My experimental build with clang-cl at -Wall did show up a few things
that are safe enough to fix right now. One was this list of missing
includes, which was causing a lot of -Wmissing-prototype warnings, and
is a real risk because it means the declarations in headers weren't
being type-checked against the actual function definitions.
Happily, no actual mismatches.
marshal.h now provides a macro put_fmt() which allows you to write
arbitrary printf-formatted data to an arbitrary BinarySink.
We already had this facility for strbufs in particular, in the form of
strbuf_catf(). That was able to take advantage of knowing the inner
structure of a strbuf to minimise memory allocation (it would snprintf
directly into the strbuf's existing buffer if possible). For a general
black-box BinarySink we can't do that, so instead we dupvprintf into a
temporary buffer.
For consistency, I've removed strbuf_catf, and converted all uses of
it into the new put_fmt - and I've also added an extra vtable method
in the BinarySink API, so that put_fmt can still use strbuf_catf's
more efficient memory management when talking to a strbuf, and fall
back to the simpler strategy when that's not available.
Previously, it would generate a prime candidate, test it, and abort if
that candidate failed to be prime. Now, it's even willing to fail
_before_ generating a prime candidate, if the first attempt to even do
that is unsuccessful.
This doesn't affect the existing use case of pcs_set_oneshot, which is
during generation of a safe prime (as implemented by test/primegen.py
--safe), where you want to make a PrimeCandidateSource that can only
return 2p+1 for your existing prime p, and then abort if that fails
the next step of testing. In that situation, the PrimeCandidateSource
will never fail to generate its first output anyway.
But these changed semantics will become useful in another use I'm
about to find for one-shot mode.
Thanks to Mark Wooding for explaining the method of doing this. At
first glance it seemed _obviously_ impossible to run an algorithm that
needs an iteration per factor of 2 in p-1, without a timing leak
giving away the number of factors of 2 in p-1. But it's not, because
you can do the M-R checks interleaved with each step of your whole
modular exponentiation, and they're cheap enough that you can do them
in _every_ step, even the ones where the exponent is too small for M-R
to be interested in yet, and then do bitwise masking to exclude the
spurious results from the final output.
I'm about to rewrite the Miller-Rabin testing code, so let's start by
introducing a test suite that the old version passes, and then I can
make sure the new one does too.
I've moved it from mpunsafe.c into the main mpint.c, and renamed it
mp_mod_known_integer, because now it manages to avoid leaking
information about the mp_int you give it.
It can still potentially leak information about the small _modulus_
integer - hence the word 'known' in the new function name. This won't
be a problem in any existing use of the function, because it's used
during prime generation to check divisibility by all the small primes,
and optionally also check for residue 1 mod the RSA public exponent.
But all those values are well known and not secret.
This removes one source of side-channel leakage from prime generation.
This code base has always been a bit confused about which spelling it
likes to use to refer to that signature algorithm. The SSH protocol id
is "ssh-dss". But everyone I know refers to it as the Digital
Signature _Algorithm_, not the Digital Signature _Standard_.
When I moved everything down into the crypto subdir, I took the
opportunity to rename sshdss.c to dsa.c. Now I'm doing the rest of the
job: all internal identifiers and code comments refer to DSA, and the
spelling "dss" only survives in externally visible identifiers that
have to remain constant.
(Such identifiers include the SSH protocol id, and also the string id
used to identify the key type in PuTTY's own host key cache. We can't
change the latter without causing everyone a backwards-compatibility
headache, and if we _did_ ever decide to do that, we'd surely want to
do a much more thorough job of making the cache format more sensible!)