault into both Windows Pageant
and Windows connection sharing upstreams when they receive an incoming
named-pipe connection. This occurs because the PlugVtables for those
incoming connections had a null pointer in the 'log' field, because
hitherto, only sockets involved with an outgoing connection expected
to receive plug_log() notifications. But I added such a notification
in make_handle_socket, forgetting that that function is used for both
outgoing and incoming named-pipe connections (among other things). So
now a Plug implementation that expects to be set up by the
plug_accepting() method on a listener may still receive
PLUGLOG_CONNECT_SUCCESS.

I could fix that by adding a parameter to make_handle_socket telling
it whether to send a notification, but that seems like more faff than
is really needed. Simpler to make a rule that says _all_ Socket types
must implement the log() method, even if only with a no-op function.

We already have a no-op implementation of log(), in nullplug.c. So
I've exposed that outside its module (in the same style as all the
nullseat functions and so on), to make it really easy to add log()
methods to PlugVtables that don't need one.
2021-09-15 13:55:22 +01:00
Simon Tatham
3037258808 Localise user_input to SSH connection layers.
Now that the SSH backend's user_input bufchain is no longer needed for
handling userpass input, it doesn't have to be awkwardly shared
between all the packet protocol layers any more. So we can turn the
want_user_input and got_user_input methods of PacketProtocolLayer into
methods of ConnectionLayer, and then only the two connection layers
have to bother implementing them, or store a pointer to the bufchain
they read from.
2021-09-14 14:05:13 +01:00
Simon Tatham
cd8a7181fd Complete rework of terminal userpass input system.
The system for handling seat_get_userpass_input has always been
structured differently between GUI PuTTY and CLI tools like Plink.

In the CLI tools, password input is read directly from the OS
terminal/console device by console_get_userpass_input; this means that
you need to ensure the same terminal input data _hasn't_ already been
consumed by the main event loop and sent on to the backend. This is
achieved by the backend_sendok() method, which tells the event loop
when the backend has finished issuing password prompts, and hence,
when it's safe to start passing standard input to backend_send().

But in the GUI tools, input generated by the terminal window has
always been sent straight to backend_send(), regardless of whether
backend_sendok() says it wants it. So the terminal-based
implementation of username and password prompts has to work by
consuming input data that had _already_ been passed to the backend -
hence, any backend that needs to do that must keep its input on a
bufchain, and pass that bufchain to seat_get_userpass_input.

It's awkward that these two totally different systems coexist in the
first place. And now that SSH proxying needs to present interactive
prompts of its own, it's clear which one should win: the CLI style is
the Right Thing. So this change reworks the GUI side of the mechanism
to be more similar: terminal data now goes into a queue in the Ldisc,
and is not sent on to the backend until the backend says it's ready
for it via backend_sendok(). So terminal-based userpass prompts can
now consume data directly from that queue during the connection setup
stage.

As a result, the 'bufchain *' parameter has vanished from all the
userpass_input functions (both the official implementations of the
Seat trait method, and term_get_userpass_input() to which some of
those implementations delegate). The only function that actually used
that bufchain, namely term_get_userpass_input(), now instead reads
from the ldisc's input queue via a couple of new Ldisc functions.

(Not _trivial_ functions, since input buffered by Ldisc can be a
mixture of raw bytes and session specials like SS_EOL! The input queue
inside Ldisc is a bufchain containing a fiddly binary encoding that
can represent an arbitrary interleaving of those things.)

This greatly simplifies the calls to seat_get_userpass_input in
backends, which now don't have to mess about with passing their own
user_input bufchain around, or toggling their want_user_input flag
back and forth to request data to put on to that bufchain.

But the flip side is that now there has to be some _other_ method for
notifying the terminal when there's more input to be consumed during
an interactive prompt, and for notifying the backend when prompt input
has finished so that it can proceed to the next stage of the protocol.
This is done by a pair of extra callbacks: when more data is put on to
Ldisc's input queue, it triggers a call to term_get_userpass_input,
and when term_get_userpass_input finishes, it calls a callback
function provided in the prompts_t.

Therefore, any use of a prompts_t which *might* be asynchronous must
fill in the latter callback when setting up the prompts_t. In SSH, the
callback is centralised into a common PPL helper function, which
reinvokes the same PPL's process_queue coroutine; in rlogin we have to
set it up ourselves.

I'm sorry for this large and sprawling patch: I tried fairly hard to
break it up into individually comprehensible sub-patches, but I just
couldn't tease out any part of it that would stand sensibly alone.
2021-09-14 13:19:33 +01:00
Simon Tatham
9f0e7d2915 Backends: notify ldisc when sendok becomes true. (NFC)
I've introduced a function ldisc_notify_sendok(), which backends
should call on their ldisc (if they have one) when anything changes
that might cause backend_sendok() to start returning true.

At the moment, the function does nothing. But in future, I'm going to
make ldisc start buffering typed-ahead input data not yet sent to the
backend, and then the effect of this function will be to trigger
flushing all that data into the backend.

Backends only have to call this function if sendok was previously
false: backends requiring no network connection stage (like pty and
serial) can safely return true from sendok, and in that case, they
don't also have to immediately call this function.
2021-09-14 11:23:20 +01:00
Simon Tatham
2fd2f4715d Squash shift warnings in ssh2_bpp_check_unimplemented.
I did a horrible thing with a list macro which builds up a 256-bit
bitmap of known SSH-2 message types at compile time, by means of
evaluating a conditional expression per known message type and per
bitmap word which boils down to (in pseudocode)

  (shift count in range ? 1 << shift count : 0)

I think this is perfectly valid C. If the shift count is out of range,
then the use of the << operator in the true branch of the ?: would
have undefined behaviour if it were executed - but that's OK, because
in that situation, the safe false branch is executed instead.

But when the whole thing is a compile-time evaluated constant
expression, the compiler can prove statically that the << in the true
branch is an out-of-range shift, and at least some compilers will warn
about it verbosely. The same compiler *could* also prove statically
that that branch isn't taken, and use that to suppress the warning -
but at least clang does not.

The solution is the same one I used in shift_right_by_one_word and
shift_left_by_one_word in mpint.c: inside the true branch, nest a
second conditional expression which coerces the shift count to always
be in range, by setting it to 0 if it's not. This doesn't affect the
output, because the only cases in which the output of the true branch
is altered by this transformation are the ones in which the true
branch wasn't taken anyway.

So this change should make no difference to the output of this macro
construction, but it suppresses about 350 pointless warnings from
clang.
2021-09-14 11:23:20 +01:00
Simon Tatham
6d272ee007 Allow new_connection to take an optional Seat. (NFC)
This is working towards allowing the subsidiary SSH connection in an
SshProxy to share the main user-facing Seat, so as to be able to pass
through interactive prompts.

This is more difficult than the similar change with LogPolicy, because
Seats are stateful. In particular, the trust-sigil status will need to
be controlled by the SshProxy until it's ready to pass over control to
the main SSH (or whatever) connection.

To make this work, I've introduced a thing called a TempSeat, which is
(yet) another Seat implementation. When a backend hands its Seat to
new_connection(), it does it in a way that allows new_connection() to
borrow it completely, and replace it in the main backend structure
with a TempSeat, which acts as a temporary placeholder. If the main
backend tries to do things like changing trust status or sending
output, the TempSeat will buffer them; later on, when the connection
is established, TempSeat will replay the changes into the real Seat.

So, in each backend, I've made the following changes:
 - pass &foo->seat to new_connection, which may overwrite it with a
   TempSeat.
 - if it has done so (which we can tell via the is_tempseat() query
   function), then we have to free the TempSeat and reinstate our main
   Seat. The signal that we can do so is the PLUGLOG_CONNECT_SUCCESS
   notification, which indicates that SshProxy has finished all its
   connection setup work.
 - we also have to remember to free the TempSeat if our backend is
   disposed of without that having happened (e.g. because the
   connection _doesn't_ succeed).
 - in backends which have no local auth phase to worry about, ensure
   we don't call seat_set_trust_status on the main Seat _before_ it
   gets potentially replaced with a TempSeat. Moved some calls of
   seat_set_trust_status to just after new_connection(), so that now
   the initial trust status setup will go into the TempSeat (if
   appropriate) and be buffered until that seat is relinquished.

In all other uses of new_connection, where we don't have a Seat
available at all, we just pass NULL.

This is NFC, because neither new_connection() nor any of its delegates
will _actually_ do this replacement yet. We're just setting up the
framework to enable it to do so in the next commit.
2021-09-13 17:24:47 +01:00
Simon Tatham
a08f953bd6 sshproxy: share the caller's LogPolicy.
Now new_connection() takes an optional LogPolicy * argument, and
passes it on to the SshProxy setup. This means that SshProxy's
implementation of the LogPolicy trait can answer queries like
askappend() and logging_error() by passing them on to the same
LogPolicy used by the main backend.

Not all callers of new_connection have a LogPolicy, so we still have
to fall back to the previous conservative default behaviour if
SshProxy doesn't have a LogPolicy it can ask.

The main backend implementations didn't _quite_ have access to a
LogPolicy already, but they do have a LogContext, which has a
LogPolicy vtable pointer inside it; so I've added a query function
log_get_policy() which allows them to extract that pointer to pass to
new_connection.

This is the first step of fixing the non-interactivity limitations of
SshProxy. But it's also the easiest step: the next ones will be more
involved.
2021-09-13 17:18:31 +01:00
Simon Tatham
346a7548e2 New Seat method, notify_session_started().
This is called by the backend to notify the Seat that the connection
has progressed to the point where the main session channel (i.e. the
thing that would typically correspond to the client's stdin/stdout)
has been successfully set up.

The only Seat that implements this method nontrivially is the one in
SshProxy, which uses it as an indication that the proxied connection
to the remote host has succeeded, and sends the
PLUGLOG_CONNECT_SUCCESS notification to its own Plug.

Hence, the only backends that need to implement it at the moment are
the two SSH-shaped backends (SSH proper and bare-connection / psusan).
For other backends, it's not always obvious what 'main session
channel' would even mean, or whether it means anything very useful; so
I've also introduced a backend flag indicating whether the backend is
expecting to call that method at all, so as not to have to spend
pointless effort on defining an arbitrary meaning for it in other
contexts.

So a lot of this patch is just introducing the new method and putting
its trivial do-nothing implementation into all the existing Seat
methods. The interesting parts happen in ssh/mainchan.c (which
actually calls it), and sshproxy.c (which does something useful in
response).
2021-09-12 11:55:55 +01:00
Simon Tatham
c336643576 Separate backend_send from backend_sendbuffer.
On a similar theme of separating the query operation from the
attempted change, backend_send() now no longer has the side effect of
returning the current size of the send buffer. Instead, you have to
call backend_sendbuffer() every time you want to know that.
2021-09-12 09:52:46 +01:00
Simon Tatham
82177956da Divide seat_set_trust_status into query and update.
This complicates the API in one sense (more separate functions), but
in another sense, simplifies it (each function does something
simpler). When I start putting one Seat in front of another during SSH
proxying, the latter will be more important - in particular, it means
you can find out _whether_ a seat can support changing trust status
without having to actually attempt a destructive modification.
2021-09-12 09:52:46 +01:00
Simon Tatham
c62b7229c1 Bug workaround to delay sending our SSH greeting.
Ian Jackson recently tried to use the recipe in the psusan manpage for
talking to UML, and found that the connection was not successfully set
up, because at some point during startup, UML read the SSH greeting
(ok, the bare-ssh-connection greeting) from its input fd and threw it
away. So by the time psusan was run by the guest init process, the
greeting wasn't there to be read.

Ian's report: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=991958

I was also able to reproduce this locally, which makes me wonder why I
_didn't_ notice it when I originally wrote that part of the psusan man
page. It worked for me before, honest! But now it doesn't.

Anyway. The ssh verstring module already has a mode switch to decide
whether we ought to send our greeting before or after waiting for the
other side's greeting (because that decision varies between client and
server, and between SSH-1 and SSH-2). So it's easy to implement an
override that forces it to 'wait for the server greeting first'.

I've added this as yet another bug workaround flag. But unlike all the
others, it can't be autodetected from the server's version string,
because, of course, we have to act on it _before_ seeing the server's
greeting and version string! So it's a manual-only flag.

However, I've mentioned it in the UML section of the psusan man page,
since that's the place where I _know_ people are likely to need to use
this flag.
2021-08-14 11:46:21 +01:00
Simon Tatham
6246ff3f0a New Seat callback, seat_sent().
This is used to notify the Seat that some data has been cleared from
the backend's outgoing data buffer. In other words, it notifies the
Seat that it might be worth calling backend_sendbuffer() again.

We've never needed this before, because until now, Seats have always
been the 'main program' part of the application, meaning they were
also in control of the event loop. So they've been able to call
backend_sendbuffer() proactively, every time they go round the event
loop, instead of having to wait for a callback.

But now, the SSH proxy is the first example of a Seat without
privileged access to the event loop, so it has no way to find out that
the backend's sendbuffer has got smaller. And without that, it can't
pass that notification on to plug_sent, to unblock in turn whatever
the proxied connection might have been waiting to send.

In fact, before this commit, sshproxy.c never called plug_sent at all.
As a result, large data uploads over an SSH jump host would hang
forever as soon as the outgoing buffer filled up for the first time:
the main backend (to which sshproxy.c was acting as a Socket) would
carefully stop filling up the buffer, and then never receive the call
to plug_sent that would cause it to start again.

The new callback is ignored everywhere except in sshproxy.c. It might
be a good idea to remove backend_sendbuffer() entirely and convert all
previous uses of it into non-empty implementations of this callback,
so that we've only got one system; but for the moment, I haven't done
that.
2021-06-27 13:52:48 +01:00
Simon Tatham
ff941299cf Uppity: add stunt options for trivial authentication.
This allows the 'no trivial auth' option introduced by the previous
commit to be tested. Uppity has grown three new options to make it
accept "none" authentication, keyboard-interactive involving no
prompts, and the perverse sending of USERAUTH_SUCCESS after a
signatureless public-key offer.

The first of those options also enables the analogue in SSH-1; the
other two have no SSH-1 analogues in the first place. (SSH-1 public
key authentication has a challenge-response structure that doesn't
contain any way to terminate the exchange early with success. And the
TIS and CryptoCard methods, which are its closest analogue of k-i,
have a fixed number of prompts, which is not 0.)
2021-06-19 21:34:56 +01:00
Simon Tatham
5f5c710cf3 New option to reject 'trivial' success of userauth.
Suggested by Manfred Kaiser, who also wrote most of this patch
(although outlying parts, like documentation and SSH-1 support, are by
me).

This is a second line of defence against the kind of spoofing attacks
in which a malicious or compromised SSH server rushes the client
through the userauth phase of SSH without actually requiring any auth
inputs (passwords or signatures or whatever), and then at the start of
the connection phase it presents something like a spoof prompt,
intended to be taken for part of userauth by the user but in fact with
some more sinister purpose.

Our existing line of defence against this is the trust sigil system,
and as far as I know, that's still working. This option allows a bit of
extra defence in depth: if you don't expect your SSH server to
trivially accept authentication in the first place, then enabling this
option will cause PuTTY to disconnect if it unexpectedly does so,
without the user having to spot the presence or absence of a fiddly
little sigil anywhere.

Several types of authentication count as 'trivial'. The obvious one is
the SSH-2 "none" method, which clients always try first so that the
failure message will tell them what else they can try, and which a
server can instead accept in order to authenticate you unconditionally.
But there are two other ways to do it that we know of: one is to run
keyboard-interactive authentication and send an empty INFO_REQUEST
packet containing no actual prompts for the user, and another even
weirder one is to send USERAUTH_SUCCESS in response to the user's
preliminary *offer* of a public key (instead of sending the usual PK_OK
to request an actual signature from the key).

This new option detects all of those, by clearing the 'is_trivial_auth'
flag only when we send some kind of substantive authentication response
(be it a password, a k-i prompt response, a signature, or a GSSAPI
token). So even if there's a further path through the userauth maze we
haven't spotted, that somehow avoids sending anything substantive, this
strategy should still pick it up.
2021-06-19 21:34:56 +01:00
Simon Tatham
0553aec60a New Seat method, notify_remote_disconnect.
This notifies the Seat that the entire backend session has finished
and closed its network connection - or rather, that it _might_ have
done, and that the frontend should check backend_connected() if it
wasn't planning to do so already.

The existing Seat implementations haven't needed this: the GUI ones
don't actually need to do anything specific when the network
connection goes away, and the CLI ones deal with it by being in charge
of their own event loop so that they can easily check
backend_connected() at every possible opportunity in any case. But I'm
about to introduce a new Seat implementation that does need to know
this, and doesn't have any other way to get notified of it.
2021-05-22 13:09:34 +01:00
Simon Tatham
62b694affc New backend flag indicating support for CONF_ssh_nc_host.
This flag is set in backends which can be used programmatically to
proxy a network connection in place of running a shell session. That
is true of both SSH proper, and the psusan ssh-connection protocol.

Nothing yet uses this flag, but something is about to.
2021-05-22 13:09:34 +01:00
Simon Tatham
1c039d0a7b Spelling: standardise on "DSA", not "DSS".
This code base has always been a bit confused about which spelling it
likes to use to refer to that signature algorithm. The SSH protocol id
is "ssh-dss". But everyone I know refers to it as the Digital
Signature _Algorithm_, not the Digital Signature _Standard_.

When I moved everything down into the crypto subdir, I took the
opportunity to rename sshdss.c to dsa.c. Now I'm doing the rest of the
job: all internal identifiers and code comments refer to DSA, and the
spelling "dss" only survives in externally visible identifiers that
have to remain constant.

(Such identifiers include the SSH protocol id, and also the string id
used to identify the key type in PuTTY's own host key cache. We can't
change the latter without causing everyone a backwards-compatibility
headache, and if we _did_ ever decide to do that, we'd surely want to
do a much more thorough job of making the cache format more sensible!)
2021-04-22 18:34:47 +01:00
Simon Tatham
83fa43497f Move the SSH implementation into its own subdirectory.
This clears up another large pile of clutter at the top level, and in
the process, allows me to rename source files to things that don't all
have that annoying 'ssh' prefix at the top.
2021-04-22 18:09:13 +01:00