/* ---------------------------------------------------------------------- * Hardware-accelerated implementation of AES using Arm NEON. */ #include "ssh.h" #include "aes.h" #if USE_ARM64_NEON_H #include #else #include #endif static bool aes_neon_available(void) { /* * For Arm, we delegate to a per-platform AES detection function, * because it has to be implemented by asking the operating system * rather than directly querying the CPU. * * That's because Arm systems commonly have multiple cores that * are not all alike, so any method of querying whether NEON * crypto instructions work on the _current_ CPU - even one as * crude as just trying one and catching the SIGILL - wouldn't * give an answer that you could still rely on the first time the * OS migrated your process to another CPU. */ return platform_aes_neon_available(); } /* * Core NEON encrypt/decrypt functions, one per length and direction. */ #define NEON_CIPHER(len, repmacro) \ static inline uint8x16_t aes_neon_##len##_e( \ uint8x16_t v, const uint8x16_t *keysched) \ { \ repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++));); \ v = vaeseq_u8(v, *keysched++); \ return veorq_u8(v, *keysched); \ } \ static inline uint8x16_t aes_neon_##len##_d( \ uint8x16_t v, const uint8x16_t *keysched) \ { \ repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++));); \ v = vaesdq_u8(v, *keysched++); \ return veorq_u8(v, *keysched); \ } NEON_CIPHER(128, REP9) NEON_CIPHER(192, REP11) NEON_CIPHER(256, REP13) /* * The main key expansion. */ static void aes_neon_key_expand( const unsigned char *key, size_t key_words, uint8x16_t *keysched_e, uint8x16_t *keysched_d) { size_t rounds = key_words + 6; size_t sched_words = (rounds + 1) * 4; /* * Store the key schedule as 32-bit integers during expansion, so * that it's easy to refer back to individual previous words. We * collect them into the final uint8x16_t form at the end. */ uint32_t sched[MAXROUNDKEYS * 4]; unsigned rconpos = 0; for (size_t i = 0; i < sched_words; i++) { if (i < key_words) { sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i); } else { uint32_t temp = sched[i - 1]; bool rotate_and_round_constant = (i % key_words == 0); bool sub = rotate_and_round_constant || (key_words == 8 && i % 8 == 4); if (rotate_and_round_constant) temp = (temp << 24) | (temp >> 8); if (sub) { uint32x4_t v32 = vdupq_n_u32(temp); uint8x16_t v8 = vreinterpretq_u8_u32(v32); v8 = vaeseq_u8(v8, vdupq_n_u8(0)); v32 = vreinterpretq_u32_u8(v8); temp = vget_lane_u32(vget_low_u32(v32), 0); } if (rotate_and_round_constant) { assert(rconpos < lenof(aes_key_setup_round_constants)); temp ^= aes_key_setup_round_constants[rconpos++]; } sched[i] = sched[i - key_words] ^ temp; } } /* * Combine the key schedule words into uint8x16_t vectors and * store them in the output context. */ for (size_t round = 0; round <= rounds; round++) keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round)); smemclr(sched, sizeof(sched)); /* * Now prepare the modified keys for the inverse cipher. */ for (size_t eround = 0; eround <= rounds; eround++) { size_t dround = rounds - eround; uint8x16_t rkey = keysched_e[eround]; if (eround && dround) /* neither first nor last */ rkey = vaesimcq_u8(rkey); keysched_d[dround] = rkey; } } /* * Auxiliary routine to reverse the byte order of a vector, so that * the SDCTR IV can be made big-endian for feeding to the cipher. * * In fact we don't need to reverse the vector _all_ the way; we leave * the two lanes in MSW,LSW order, because that makes no difference to * the efficiency of the increment. That way we only have to reverse * bytes within each lane in this function. */ static inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v) { return vrev64q_u8(v); } /* * Auxiliary routine to increment the 128-bit counter used in SDCTR * mode. There's no instruction to treat a 128-bit vector as a single * long integer, so instead we have to increment the bottom half * unconditionally, and the top half if the bottom half started off as * all 1s (in which case there was about to be a carry). */ static inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in) { #ifdef __aarch64__ /* There will be a carry if the low 64 bits are all 1s. */ uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF); uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1); /* Make a word whose bottom half is unconditionally all 1s, and * the top half is 'carry', i.e. all 0s most of the time but all * 1s if we need to increment the top half. Then that word is what * we need to _subtract_ from the input counter. */ uint64x2_t subtrahend = vcombine_u64(carry, all1); #else /* AArch32 doesn't have comparisons that operate on a 64-bit lane, * so we start by comparing each 32-bit half of the low 64 bits * _separately_ to all-1s. */ uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF); uint32x2_t carry = vceq_u32( vget_high_u32(vreinterpretq_u32_u8(in)), all1); /* Swap the 32-bit words of the compare output, and AND with the * unswapped version. Now carry is all 1s iff the bottom half of * the input counter was all 1s, and all 0s otherwise. */ carry = vand_u32(carry, vrev64_u32(carry)); /* Now make the vector to subtract in the same way as above. */ uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1)); #endif return vreinterpretq_u8_u64( vsubq_u64(vreinterpretq_u64_u8(in), subtrahend)); } /* * Much simpler auxiliary routine to increment the counter for GCM * mode. This only has to increment the low word. */ static inline uint8x16_t aes_neon_gcm_increment(uint8x16_t in) { uint32x4_t inw = vreinterpretq_u32_u8(in); uint32x4_t ONE = vcombine_u32(vcreate_u32(0), vcreate_u32(1)); inw = vaddq_u32(inw, ONE); return vreinterpretq_u8_u32(inw); } /* * The SSH interface and the cipher modes. */ typedef struct aes_neon_context aes_neon_context; struct aes_neon_context { uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv; ssh_cipher ciph; }; static ssh_cipher *aes_neon_new(const ssh_cipheralg *alg) { const struct aes_extra *extra = (const struct aes_extra *)alg->extra; if (!check_availability(extra)) return NULL; aes_neon_context *ctx = snew(aes_neon_context); ctx->ciph.vt = alg; return &ctx->ciph; } static void aes_neon_free(ssh_cipher *ciph) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); smemclr(ctx, sizeof(*ctx)); sfree(ctx); } static void aes_neon_setkey(ssh_cipher *ciph, const void *vkey) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); const unsigned char *key = (const unsigned char *)vkey; aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32, ctx->keysched_e, ctx->keysched_d); } static void aes_neon_setiv_cbc(ssh_cipher *ciph, const void *iv) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); ctx->iv = vld1q_u8(iv); } static void aes_neon_setiv_sdctr(ssh_cipher *ciph, const void *iv) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); uint8x16_t counter = vld1q_u8(iv); ctx->iv = aes_neon_sdctr_reverse(counter); } static void aes_neon_setiv_gcm(ssh_cipher *ciph, const void *iv) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); uint8x16_t counter = vld1q_u8(iv); ctx->iv = aes_neon_sdctr_reverse(counter); ctx->iv = vreinterpretq_u8_u32(vsetq_lane_u32( 1, vreinterpretq_u32_u8(ctx->iv), 2)); } static void aes_neon_next_message_gcm(ssh_cipher *ciph) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); uint32x4_t iv = vreinterpretq_u32_u8(ctx->iv); uint64_t msg_counter = vgetq_lane_u32(iv, 0); msg_counter = (msg_counter << 32) | vgetq_lane_u32(iv, 3); msg_counter++; iv = vsetq_lane_u32(msg_counter >> 32, iv, 0); iv = vsetq_lane_u32(msg_counter, iv, 3); iv = vsetq_lane_u32(1, iv, 2); ctx->iv = vreinterpretq_u8_u32(iv); } typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched); static inline void aes_cbc_neon_encrypt( ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; blk < finish; blk += 16) { uint8x16_t plaintext = vld1q_u8(blk); uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv); uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e); vst1q_u8(blk, ciphertext); ctx->iv = ciphertext; } } static inline void aes_cbc_neon_decrypt( ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; blk < finish; blk += 16) { uint8x16_t ciphertext = vld1q_u8(blk); uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d); uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv); vst1q_u8(blk, plaintext); ctx->iv = ciphertext; } } static inline void aes_sdctr_neon( ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; blk < finish; blk += 16) { uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv); uint8x16_t keystream = encrypt(counter, ctx->keysched_e); uint8x16_t input = vld1q_u8(blk); uint8x16_t output = veorq_u8(input, keystream); vst1q_u8(blk, output); ctx->iv = aes_neon_sdctr_increment(ctx->iv); } } static inline void aes_encrypt_ecb_block_neon( ssh_cipher *ciph, void *blk, aes_neon_fn encrypt) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); uint8x16_t plaintext = vld1q_u8(blk); uint8x16_t ciphertext = encrypt(plaintext, ctx->keysched_e); vst1q_u8(blk, ciphertext); } static inline void aes_gcm_neon( ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt) { aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph); for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen; blk < finish; blk += 16) { uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv); uint8x16_t keystream = encrypt(counter, ctx->keysched_e); uint8x16_t input = vld1q_u8(blk); uint8x16_t output = veorq_u8(input, keystream); vst1q_u8(blk, output); ctx->iv = aes_neon_gcm_increment(ctx->iv); } } #define NEON_ENC_DEC(len) \ static void aes##len##_neon_cbc_encrypt( \ ssh_cipher *ciph, void *vblk, int blklen) \ { aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); } \ static void aes##len##_neon_cbc_decrypt( \ ssh_cipher *ciph, void *vblk, int blklen) \ { aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); } \ static void aes##len##_neon_sdctr( \ ssh_cipher *ciph, void *vblk, int blklen) \ { aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \ static void aes##len##_neon_gcm( \ ssh_cipher *ciph, void *vblk, int blklen) \ { aes_gcm_neon(ciph, vblk, blklen, aes_neon_##len##_e); } \ static void aes##len##_neon_encrypt_ecb_block( \ ssh_cipher *ciph, void *vblk) \ { aes_encrypt_ecb_block_neon(ciph, vblk, aes_neon_##len##_e); } NEON_ENC_DEC(128) NEON_ENC_DEC(192) NEON_ENC_DEC(256) AES_EXTRA(_neon); AES_ALL_VTABLES(_neon, "NEON accelerated");