This begins the process of making PuTTY more able to handle Unicode
strings as a first-class type in its configuration. One of the new
types, CONF_TYPE_UTF8, looks physically just like CONF_TYPE_STR but
the semantics are that it's definitely encoded in UTF-8, instead of
'shrug, whatever the system locale's encoding is'.
Unfortunately, we can't yet switch over any Conf items to having that
type, because our data representations in saved configuration (both on
Unix and Windows) store char strings in the system encoding. So we'll
have to change that representation at the same time, which risks
breaking backwards compatibility with old PuTTYs reading the same
configuration.
So the other new type, CONF_TYPE_STR_AMBI, is intended as a
transitional form, recording a configuration setting that _might_ be
explicitly UTF-8 or might have the legacy 'shrug, whatever' semantics,
depending on where we got it from.
My general migration plan is that first I _enable_ Unicode support in
a Conf item, by turning it into STR_AMBI; the Unicode version of the
string (if any) is saved in a new location, and a best-effort
local-charset version is saved where it's always been. That way new
PuTTY can read the Unicode version, and old PuTTY reading that
configuration will behave no worse than it would have done already.
It would be nice to think that in the far future we've migrated
everything to STR_AMBI and can move them all to mandatory UTF-8,
obsoleting the old configuration. I think it's more likely we'll never
get there. But at least _new_ Conf items, with no backwards
compatibility requirement in the first place, can be CONF_TYPE_UTF8
where appropriate.
(In conf_get_str_ambi(), I considered making it mandatory via assert()
to pass the 'utf8' output pointer as non-NULL, to defend against lazy
adaptation of existing code by just changing the function call. But in
fact I think there's a legitimate use case for not caring if the
output is UTF-8 or not, because some of the existing SSH code
currently just shoves strings like usernames directly on to the wire
whether they're in the right encoding or not; so if you want to do the
correct UTF-8 thing where possible and preserve legacy behaviour if
not, then treating both classes of string the same _is_ the right
thing to do.)
This also requires linking the Unicode support into many Unix
applications that hadn't previously needed it.
This aims to be a reasonably exhaustive test of what happens if you
set Conf values to various things, and then save your session, and
find out what ends up in the storage. Or vice versa.
Currently, the test program is written to match the existing
behaviour. The idea is that I can refactor the code that does the
loading and saving, and if this test still passes, I've probably done
it right.
However, in the long term, this test will be a liability: it's yet
another place you have to add every new config option. So my plan is
to get rid of it again once the refactorings I'm planning are
finished.
Or rather, I'll get rid of _that_ part of its functionality. I also
suspect I'll have added new kinds of consistency check by then, which
won't be a liability in the same way, and which I'll want to keep.
A user just reported that 0.79 doesn't build out of the box on Ubuntu
14.04 (trusty), because although its gcc (4.8.4) does _support_ C99,
it doesn't enable it without a non-default -std option. The user was
able to work around the problem by defining CMAKE_C_FLAGS=-std=gnu99,
but it would have been nicer if we'd done that automatically. Setting
CMAKE_C_STANDARD causes cmake to do so.
(This isn't a regression of 0.79 over 0.78 as far as I know; the user
in question said they had last built 0.76.)
I was surprised to find Ubuntu 14.04 still in use at all, but a quick
web search revealed that its support has been extended until next
year, so fair enough, I suppose. It's also running a cmake way older
than we support, but apparently that can be worked around via
Kitware's binary tarball downloads (which do still run on 14.04).
This is a bit unsatisfactory: I'd prefer to ask for C standards
support of _at least_ C99 level, and C11 if possible. Then I could
test for the presence of C11 features via check_c_source_compiles, and
use them opportunistically (e.g. in macro definitions). But as far as
I can see, cmake has no built-in support for asking for a standards
level of 'as new as you can get, but no older than 99'. Oh well.
(In any case, the thing I'd find most useful from C11 is _Generic, and
since that's in implementation namespace, compilers can - and do -
support it in C99 mode anyway. So it's probably fine, at least for now.)
This takes over from both the implementation in ldisc.c and the one in
term_get_userpass_input, which were imperfectly duplicating each
other's functionality. The new version should be more consistent
between the two already, and also, it means further improvements can
now be made in just one place.
In the course of this, I've restructured the inside of ldisc.c by
moving the input_queue bufchain to the other side of the translation
code in ldisc_send. Previously, ldisc_send received a string, an
optional 'dedicated key' indication (bodgily signalled by a negative
length) and an 'interactive' flag, translated that somehow into a
combination of raw backend output and specials, and saved the latter
in input_queue. Now it saves the original (string, dedicated flag,
interactive flag) data in input_queue, and doesn't do the translation
until the data is pulled back _out_ of the queue. That's because the
new line editing system expects to receive something much closer to
the original data format.
The term_get_userpass_input system is also substantially restructured.
Instead of ldisc.c handing each individual keystroke to terminal.c so
that it can do line editing on it, terminal.c now just gives the Ldisc
a pointer to its instance of the new TermLineEditor object - and then
ldisc.c can put keystrokes straight into that, in the same way it
would put them into its own TermLineEditor, without having to go via
terminal.c at all. So the term_get_userpass_input edifice is only
called back when the line editor actually delivers the answer to a
username or password prompt.
(I considered not _even_ having a separate TermLineEditor for password
prompts, and just letting ldisc.c use its own. But the problem is that
some of the behaviour differences between the two line editors are
deliberate, for example the use of ^D to signal 'abort this prompt',
and the use of Escape as an alternative line-clearing command. So
TermLineEditor has a flags word that allows ldisc and terminal to set
it up differently. Also this lets me give the two TermLineEditors a
different vtable of callback functions, which is a convenient way for
terminal.c to get notified when a prompt has been answered.)
The new line editor still passes all the tests I wrote for the old
one. But it already has a couple of important improvements, both in
the area of UTF-8 handling:
Firstly, when we display a UTF-8 character on the terminal, we check
with the terminal how many character cells it occupied, and then if
the user deletes it again from the editing buffer, we can emit the
right number of backspace-space-backspace sequences. (The old ldisc
line editor incorrectly assumed all Unicode characters had terminal
with 1, partly because its buffer was byte- rather than character-
oriented and so it was more than enough work just finding where the
character _start_ was.)
Secondly, terminal.c's userpass line editor would never emit a byte in
the 80-BF range to the terminal at all, which meant that nontrivial
UTF-8 characters always came out as U+FFFD blobs!
A new module in 'utils' computes NFC and NFD, via a new set of data
tables generated by read_ucd.py.
The new module comes with a new test program, which can read the
NormalizationTest.txt that appears in the Unicode Character Database.
All the tests pass, as of Unicode 15.
I made a specific subdirectory 'stubs' to keep all the link-time stub
modules in, like notiming.c. And I put _one_ run-time stub in it,
namely nullplug.c. But the rest of the runtime stubs went into utils.
I think it's better to keep all the stubs together, so I've moved all
the null*.c in utils into stubs (with the exception of nullstrcmp.c,
which means the 'null' in a different sense). Also, fiddled with the
naming to be a bit more consistent, and stated in the new CMakeLists
the naming policy that distinguishes no-*.c from null-*.c.
This replaces the previous placeholder scheme of having a list of
hostname wildcards with implicit logical-OR semantics (if any wildcard
matched then the certificate would be trusted to sign for that host).
That scheme didn't allow for exceptions within a domain ('everything
in example.com except extra-high-security-machine.example.com'), and
also had no way to specify port numbers.
In the new system, you can still write a hostname wildcard by itself
in the simple case, but now those are just atomic subexpressions in a
boolean-logic domain-specific language I've made up. So if you want
multiple wildcards, you can separate them with || in a single longer
expression, and also you can use && and ! to impose exceptions on top
of that.
Full details of the expression language are in the comment at the top
of utils/cert-expr.c. It'll need documenting properly before release,
of course.
For the sake of backwards compatibility for early adopters who've
already set up configuration in the old system, I've put in some code
that will read the old MatchHosts configuration and automatically
translate it into the equivalent boolean expression (by simply
stringing together the list of wildcards with || between them).
This fills in the remaining gap in the interactive prompt rework of
the proxy system in general. If you used the Telnet proxy with a
command containing %user or %pass, and hadn't filled in those
variables in the PuTTY config, then proxy/telnet.c would prompt you at
run time to enter the proxy auth details. But the local proxy command,
which uses the same format_telnet_command function, would not do that.
Now it does!
I've implemented this by moving the formatting of the proxy command
into a new module proxy/local.c, shared between both the Unix and
Windows local-proxy implementations. That module implements a
DeferredSocketOpener, which constructs the proxy command (prompting
first if necessary), and once it's constructed, hands it to a
per-platform function platform_setup_local_proxy().
So each platform-specific proxy function, instead of starting a
subprocess there and then and passing its details to make_fd_socket or
make_handle_socket, now returns a _deferred_ version of one of those
sockets, with the DeferredSocketOpener being the thing in
proxy/local.c. When that calls back to platform_setup_local_proxy(),
we actually start the subprocess and pass the resulting fds/handles to
the deferred socket to un-defer it.
A side effect of the rewrite is that when proxy commands are logged in
the Event Log, they now get the same amenities as in the Telnet proxy
type: the proxy password is sanitised out, and any difficult
characters are escaped.
This commit replaces all those fiddly little linking modules
(be_all.c, be_none.c, be_ssh.c etc) with a single source file
controlled by ifdefs, and introduces a function be_list() in
setup.cmake that makes it easy to compile a version of it appropriate
to each application.
This is a net reduction in code according to 'git diff --stat', even
though I've introduced more comments. It also gets rid of another pile
of annoying little source files in the top-level directory that didn't
deserve to take up so much room in 'ls'.
More concretely, doing this has some maintenance advantages.
Centralisation means less to maintain (e.g. n_ui_backends is worked
out once in a way that makes sense everywhere), and also, 'appname'
can now be reliably set per program. Previously, some programs got the
wrong appname due to sharing the same linking module (e.g. Plink had
appname="PuTTY"), which was a latent bug that would have manifested if
I'd wanted to reuse the same string in another context.
One thing I've changed in this rework is that Windows pterm no longer
has the ConPTY backend in its backends[]: it now has an empty one. The
special be_conpty.c module shouldn't really have been there in the
first place: it was used in the very earliest uncommitted drafts of
the ConPTY work, where I was using another method of selecting that
backend, but now that Windows pterm has a dedicated
backend_vt_from_conf() that refers to conpty_backend by name, it has
no need to live in backends[] at all, just as it doesn't have to in
Unix pterm.
While I'm in the mood for cleaning up the top-level directory here:
all the 'nostuff.c' files have moved into a new 'stubs' directory, and
I broke up be_misc.c into smaller modules that can live in 'utils'.
Now testcrypt has _two_ header files, that's more files than I want at
the top level, so I decided to move it.
It has a good claim to live in either 'test' or 'crypto', but in the
end I decided it wasn't quite specific enough to crypto (it already
also tests things in keygen and proxy), and also, the Python half of
the mechanism already lives in 'test', so it can live alongside that.
Having done that, it seemed silly to leave testsc and testzlib at the
top level: those have 'test' in the names as well, so they can go in
the test subdir as well.
While I'm renaming, also renamed testcrypt.h to testcrypt-func.h to
distinguish it from the new testcrypt-enum.h.
Previously, the proxy negotiation functions were written as explicit
state machines, with ps->state being manually set to a sequence of
positive integer values which would be tested by if statements in the
next call to the same negotiation function.
That's not how this code base likes to do things! We have a coroutine
system to allow those state machines to be implicit rather than
explicit, so that we can use ordinary control flow statements like
while loops. Reorganised each proxy negotiation function into a
coroutine-based system like that.
While I'm at it, I've also moved each proxy negotiator out into its
own source file, to make proxy.c less overcrowded and monolithic. And
_that_ gave me the opportunity to define each negotiator as an
implementation of a trait rather than as a single function - which
means now each one can define its own local variables and have its own
cleanup function, instead of all of them having to share the variables
inside the main ProxySocket struct.
In the new coroutine system, negotiators don't have to worry about the
mechanics of actually sending data down the underlying Socket any
more. The negotiator coroutine just appends to a bufchain (via a
provided bufchain_sink), and after every call to the coroutine,
central code in proxy.c transfers the data to the Socket itself. This
avoids a lot of intermediate allocations within the negotiators, which
previously kept having to make temporary strbufs or arrays in order to
have something to point an sk_write() at; now they can just put
formatted data directly into the output bufchain via the marshal.h
interface.
In this version of the code, I've also moved most of the SOCKS5 CHAP
implementation from cproxy.c into socks5.c, so that it can sit in the
same coroutine as the rest of the proxy negotiation control flow.
That's because calling a sub-coroutine (co-subroutine?) is awkward to
set up (though it is _possible_ - we do SSH-2 kex that way), and
there's no real need to bother in this case, since the only thing that
really needs to go in cproxy.c is the actual cryptography plus a flag
to tell socks5.c whether to offer CHAP authentication in the first
place.
All this Interactor business has been gradually working towards being
able to inform the user _which_ network connection is currently
presenting them with a password prompt (or whatever), in situations
where more than one of them might be, such as an SSH connection being
used as a proxy for another SSH connection when neither one has
one-touch login configured.
At some point, we have to arrange that any attempt to do a user
interaction during connection setup - be it a password prompt, a host
key confirmation dialog, or just displaying an SSH login banner -
makes it clear which host it's come from. That's going to mean calling
some kind of announcement function before doing any of those things.
But there are several of those functions in the Seat API, and calls to
them are scattered far and wide across the SSH backend. (And not even
just there - the Rlogin backend also uses seat_get_userpass_input).
How can we possibly make sure we don't forget a vital call site on
some obscure little-tested code path, and leave the user confused in
just that one case which nobody might notice for years?
Today I thought of a trick to solve that problem. We can use the C
type system to enforce it for us!
The plan is: we invent a new struct type which contains nothing but a
'Seat *'. Then, for every Seat method which does a thing that ought to
be clearly identified as relating to a particular Interactor, we
adjust the API for that function to take the new struct type where it
previously took a plain 'Seat *'. Or rather - doing less violence to
the existing code - we only need to adjust the API of the dispatch
functions inline in putty.h.
How does that help? Because the way you _get_ one of these
struct-wrapped Seat pointers is by calling interactor_announce() on
your Interactor, which will in turn call interactor_get_seat(), and
wrap the returned pointer into one of these structs.
The effect is that whenever the SSH (or Rlogin) code wants to call one
of those particular Seat methods, it _has_ to call
interactor_announce() just beforehand, which (once I finish all of
this) will make sure the user is aware of who is presenting the prompt
or banner or whatever. And you can't forget to call it, because if you
don't call it, then you just don't have a struct of the right type to
give to the Seat method you wanted to call!
(Of course, there's nothing stopping code from _deliberately_ taking a
Seat * it already has and wrapping it into the new struct. In fact
SshProxy has to do that, in order to forward these requests up the
chain of Seats. But the point is that you can't do it _by accident_,
just by forgetting to make a vital function call - when you do that,
you _know_ you're doing it on purpose.)
No functional change: the new interactor_announce() function exists,
and the type-system trick ensures it's called in all the right places,
but it doesn't actually _do_ anything yet.
There are quite a few of them already, and I'm about to make another
one, so let's start with a bit of tidying up.
The CMake build organisation is unchanged: I haven't put the proxy
object files into a separate library, just moved the locations of the
source files. (Organising proxying as a library would be tricky
anyway, because of the various overrides for tools that want to avoid
cryptography.)
After this change, the cmake setup now works even on Debian stretch
(oldoldstable), which runs cmake 3.7.
In order to support a version that early I had to:
- write a fallback implementation of 'add_compile_definitions' for
older cmakes, which is easy, because add_compile_definitions(FOO)
is basically just add_compile_options(-DFOO)
- stop using list(TRANSFORM) and string(JOIN), of which I had one
case each, and they were easily replaced with simple foreach loops
- stop putting OBJECT libraries in the target_link_libraries command
for executable targets, in favour of adding $<TARGET_OBJECTS:foo>
to the main sources list for the same target. That matches what I
do with library targets, so it's probably more sensible anyway.
I tried going back by another Debian release and getting this cmake
setup to work on jessie, but that runs CMake 3.0.1, and in _that_
version of cmake the target_sources command is missing, and I didn't
find any alternative way to add extra sources to a target after having
first declared it. Reorganising to cope with _that_ omission would be
too much upheaval without a very good reason.
This standalone CLI program runs the UCD bidi tests in the form
provided in Unicode 14.0.0. You can run it by just saying
bidi_test --class BidiTest.txt --char BidiCharacterTest.txt
assuming those two UCD files are in the current directory.
That's what I've usually been doing with any main()s I find under
ifdef; there's no reason this should be an exception. If we're keeping
it in the code at all, we should ensure it carries on compiling.
I've also created a new header file bidi.h, containing pieces of the
bidi definitions shared between bidi.c and the new source file.
This contains terminal.c, bidi.c (formerly minibidi.c), and
terminal.h. I'm about to make a couple more bidi-related source files,
so it seems worth starting by making a place to put them that won't be
cluttering up the top level.
This introduces a new entry to the radio-button list of proxy types,
in which the 'Proxy host' box is taken to be the name of an SSH server
or saved session. We make an entire subsidiary SSH connection to that
host, open a direct-tcpip channel through it, and use that as the
connection over which to run the primary network connection.
The result is basically the same as if you used a local proxy
subprocess, with a command along the lines of 'plink -batch %proxyhost
-nc %host:%port'. But it's all done in-process, by having an SshProxy
object implement the Socket trait to talk to the main connection, and
implement Seat and LogPolicy to talk to its subsidiary SSH backend.
All the refactoring in recent years has got us to the point where we
can do that without both SSH instances fighting over some global
variable or unique piece of infrastructure.
From an end user perspective, doing SSH proxying in-process like this
is a little bit easier to set up: it doesn't require you to bake the
full pathname of Plink into your saved session (or to have it on the
system PATH), and the SshProxy setup function automatically turns off
SSH features that would be inappropriate in this context, such as
additional port forwardings, or acting as a connection-sharing
upstream. And it has minor advantages like getting the Event Log for
the subsidiary connection interleaved in the main Event Log, as if it
were stderr output from a proxy subcommand, without having to
deliberately configure the subsidiary Plink into verbose mode.
However, this is an initial implementation only, and it doesn't yet
support the _big_ payoff for doing this in-process, which (I hope)
will be the ability to handle interactive prompts from the subsidiary
SSH connection via the same user interface as the primary one. For
example, you might need to answer two password prompts in succession,
or (the first time you use a session configured this way) confirm the
host keys for both proxy and destination SSH servers. Comments in the
new source file discuss some design thoughts on filling in this gap.
For the moment, if the proxy SSH connection encounters any situation
where an interactive prompt is needed, it will make the safe
assumption, the same way 'plink -batch' would do. So it's at least no
_worse_ than the existing technique of putting the proxy connection in
a subprocess.
doc/CMakeLists.txt now sets a variable indicating that we either have,
or can build, each individual man page. And when we call our
installed_program() function to mark a program as official enough to
put in 'make install', that function also installs the man page
similarly if it exists, and warns if not.
For the convenience of people building-and-installing from the .tar.gz
we ship, I've arranged that they can still get the man pages installed
without needing Halibut: the previous commit ensured that the prebuilt
man pages are still in the tarball, and this one arranges that if we
don't have Halibut but we do have prebuilt man pages, then we can
'build' them by copying from the prebuilt versions.
The standalone separate doc/Makefile is gone, replaced by a
CMakeLists.txt that makes 'doc' function as a subdirectory of the main
CMake build system. This auto-detects Halibut, and if it's present,
uses it to build the man pages and the various forms of the main
manual, including the Windows CHM help file in particular.
One awkward thing I had to do was to move just one config directive in
blurb.but into its own file: the one that cites a relative path to the
stylesheet file to put into the CHM. CMake builds often like to be
out-of-tree, so there's no longer a fixed relative path between the
build directory and chm.css. And Halibut has no concept of an include
path to search for files cited by other files, so I can't fix that
with an -I option on the Halibut command line. So I moved that single
config directive into its own file, and had CMake write out a custom
version of that file in the build directory citing the right path.
(Perhaps in the longer term I should fix that omission in Halibut;
out-of-tree friendliness seems like a useful feature. But even if I
do, I still need this build to work now.)
Now that the main source file of Plink in each platform directory has
the same name, we can put centralise the main definition of the
program in the main CMakeLists.txt, and in the platform directory,
just add the few extra modules needed to clear up platform-specific
details.
The same goes for psocks. And PSCP and PSFTP could have been moved to
the top level already - I just hadn't done it in the initial setup.
This is the last of the subdirectory creations I had planned. This one
is almost too footling to bother with (it hardly declutters the top
level very much).
One useful side effect is that I've included testback.c (containing
the null and loopback backends) in the otherbackends library, which
means it will now actually be _compiled_ even when nothing's using it,
and we'll spot bit-rot promptly when internal APIs change.
(And, to prove the point, I've immediately had to fix some bit-rot.)
This clears up another large pile of clutter at the top level, and in
the process, allows me to rename source files to things that don't all
have that annoying 'ssh' prefix at the top.
Similarly to 'utils', I've moved all the stuff in the crypto
build-time library into a source directory of its own, and while I'm
at it, split up the monolithic sshauxcrypt.c into its various
unrelated parts.
This is also an opportunity to remove the annoying 'ssh' prefix from
the front of the file names, and give several of them less cryptic
names.
Now there's a utils/CMakeLists.txt, which contains the huge list of
source files in that directory, so that the top-level file does a
better job of showing the overview.
The definition of HAVE_CMAKE_H is now at the very top of the main
CMakeLists.txt, so that it applies to all objects. And the consequent
include of cmake.h is at the very top of defs.h, so that it should be
included first by everything. This way, I don't have to worry any more
that the HAVE_FOO definitions in cmake.h might accidentally have
failed to reach some part of the code.
I found these while going through the code, and decided if we're going
to have them then we should compile them. They didn't all compile
first time, proving my point :-)
I've enhanced the tree234 test so that it has a verbose option, which
by default is off.
This new implementation uses the same optimisation-barrier technique
that I used in various places in testsc: have a no-op function, and a
volatile function pointer pointing at it, and then call through the
function pointer, so that nothing actually happens (apart from the
physical call and return) but the compiler has to assume that
_anything_ might have happened.
Doing this just after a memset enforces that the compiler can't have
thrown away the memset, because the called function might (for
example) check that all the memory really is zero and abort if not.
I've been turning this over in my mind ever since coming up with the
technique for testsc. I think it's far more robust than the previous
smemclr technique: so much so that I'm switching to using it
_everywhere_, and no longer using platform alternatives like Windows's
SecureZeroMemory().
This is a module that I'd noticed in the past was too monolithic.
There's a big pile of stub functions in uxpgnt.c that only have to be
there because the implementation of true X11 _forwarding_ (i.e.
actually managing a channel within an SSH connection), which Pageant
doesn't need, was in the same module as more general X11-related
utility functions which Pageant does need.
So I've broken up this awkward monolith. Now x11fwd.c contains only
the code that really does all go together for dealing with SSH X
forwarding: the management of an X forwarding channel (including the
vtables to make it behave as Channel at the SSH end and a Plug at the
end that connects to the local X server), and the management of
authorisation for those channels, including maintaining a tree234 of
possible auth values and verifying the one we received.
Most of the functions removed from this file have moved into the utils
subdir, and also into the utils library (i.e. further down the link
order), because they were basically just string and data processing.
One exception is x11_setup_display, which parses a display string and
returns a struct telling you everything about how to connect to it.
That talks to the networking code (it does name lookups and makes a
SockAddr), so it has to live in the network library rather than utils,
and therefore it's not in the utils subdirectory either.
The other exception is x11_get_screen_number, which it turned out
nothing called at all! Apparently the job it used to do is now done as
part of x11_setup_display. So I've just removed it completely.
Now that the new CMake build system is encouraging us to lay out the
code like a set of libraries, it seems like a good idea to make them
look more _like_ libraries, by putting things into separate modules as
far as possible.
This fixes several previous annoyances in which you had to link
against some object in order to get a function you needed, but that
object also contained other functions you didn't need which included
link-time symbol references you didn't want to have to deal with. The
usual offender was subsidiary supporting programs including misc.c for
some innocuous function and then finding they had to deal with the
requirements of buildinfo().
This big reorganisation introduces three new subdirectories called
'utils', one at the top level and one in each platform subdir. In each
case, the directory contains basically the same files that were
previously placed in the 'utils' build-time library, except that the
ones that were extremely miscellaneous (misc.c, utils.c, uxmisc.c,
winmisc.c, winmiscs.c, winutils.c) have been split up into much
smaller pieces.
This brings various concrete advantages over the previous system:
- consistent support for out-of-tree builds on all platforms
- more thorough support for Visual Studio IDE project files
- support for Ninja-based builds, which is particularly useful on
Windows where the alternative nmake has no parallel option
- a really simple set of build instructions that work the same way on
all the major platforms (look how much shorter README is!)
- better decoupling of the project configuration from the toolchain
configuration, so that my Windows cross-building doesn't need
(much) special treatment in CMakeLists.txt
- configure-time tests on Windows as well as Linux, so that a lot of
ad-hoc #ifdefs second-guessing a particular feature's presence from
the compiler version can now be replaced by tests of the feature
itself
Also some longer-term software-engineering advantages:
- other people have actually heard of CMake, so they'll be able to
produce patches to the new build setup more easily
- unlike the old mkfiles.pl, CMake is not my personal problem to
maintain
- most importantly, mkfiles.pl was just a horrible pile of
unmaintainable cruft, which even I found it painful to make changes
to or to use, and desperately needed throwing in the bin. I've
already thrown away all the variants of it I had in other projects
of mine, and was only delaying this one so we could make the 0.75
release branch first.
This change comes with a noticeable build-level restructuring. The
previous Recipe worked by compiling every object file exactly once,
and then making each executable by linking a precisely specified
subset of the same object files. But in CMake, that's not the natural
way to work - if you write the obvious command that puts the same
source file into two executable targets, CMake generates a makefile
that compiles it once per target. That can be an advantage, because it
gives you the freedom to compile it differently in each case (e.g.
with a #define telling it which program it's part of). But in a
project that has many executable targets and had carefully contrived
to _never_ need to build any module more than once, all it does is
bloat the build time pointlessly!
To avoid slowing down the build by a large factor, I've put most of
the modules of the code base into a collection of static libraries
organised vaguely thematically (SSH, other backends, crypto, network,
...). That means all those modules can still be compiled just once
each, because once each library is built it's reused unchanged for all
the executable targets.
One upside of this library-based structure is that now I don't have to
manually specify exactly which objects go into which programs any more
- it's enough to specify which libraries are needed, and the linker
will figure out the fine detail automatically. So there's less
maintenance to do in CMakeLists.txt when the source code changes.
But that reorganisation also adds fragility, because of the trad Unix
linker semantics of walking along the library list once each, so that
cyclic references between your libraries will provoke link errors. The
current setup builds successfully, but I suspect it only just manages
it.
(In particular, I've found that MinGW is the most finicky on this
score of the Windows compilers I've tried building with. So I've
included a MinGW test build in the new-look Buildscr, because
otherwise I think there'd be a significant risk of introducing
MinGW-only build failures due to library search order, which wasn't a
risk in the previous library-free build organisation.)
In the longer term I hope to be able to reduce the risk of that, via
gradual reorganisation (in particular, breaking up too-monolithic
modules, to reduce the risk of knock-on references when you included a
module for function A and it also contains function B with an
unsatisfied dependency you didn't really need). Ideally I want to
reach a state in which the libraries all have sensibly described
purposes, a clearly documented (partial) order in which they're
permitted to depend on each other, and a specification of what stubs
you have to put where if you're leaving one of them out (e.g.
nocrypto) and what callbacks you have to define in your non-library
objects to satisfy dependencies from things low in the stack (e.g.
out_of_memory()).
One thing that's gone completely missing in this migration,
unfortunately, is the unfinished MacOS port linked against Quartz GTK.
That's because it turned out that I can't currently build it myself,
on my own Mac: my previous installation of GTK had bit-rotted as a
side effect of an Xcode upgrade, and I haven't yet been able to
persuade jhbuild to make me a new one. So I can't even build the MacOS
port with the _old_ makefiles, and hence, I have no way of checking
that the new ones also work. I hope to bring that port back to life at
some point, but I don't want it to block the rest of this change.