The Windows version of the Filename structure now contains three
versions of the pathname, in UTF-16, UTF-8 and the system code page.
Callers can use whichever is most convenient.
All uses of filenames for actually opening files now use the UTF-16
version, which means they can tolerate 'exotic' filenames, by which I
mean those including Unicode characters outside the host system's
CP_ACP default code page.
Other uses of Filename structures inside the 'windows' subdirectory do
something appropriate, e.g. when printing a filename inside a message
box or a console message, we use the UTF-8 version of the filename
with the UTF-8 version of the appropriate API.
There are three remaining pieces to full Unicode filename support:
One is that the cross-platform code has many calls to
filename_to_str(), embodying the assumption that a file name can be
reliably converted into the unspecified current character set; those
will all need changing in some way.
Another is that write_setting_filename(), in windows/storage.c, still
saves filenames to the Registry as an ordinary REG_SZ in the system
code page. So even if an exotic filename were stored in a Conf, that
Conf couldn't round-trip via the Registry and back without corrupting
that filename by coercing it back to a string that fits in CP_ACP and
therefore doesn't represent the same file. This can't be fixed without
a compatibility break in the storage format, and I don't want to make
a minimal change in that area: if we're going to break compatibility,
then we should break it good and hard (the Nanny Ogg principle), and
devise a completely fresh storage representation that fixes as many
other legacy problems as possible at the same time. So that's my plan,
not yet started.
The final point, much more obviously, is that we're still short of
methods to _construct_ any Filename structures using a Unicode input
string! It should now work to enter one in the GUI configurer (either
by manual text input or via the file selector), but it won't
round-trip through a save and load (as discussed above), and there's
still no way to specify one on the command line (the groundwork is
laid by commit 10e1ac7752 but not yet linked up).
But this is a start.
In the course of recent refactorings I noticed a couple of cases where
we were doing old-fashioned preallocation of a char array with some
conservative maximum size, then writing into it via *p++ or similar
and hoping we got the calculation right.
Now we have strbuf and dupcat, so we shouldn't ever have to do that.
Fixed as many cases as I could find by searching for allocations of
the form 'snewn(foo, char)'.
Particularly worth a mention was the Windows GSSAPI setup code, which
was directly using the Win32 Registry API, and looks much more legible
using the windows/utils/registry.c wrappers. (But that was why I had
to enhance them in the previous commit so as to be able to open
registry keys read-only: without that, the open operation would
actually fail on this key, which is not user-writable.)
Also unix/askpass.c, which was doing a careful reallocation of its
buffer to avoid secrets being left behind in the vacated memory -
which is now just a matter of ensuring we called strbuf_new_nm().
My bulk indentation check also turned up a lot of cases where a run-on
function call or if statement didn't have its later lines aligned
correctly relative to the open paren.
I think this is quite easy to do by getting things out of
sync (editing the first line of the function call and forgetting to
update the rest, perhaps even because you never _saw_ the rest during
a search-replace). But a few didn't quite fit into that pattern, in
particular an outright misleading case in unix/askpass.c where the
second line of a call was aligned neatly below the _wrong_ one of the
open parens on the opening line.
Restored as many alignments as I could easily find.
The previous fix on pre-0.77 was non-disruptive and just enough to get
through my Coverity build (which uses winelib); but now that I look at
the rest of the Winelib build output, there are some further warnings
I should fix on main.
Most of them are more long/LONG confusion (specific to Winelib, rather
than real Windows); also, there's a multiple macro definition in
jump-list.c because Winelib defines _PROPVARIANT_INIT_DEFINED_ in
place of _PROPVARIANTINIT_DEFINED_ which we were testing for. (Bah.)
And in windows/window.c I used wcscmp without including <wchar.h>.
In spite of long vs LONG I still had to turn off one or two more
DLL-loading typechecks.
In Winelib, you have to be careful not to say 'unsigned long' where
the API expects ULONG, because Winelib doesn't have the Windows LLP64
nature - its unsigned long is 64 bits, whereas ULONG is 32.
Also, my local Winelib has <dwmapi.h> (used in the new demo-screenshot
system), but doesn't contain some of the definitions inside it. So
I've expanded the cmake test of HAVE_DWMAPI_H so that it actually
checks the things we need, instead of just the existence of the
containing header.
A user reports that if you have MIT KfW loaded, and your PuTTY session
terminates without the PuTTY process exiting, and you select 'Restart
Session' from the menu, then a crash occurs inside the Kerberos
library itself. Scuttlebutt on the Internet suggested this might be to
do with unloading and then reloading the DLL within the process
lifetime, which indeed we were doing.
Now we avoid doing that for the KfW library in particular, by keeping
a tree234 of module handles marked 'never unload this'.
This is a workaround at best, but it seems to stop the problem
happening in my own tests.
This gets rid of all those annoying 'win', 'ux' and 'gtk' prefixes
which made filenames annoying to type and to tab-complete. Also, as
with my other recent renaming sprees, I've taken the opportunity to
expand and clarify some of the names so that they're not such cryptic
abbreviations.