In the previous few commits I noticed some repeated work in the form
of pointless empty implementations of Plug's log method, plus some
existing (and some new) empty cases of Socket's endpoint_info. As a
cleanup, I'm replacing as many as I can find with uses of a central
null implementation in the stubs directory.
This enables plug_log to run query methods on the socket in order to
find out useful information to log. I don't expect it's sensible to do
anything else with it.
This involved a trivial merge conflict fix in terminal.c because of
the way the cherry-pick 73b41feba5 differed from its original
bdbd5f429c.
But a more significant rework was needed in windows/console.c, because
the updates to confirm_weak_* conflicted with the changes on main to
abstract out the ConsoleIO system.
This centralises the messages for weak crypto algorithms (general, and
host keys in particular, the latter including a list of all the other
available host key types) into ssh/common.c, in much the same way as
we previously did for ordinary host key warnings.
The reason is the same too: I'm about to want to vary the text in one
of those dialog boxes, so it's convenient to start by putting it
somewhere that I can modify just once.
A user reported yesterday that PuTTY can fail to print a userauth
banner message if the server sends one and then immediately slams the
connection shut. The first step to fixing this is making a convenient
way to reproduce that server behaviour.
(Apparently the real use case has to do with account expiry - the
server in question presumably doesn't have enough layer violations to
be able to put the text "Your account has expired" into an
SSH_MSG_DISCONNECT, so instead it does the next best thing and sends
it as a userauth banner immediately before disconnection.)
This is like the seat-independent nonfatal(), but specifies a Seat,
which allows the GUI dialog box to have the right terminal window as
its parent (if there are multiple ones).
Changed over all the nonfatal() calls in the code base that could be
localised to a Seat, which means all the ones that come up if
something goes horribly wrong in host key storage. To make that
possible, I've added a 'seat' parameter to store_host_key(); it turns
out that all its call sites had one available already.
The text of the host key warnings was replicated in three places: the
Windows rc file, the GTK dialog setup function, and the console.c
shared between both platforms' CLI tools. Now it lives in just one
place, namely ssh/common.c where the rest of the centralised host-key
checking is done, so it'll be easier to adjust the wording in future.
This comes with some extra automation. Paragraph wrapping is no longer
done by hand in any version of these prompts. (Previously we let GTK
do the wrapping on GTK, but on Windows the resource file contained a
bunch of pre-wrapped LTEXT lines, and console.c had pre-wrapped
terminal messages.) And the dialog heights in Windows are determined
automatically based on the amount of stuff in the window.
The main idea of all this is that it'll be easier to set up more
elaborate kinds of host key prompt that deal with certificates (if,
e.g., a server sends us a certified host key which we don't trust the
CA for). But there are side benefits of this refactoring too: each
tool now reliably inserts its own appname in the prompts, and also, on
Windows the entire prompt text is copy-pastable.
Details of implementation: there's a new type SeatDialogText which
holds a set of (type, string) pairs describing the contents of a
prompt. Type codes distinguish ordinary text paragraphs, paragraphs to
be displayed prominently (like key fingerprints), the extra-bold scary
title at the top of the 'host key changed' version of the dialog, and
the various information that lives in the subsidiary 'more info' box.
ssh/common.c constructs this, and passes it to the Seat to present the
actual prompt.
In order to deal with the different UI for answering the prompt, I've
added an extra Seat method 'prompt_descriptions' which returns some
snippets of text to interpolate into the messages. ssh/common.c calls
that while it's still constructing the text, and incorporates the
resulting snippets into the SeatDialogText.
For the moment, this refactoring only affects the host key prompts.
The warnings about outmoded crypto are still done the old-fashioned
way; they probably ought to be similarly refactored to use this new
SeatDialogText system, but it's not immediately critical for the
purpose I have right now.
All the seat functions that request an interactive prompt of some kind
to the user - both the main seat_get_userpass_input and the various
confirmation dialogs for things like host keys - were using a simple
int return value, with the general semantics of 0 = "fail", 1 =
"proceed" (and in the case of seat_get_userpass_input, answers to the
prompts were provided), and -1 = "request in progress, wait for a
callback".
In this commit I change all those functions' return types to a new
struct called SeatPromptResult, whose primary field is an enum
replacing those simple integer values.
The main purpose is that the enum has not three but _four_ values: the
"fail" result has been split into 'user abort' and 'software abort'.
The distinction is that a user abort occurs as a result of an
interactive UI action, such as the user clicking 'cancel' in a dialog
box or hitting ^D or ^C at a terminal password prompt - and therefore,
there's no need to display an error message telling the user that the
interactive operation has failed, because the user already knows,
because they _did_ it. 'Software abort' is from any other cause, where
PuTTY is the first to know there was a problem, and has to tell the
user.
We already had this 'user abort' vs 'software abort' distinction in
other parts of the code - the SSH backend has separate termination
functions which protocol layers can call. But we assumed that any
failure from an interactive prompt request fell into the 'user abort'
category, which is not true. A couple of examples: if you configure a
host key fingerprint in your saved session via the SSH > Host keys
pane, and the server presents a host key that doesn't match it, then
verify_ssh_host_key would report that the user had aborted the
connection, and feel no need to tell the user what had gone wrong!
Similarly, if a password provided on the command line was not
accepted, then (after I fixed the semantics of that in the previous
commit) the same wrong handling would occur.
So now, those Seat prompt functions too can communicate whether the
user or the software originated a connection abort. And in the latter
case, we also provide an error message to present to the user. Result:
in those two example cases (and others), error messages should no
longer go missing.
Implementation note: to avoid the hassle of having the error message
in a SeatPromptResult being a dynamically allocated string (and hence,
every recipient of one must always check whether it's non-NULL and
free it on every exit path, plus being careful about copying the
struct around), I've instead arranged that the structure contains a
function pointer and a couple of parameters, so that the string form
of the message can be constructed on demand. That way, the only users
who need to free it are the ones who actually _asked_ for it in the
first place, which is a much smaller set.
(This is one of the rare occasions that I regret not having C++'s
extra features available in this code base - a unique_ptr or
shared_ptr to a string would have been just the thing here, and the
compiler would have done all the hard work for me of remembering where
to insert the frees!)
(TL;DR: to suppress redundant 'Press Return to begin session' prompts
in between hops of a jump-host configuration, in Plink.)
This new query method directly asks the Seat the question: is the same
stream of input used to provide responses to interactive login
prompts, and the session input provided after login concludes?
It's used to suppress the last-ditch anti-spoofing defence in Plink of
interactively asking 'Access granted. Press Return to begin session',
on the basis that any such spoofing attack works by confusing the user
about what's a legit login prompt before the session begins and what's
sent by the server after the main session begins - so if those two
things take input from different places, the user can't be confused.
This doesn't change the existing behaviour of Plink, which was already
suppressing the antispoof prompt in cases where its standard input was
redirected from something other than a terminal. But previously it was
doing it within the can_set_trust_status() seat query, and I've now
moved it out into a separate query function.
The reason why these need to be separate is for SshProxy, which needs
to give an unusual combination of answers when run inside Plink. For
can_set_trust_status(), it needs to return whatever the parent Seat
returns, so that all the login prompts for a string of proxy
connections in session will be antispoofed the same way. But you only
want that final 'Access granted' prompt to happen _once_, after all
the proxy connection setup phases are done, because up until then
you're still in the safe hands of PuTTY itself presenting an unbroken
sequence of legit login prompts (even if they come from a succession
of different servers). Hence, SshProxy unconditionally returns 'no' to
the query of whether it has a single mixed input stream, because
indeed, it never does - for purposes of session input it behaves like
an always-redirected Plink, no matter what kind of real Seat it ends
up sending its pre-session login prompts to.
Passing an operating-system-specific error code to plug_closing(),
such as errno or GetLastError(), was always a bit weird, given that it
generally had to be handled by cross-platform receiving code in
backends. I had the platform.h implementations #define any error
values that the cross-platform code would have to handle specially,
but that's still not a great system, because it also doesn't leave
freedom to invent error representations of my own that don't
correspond to any OS code. (For example, the ones I just removed from
proxy.h.)
So now, the OS error code is gone from the plug_closing API, and in
its place is a custom enumeration of closure types: normal, error, and
the special case BROKEN_PIPE which is the only OS error code we have
so far needed to handle specially. (All others just mean 'abandon the
connection and print the textual message'.)
Having already centralised the handling of OS error codes in the
previous commit, we've now got a convenient place to add any further
type codes for errors needing special handling: each of Unix
plug_closing_errno(), Windows plug_closing_system_error(), and Windows
plug_closing_winsock_error() can easily grow extra special cases if
need be, and each one will only have to live in one place.
All this Interactor business has been gradually working towards being
able to inform the user _which_ network connection is currently
presenting them with a password prompt (or whatever), in situations
where more than one of them might be, such as an SSH connection being
used as a proxy for another SSH connection when neither one has
one-touch login configured.
At some point, we have to arrange that any attempt to do a user
interaction during connection setup - be it a password prompt, a host
key confirmation dialog, or just displaying an SSH login banner -
makes it clear which host it's come from. That's going to mean calling
some kind of announcement function before doing any of those things.
But there are several of those functions in the Seat API, and calls to
them are scattered far and wide across the SSH backend. (And not even
just there - the Rlogin backend also uses seat_get_userpass_input).
How can we possibly make sure we don't forget a vital call site on
some obscure little-tested code path, and leave the user confused in
just that one case which nobody might notice for years?
Today I thought of a trick to solve that problem. We can use the C
type system to enforce it for us!
The plan is: we invent a new struct type which contains nothing but a
'Seat *'. Then, for every Seat method which does a thing that ought to
be clearly identified as relating to a particular Interactor, we
adjust the API for that function to take the new struct type where it
previously took a plain 'Seat *'. Or rather - doing less violence to
the existing code - we only need to adjust the API of the dispatch
functions inline in putty.h.
How does that help? Because the way you _get_ one of these
struct-wrapped Seat pointers is by calling interactor_announce() on
your Interactor, which will in turn call interactor_get_seat(), and
wrap the returned pointer into one of these structs.
The effect is that whenever the SSH (or Rlogin) code wants to call one
of those particular Seat methods, it _has_ to call
interactor_announce() just beforehand, which (once I finish all of
this) will make sure the user is aware of who is presenting the prompt
or banner or whatever. And you can't forget to call it, because if you
don't call it, then you just don't have a struct of the right type to
give to the Seat method you wanted to call!
(Of course, there's nothing stopping code from _deliberately_ taking a
Seat * it already has and wrapping it into the new struct. In fact
SshProxy has to do that, in order to forward these requests up the
chain of Seats. But the point is that you can't do it _by accident_,
just by forgetting to make a vital function call - when you do that,
you _know_ you're doing it on purpose.)
No functional change: the new interactor_announce() function exists,
and the type-system trick ensures it's called in all the right places,
but it doesn't actually _do_ anything yet.
Previously, SSH authentication banners were displayed by calling the
ordinary seat_output function, and passing it a special value in the
SeatOutputType enumeration indicating an auth banner.
The awkwardness of this was already showing a little in SshProxy's
implementation of seat_output, where it had to check for that special
value and do totally different things for SEAT_OUTPUT_AUTH_BANNER and
everything else. Further work in that area is going to make it more
and more awkward if I keep the two output systems unified.
So let's split them up. Now, Seat has separate output() and banner()
methods, which each implementation can override differently if it
wants to.
All the 'end user' Seat implementations use the centralised
implementation function nullseat_banner_to_stderr(), which turns
banner text straight back into SEAT_OUTPUT_STDERR and passes it on to
seat_output. So I didn't have to tediously implement a boring version
of this function in GTK, Windows GUI, consoles, file transfer etc.
Previously, checking the host key against the persistent cache managed
by the storage.h API was done as part of the seat_verify_ssh_host_key
method, i.e. separately by each Seat.
Now that check is done by verify_ssh_host_key(), which is a new
function in ssh/common.c that centralises all the parts of host key
checking that don't need an interactive prompt. It subsumes the
previous verify_ssh_manual_host_key() that checked against the Conf,
and it does the check against the storage API that each Seat was
previously doing separately. If it can't confirm or definitively
reject the host key by itself, _then_ it calls out to the Seat, once
an interactive prompt is definitely needed.
The main point of doing this is so that when SshProxy forwards a Seat
call from the proxy SSH connection to the primary Seat, it won't print
an announcement of which connection is involved unless it's actually
going to do something interactive. (Not that we're printing those
announcements _yet_ anyway, but this is a piece of groundwork that
works towards doing so.)
But while I'm at it, I've also taken the opportunity to clean things
up a bit by renaming functions sensibly. Previously we had three very
similarly named functions verify_ssh_manual_host_key(), SeatVtable's
'verify_ssh_host_key' method, and verify_host_key() in storage.h. Now
the Seat method is called 'confirm' rather than 'verify' (since its
job is now always to print an interactive prompt, so it looks more
like the other confirm_foo methods), and the storage.h function is
called check_stored_host_key(), which goes better with store_host_key
and avoids having too many functions with similar names. And the
'manual' function is subsumed into the new centralised code, so
there's now just *one* host key function with 'verify' in the name.
Several functions are reindented in this commit. Best viewed with
whitespace changes ignored.
It was totally unused. No implementation of the 'closing' method in a
Plug vtable was checking it for any reason at all, except for
ProxySocket which captured it from its client in order to pass on to
its server (which, perhaps after further iterations of ProxySocket,
would have ended up ignoring it similarly). And every caller of
plug_closing set it to 0 (aka false), except for the one in sshproxy.c
which passed true (but it would have made no difference to anyone).
The comment in network.h refers to a FIXME comment which was in
try_send() when that code was written (see winnet.c in commit
7b0e082700). That FIXME is long gone, replaced by a use of a
toplevel callback. So I think the aim must have been to avoid
re-entrancy when sk_write called try_send which encountered a socket
error and called back to plug_closing - but that's long since fixed by
other means now.
Now that the SSH backend's user_input bufchain is no longer needed for
handling userpass input, it doesn't have to be awkwardly shared
between all the packet protocol layers any more. So we can turn the
want_user_input and got_user_input methods of PacketProtocolLayer into
methods of ConnectionLayer, and then only the two connection layers
have to bother implementing them, or store a pointer to the bufchain
they read from.
I've introduced a function ldisc_notify_sendok(), which backends
should call on their ldisc (if they have one) when anything changes
that might cause backend_sendok() to start returning true.
At the moment, the function does nothing. But in future, I'm going to
make ldisc start buffering typed-ahead input data not yet sent to the
backend, and then the effect of this function will be to trigger
flushing all that data into the backend.
Backends only have to call this function if sendok was previously
false: backends requiring no network connection stage (like pty and
serial) can safely return true from sendok, and in that case, they
don't also have to immediately call this function.
This is called by the backend to notify the Seat that the connection
has progressed to the point where the main session channel (i.e. the
thing that would typically correspond to the client's stdin/stdout)
has been successfully set up.
The only Seat that implements this method nontrivially is the one in
SshProxy, which uses it as an indication that the proxied connection
to the remote host has succeeded, and sends the
PLUGLOG_CONNECT_SUCCESS notification to its own Plug.
Hence, the only backends that need to implement it at the moment are
the two SSH-shaped backends (SSH proper and bare-connection / psusan).
For other backends, it's not always obvious what 'main session
channel' would even mean, or whether it means anything very useful; so
I've also introduced a backend flag indicating whether the backend is
expecting to call that method at all, so as not to have to spend
pointless effort on defining an arbitrary meaning for it in other
contexts.
So a lot of this patch is just introducing the new method and putting
its trivial do-nothing implementation into all the existing Seat
methods. The interesting parts happen in ssh/mainchan.c (which
actually calls it), and sshproxy.c (which does something useful in
response).
This complicates the API in one sense (more separate functions), but
in another sense, simplifies it (each function does something
simpler). When I start putting one Seat in front of another during SSH
proxying, the latter will be more important - in particular, it means
you can find out _whether_ a seat can support changing trust status
without having to actually attempt a destructive modification.
This is used to notify the Seat that some data has been cleared from
the backend's outgoing data buffer. In other words, it notifies the
Seat that it might be worth calling backend_sendbuffer() again.
We've never needed this before, because until now, Seats have always
been the 'main program' part of the application, meaning they were
also in control of the event loop. So they've been able to call
backend_sendbuffer() proactively, every time they go round the event
loop, instead of having to wait for a callback.
But now, the SSH proxy is the first example of a Seat without
privileged access to the event loop, so it has no way to find out that
the backend's sendbuffer has got smaller. And without that, it can't
pass that notification on to plug_sent, to unblock in turn whatever
the proxied connection might have been waiting to send.
In fact, before this commit, sshproxy.c never called plug_sent at all.
As a result, large data uploads over an SSH jump host would hang
forever as soon as the outgoing buffer filled up for the first time:
the main backend (to which sshproxy.c was acting as a Socket) would
carefully stop filling up the buffer, and then never receive the call
to plug_sent that would cause it to start again.
The new callback is ignored everywhere except in sshproxy.c. It might
be a good idea to remove backend_sendbuffer() entirely and convert all
previous uses of it into non-empty implementations of this callback,
so that we've only got one system; but for the moment, I haven't done
that.
This notifies the Seat that the entire backend session has finished
and closed its network connection - or rather, that it _might_ have
done, and that the frontend should check backend_connected() if it
wasn't planning to do so already.
The existing Seat implementations haven't needed this: the GUI ones
don't actually need to do anything specific when the network
connection goes away, and the CLI ones deal with it by being in charge
of their own event loop so that they can easily check
backend_connected() at every possible opportunity in any case. But I'm
about to introduce a new Seat implementation that does need to know
this, and doesn't have any other way to get notified of it.
This clears up another large pile of clutter at the top level, and in
the process, allows me to rename source files to things that don't all
have that annoying 'ssh' prefix at the top.