/* * Software implementation of SHA-512. */ #include "ssh.h" #include "sha512.h" static bool sha512_sw_available(void) { /* Software SHA-512 is always available */ return true; } static inline uint64_t ror(uint64_t x, unsigned y) { return (x << (63 & -y)) | (x >> (63 & y)); } static inline uint64_t Ch(uint64_t ctrl, uint64_t if1, uint64_t if0) { return if0 ^ (ctrl & (if1 ^ if0)); } static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); } static inline uint64_t Sigma_0(uint64_t x) { return ror(x,28) ^ ror(x,34) ^ ror(x,39); } static inline uint64_t Sigma_1(uint64_t x) { return ror(x,14) ^ ror(x,18) ^ ror(x,41); } static inline uint64_t sigma_0(uint64_t x) { return ror(x,1) ^ ror(x,8) ^ (x >> 7); } static inline uint64_t sigma_1(uint64_t x) { return ror(x,19) ^ ror(x,61) ^ (x >> 6); } static inline void sha512_sw_round( unsigned round_index, const uint64_t *schedule, uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d, uint64_t *e, uint64_t *f, uint64_t *g, uint64_t *h) { uint64_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) + sha512_round_constants[round_index] + schedule[round_index]; uint64_t t2 = Sigma_0(*a) + Maj(*a,*b,*c); *d += t1; *h = t1 + t2; } static void sha512_sw_block(uint64_t *core, const uint8_t *block) { uint64_t w[SHA512_ROUNDS]; uint64_t a,b,c,d,e,f,g,h; int t; for (t = 0; t < 16; t++) w[t] = GET_64BIT_MSB_FIRST(block + 8*t); for (t = 16; t < SHA512_ROUNDS; t++) w[t] = w[t-16] + w[t-7] + sigma_0(w[t-15]) + sigma_1(w[t-2]); a = core[0]; b = core[1]; c = core[2]; d = core[3]; e = core[4]; f = core[5]; g = core[6]; h = core[7]; for (t = 0; t < SHA512_ROUNDS; t+=8) { sha512_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h); sha512_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g); sha512_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f); sha512_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e); sha512_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d); sha512_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c); sha512_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b); sha512_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a); } core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e; core[5] += f; core[6] += g; core[7] += h; smemclr(w, sizeof(w)); } typedef struct sha512_sw { uint64_t core[8]; sha512_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha512_sw; static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha512_sw_new(const ssh_hashalg *alg) { sha512_sw *s = snew(sha512_sw); s->hash.vt = alg; BinarySink_INIT(s, sha512_sw_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha512_sw_reset(ssh_hash *hash) { sha512_sw *s = container_of(hash, sha512_sw, hash); const struct sha512_extra *extra = (const struct sha512_extra *)hash->vt->extra; memcpy(s->core, extra->initial_state, sizeof(s->core)); sha512_block_setup(&s->blk); } static void sha512_sw_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha512_sw *copy = container_of(hcopy, sha512_sw, hash); sha512_sw *orig = container_of(horig, sha512_sw, hash); memcpy(copy, orig, sizeof(*copy)); BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha512_sw_free(ssh_hash *hash) { sha512_sw *s = container_of(hash, sha512_sw, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len) { sha512_sw *s = BinarySink_DOWNCAST(bs, sha512_sw); while (len > 0) if (sha512_block_write(&s->blk, &vp, &len)) sha512_sw_block(s->core, s->blk.block); } static void sha512_sw_digest(ssh_hash *hash, uint8_t *digest) { sha512_sw *s = container_of(hash, sha512_sw, hash); sha512_block_pad(&s->blk, BinarySink_UPCAST(s)); for (size_t i = 0; i < hash->vt->hlen / 8; i++) PUT_64BIT_MSB_FIRST(digest + 8*i, s->core[i]); } /* * This implementation doesn't need separate digest methods for * SHA-384 and SHA-512, because the above implementation reads the * hash length out of the vtable. */ #define sha384_sw_digest sha512_sw_digest SHA512_VTABLES(sw, "unaccelerated");