/* * Hardware-accelerated implementation of SHA-1 using x86 SHA-NI. */ #include "ssh.h" #include "sha1.h" #include #include #include #if HAVE_SHAINTRIN_H #include #endif #if defined(__clang__) || defined(__GNUC__) #include #define GET_CPU_ID_0(out) \ __cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3]) #define GET_CPU_ID_7(out) \ __cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3]) #else #define GET_CPU_ID_0(out) __cpuid(out, 0) #define GET_CPU_ID_7(out) __cpuidex(out, 7, 0) #endif static bool sha1_ni_available(void) { unsigned int CPUInfo[4]; GET_CPU_ID_0(CPUInfo); if (CPUInfo[0] < 7) return false; GET_CPU_ID_7(CPUInfo); return CPUInfo[1] & (1 << 29); /* Check SHA */ } /* SHA1 implementation using new instructions The code is based on Jeffrey Walton's SHA1 implementation: https://github.com/noloader/SHA-Intrinsics */ static inline void sha1_ni_block(__m128i *core, const uint8_t *p) { __m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3; const __m128i MASK = _mm_set_epi64x( 0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL); const __m128i *block = (const __m128i *)p; /* Load initial values */ ABCD = core[0]; E0 = core[1]; /* Rounds 0-3 */ MSG0 = _mm_loadu_si128(block); MSG0 = _mm_shuffle_epi8(MSG0, MASK); E0 = _mm_add_epi32(E0, MSG0); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); /* Rounds 4-7 */ MSG1 = _mm_loadu_si128(block + 1); MSG1 = _mm_shuffle_epi8(MSG1, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); /* Rounds 8-11 */ MSG2 = _mm_loadu_si128(block + 2); MSG2 = _mm_shuffle_epi8(MSG2, MASK); E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 12-15 */ MSG3 = _mm_loadu_si128(block + 3); MSG3 = _mm_shuffle_epi8(MSG3, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 16-19 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 20-23 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 24-27 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 28-31 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 32-35 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 36-39 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 40-43 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 44-47 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 48-51 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 52-55 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 56-59 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 60-63 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 64-67 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 68-71 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 72-75 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); /* Rounds 76-79 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); /* Combine state */ core[0] = _mm_add_epi32(ABCD, core[0]); core[1] = _mm_sha1nexte_epu32(E0, core[1]); } typedef struct sha1_ni { /* * core[0] stores the first four words of the SHA-1 state. core[1] * stores just the fifth word, in the vector lane at the highest * address. */ __m128i core[2]; sha1_block blk; void *pointer_to_free; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha1_ni; static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len); static sha1_ni *sha1_ni_alloc(void) { /* * The __m128i variables in the context structure need to be * 16-byte aligned, but not all malloc implementations that this * code has to work with will guarantee to return a 16-byte * aligned pointer. So we over-allocate, manually realign the * pointer ourselves, and store the original one inside the * context so we know how to free it later. */ void *allocation = smalloc(sizeof(sha1_ni) + 15); uintptr_t alloc_address = (uintptr_t)allocation; uintptr_t aligned_address = (alloc_address + 15) & ~15; sha1_ni *s = (sha1_ni *)aligned_address; s->pointer_to_free = allocation; return s; } static ssh_hash *sha1_ni_new(const ssh_hashalg *alg) { const struct sha1_extra *extra = (const struct sha1_extra *)alg->extra; if (!check_availability(extra)) return NULL; sha1_ni *s = sha1_ni_alloc(); s->hash.vt = alg; BinarySink_INIT(s, sha1_ni_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha1_ni_reset(ssh_hash *hash) { sha1_ni *s = container_of(hash, sha1_ni, hash); /* Initialise the core vectors in their storage order */ s->core[0] = _mm_set_epi64x( 0x67452301efcdab89ULL, 0x98badcfe10325476ULL); s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0); sha1_block_setup(&s->blk); } static void sha1_ni_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha1_ni *copy = container_of(hcopy, sha1_ni, hash); sha1_ni *orig = container_of(horig, sha1_ni, hash); void *ptf_save = copy->pointer_to_free; *copy = *orig; /* structure copy */ copy->pointer_to_free = ptf_save; BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha1_ni_free(ssh_hash *hash) { sha1_ni *s = container_of(hash, sha1_ni, hash); void *ptf = s->pointer_to_free; smemclr(s, sizeof(*s)); sfree(ptf); } static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len) { sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni); while (len > 0) if (sha1_block_write(&s->blk, &vp, &len)) sha1_ni_block(s->core, s->blk.block); } static void sha1_ni_digest(ssh_hash *hash, uint8_t *digest) { sha1_ni *s = container_of(hash, sha1_ni, hash); sha1_block_pad(&s->blk, BinarySink_UPCAST(s)); /* Rearrange the first vector into its output order */ __m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B); /* Byte-swap it into the output endianness */ const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12); abcd = _mm_shuffle_epi8(abcd, mask); /* And store it */ _mm_storeu_si128((__m128i *)digest, abcd); /* Finally, store the leftover word */ uint32_t e = _mm_extract_epi32(s->core[1], 3); PUT_32BIT_MSB_FIRST(digest + 16, e); } SHA1_VTABLE(ni, "SHA-NI accelerated");