#include #include #include "puttymem.h" #include "tree234.h" #include "network.h" #include "misc.h" struct ssh_channel; /* * Buffer management constants. There are several of these for * various different purposes: * * - SSH1_BUFFER_LIMIT is the amount of backlog that must build up * on a local data stream before we throttle the whole SSH * connection (in SSH-1 only). Throttling the whole connection is * pretty drastic so we set this high in the hope it won't * happen very often. * * - SSH_MAX_BACKLOG is the amount of backlog that must build up * on the SSH connection itself before we defensively throttle * _all_ local data streams. This is pretty drastic too (though * thankfully unlikely in SSH-2 since the window mechanism should * ensure that the server never has any need to throttle its end * of the connection), so we set this high as well. * * - OUR_V2_WINSIZE is the default window size we present on SSH-2 * channels. * * - OUR_V2_BIGWIN is the window size we advertise for the only * channel in a simple connection. It must be <= INT_MAX. * * - OUR_V2_MAXPKT is the official "maximum packet size" we send * to the remote side. This actually has nothing to do with the * size of the _packet_, but is instead a limit on the amount * of data we're willing to receive in a single SSH2 channel * data message. * * - OUR_V2_PACKETLIMIT is actually the maximum size of SSH * _packet_ we're prepared to cope with. It must be a multiple * of the cipher block size, and must be at least 35000. */ #define SSH1_BUFFER_LIMIT 32768 #define SSH_MAX_BACKLOG 32768 #define OUR_V2_WINSIZE 16384 #define OUR_V2_BIGWIN 0x7fffffff #define OUR_V2_MAXPKT 0x4000UL #define OUR_V2_PACKETLIMIT 0x9000UL typedef struct PacketQueueNode PacketQueueNode; struct PacketQueueNode { PacketQueueNode *next, *prev; size_t formal_size; /* contribution to PacketQueueBase's total_size */ bool on_free_queue; /* is this packet scheduled for freeing? */ }; typedef struct PktIn { int type; unsigned long sequence; /* SSH-2 incoming sequence number */ PacketQueueNode qnode; /* for linking this packet on to a queue */ BinarySource_IMPLEMENTATION; } PktIn; typedef struct PktOut { size_t prefix; /* bytes up to and including type field */ size_t length; /* total bytes, including prefix */ int type; size_t minlen; /* SSH-2: ensure wire length is at least this */ unsigned char *data; /* allocated storage */ size_t maxlen; /* amount of storage allocated for `data' */ /* Extra metadata used in SSH packet logging mode, allowing us to * log in the packet header line that the packet came from a * connection-sharing downstream and what if anything unusual was * done to it. The additional_log_text field is expected to be a * static string - it will not be freed. */ unsigned downstream_id; const char *additional_log_text; PacketQueueNode qnode; /* for linking this packet on to a queue */ BinarySink_IMPLEMENTATION; } PktOut; typedef struct PacketQueueBase { PacketQueueNode end; size_t total_size; /* sum of all formal_size fields on the queue */ struct IdempotentCallback *ic; } PacketQueueBase; typedef struct PktInQueue { PacketQueueBase pqb; PktIn *(*after)(PacketQueueBase *, PacketQueueNode *prev, bool pop); } PktInQueue; typedef struct PktOutQueue { PacketQueueBase pqb; PktOut *(*after)(PacketQueueBase *, PacketQueueNode *prev, bool pop); } PktOutQueue; void pq_base_push(PacketQueueBase *pqb, PacketQueueNode *node); void pq_base_push_front(PacketQueueBase *pqb, PacketQueueNode *node); void pq_base_concatenate(PacketQueueBase *dest, PacketQueueBase *q1, PacketQueueBase *q2); void pq_in_init(PktInQueue *pq); void pq_out_init(PktOutQueue *pq); void pq_in_clear(PktInQueue *pq); void pq_out_clear(PktOutQueue *pq); #define pq_push(pq, pkt) \ TYPECHECK((pq)->after(&(pq)->pqb, NULL, false) == pkt, \ pq_base_push(&(pq)->pqb, &(pkt)->qnode)) #define pq_push_front(pq, pkt) \ TYPECHECK((pq)->after(&(pq)->pqb, NULL, false) == pkt, \ pq_base_push_front(&(pq)->pqb, &(pkt)->qnode)) #define pq_peek(pq) ((pq)->after(&(pq)->pqb, &(pq)->pqb.end, false)) #define pq_pop(pq) ((pq)->after(&(pq)->pqb, &(pq)->pqb.end, true)) #define pq_concatenate(dst, q1, q2) \ TYPECHECK((q1)->after(&(q1)->pqb, NULL, false) == \ (dst)->after(&(dst)->pqb, NULL, false) && \ (q2)->after(&(q2)->pqb, NULL, false) == \ (dst)->after(&(dst)->pqb, NULL, false), \ pq_base_concatenate(&(dst)->pqb, &(q1)->pqb, &(q2)->pqb)) #define pq_first(pq) pq_peek(pq) #define pq_next(pq, pkt) ((pq)->after(&(pq)->pqb, &(pkt)->qnode, false)) /* * Packet type contexts, so that ssh2_pkt_type can correctly decode * the ambiguous type numbers back into the correct type strings. */ typedef enum { SSH2_PKTCTX_NOKEX, SSH2_PKTCTX_DHGROUP, SSH2_PKTCTX_DHGEX, SSH2_PKTCTX_ECDHKEX, SSH2_PKTCTX_GSSKEX, SSH2_PKTCTX_RSAKEX } Pkt_KCtx; typedef enum { SSH2_PKTCTX_NOAUTH, SSH2_PKTCTX_PUBLICKEY, SSH2_PKTCTX_PASSWORD, SSH2_PKTCTX_GSSAPI, SSH2_PKTCTX_KBDINTER } Pkt_ACtx; typedef struct PacketLogSettings { bool omit_passwords, omit_data; Pkt_KCtx kctx; Pkt_ACtx actx; } PacketLogSettings; #define MAX_BLANKS 4 /* no packet needs more censored sections than this */ int ssh1_censor_packet( const PacketLogSettings *pls, int type, bool sender_is_client, ptrlen pkt, logblank_t *blanks); int ssh2_censor_packet( const PacketLogSettings *pls, int type, bool sender_is_client, ptrlen pkt, logblank_t *blanks); PktOut *ssh_new_packet(void); void ssh_free_pktout(PktOut *pkt); Socket *ssh_connection_sharing_init( const char *host, int port, Conf *conf, LogContext *logctx, Plug *sshplug, ssh_sharing_state **state); void ssh_connshare_provide_connlayer(ssh_sharing_state *sharestate, ConnectionLayer *cl); bool ssh_share_test_for_upstream(const char *host, int port, Conf *conf); void share_got_pkt_from_server(ssh_sharing_connstate *ctx, int type, const void *pkt, int pktlen); void share_activate(ssh_sharing_state *sharestate, const char *server_verstring); void sharestate_free(ssh_sharing_state *state); int share_ndownstreams(ssh_sharing_state *state); void ssh_connshare_log(Ssh *ssh, int event, const char *logtext, const char *ds_err, const char *us_err); void share_setup_x11_channel(ssh_sharing_connstate *cs, share_channel *chan, unsigned upstream_id, unsigned server_id, unsigned server_currwin, unsigned server_maxpkt, unsigned client_adjusted_window, const char *peer_addr, int peer_port, int endian, int protomajor, int protominor, const void *initial_data, int initial_len); /* Per-application overrides for what roles we can take in connection * sharing, regardless of user configuration (e.g. pscp will never be * an upstream) */ extern const bool share_can_be_downstream; extern const bool share_can_be_upstream; struct X11Display; struct X11FakeAuth; /* Structure definition centralised here because the SSH-1 and SSH-2 * connection layers both use it. But the client module (portfwd.c) * should not try to look inside here. */ struct ssh_rportfwd { unsigned sport, dport; char *shost, *dhost; int addressfamily; char *log_description; /* name of remote listening port, for logging */ ssh_sharing_connstate *share_ctx; PortFwdRecord *pfr; }; void free_rportfwd(struct ssh_rportfwd *rpf); typedef struct ConnectionLayerVtable ConnectionLayerVtable; struct ConnectionLayerVtable { /* Allocate and free remote-to-local port forwardings, called by * PortFwdManager or by connection sharing */ struct ssh_rportfwd *(*rportfwd_alloc)( ConnectionLayer *cl, const char *shost, int sport, const char *dhost, int dport, int addressfamily, const char *log_description, PortFwdRecord *pfr, ssh_sharing_connstate *share_ctx); void (*rportfwd_remove)(ConnectionLayer *cl, struct ssh_rportfwd *rpf); /* Open a local-to-remote port forwarding channel, called by * PortFwdManager */ SshChannel *(*lportfwd_open)( ConnectionLayer *cl, const char *hostname, int port, const char *description, const SocketPeerInfo *peerinfo, Channel *chan); /* Initiate opening of a 'session'-type channel */ SshChannel *(*session_open)(ConnectionLayer *cl, Channel *chan); /* Open outgoing channels for X and agent forwarding. (Used in the * SSH server.) */ SshChannel *(*serverside_x11_open)(ConnectionLayer *cl, Channel *chan, const SocketPeerInfo *pi); SshChannel *(*serverside_agent_open)(ConnectionLayer *cl, Channel *chan); /* Add an X11 display for ordinary X forwarding */ struct X11FakeAuth *(*add_x11_display)( ConnectionLayer *cl, int authtype, struct X11Display *x11disp); /* Add and remove X11 displays for connection sharing downstreams */ struct X11FakeAuth *(*add_sharing_x11_display)( ConnectionLayer *cl, int authtype, ssh_sharing_connstate *share_cs, share_channel *share_chan); void (*remove_sharing_x11_display)( ConnectionLayer *cl, struct X11FakeAuth *auth); /* Pass through an outgoing SSH packet from a downstream */ void (*send_packet_from_downstream)( ConnectionLayer *cl, unsigned id, int type, const void *pkt, int pktlen, const char *additional_log_text); /* Allocate/free an upstream channel number associated with a * sharing downstream */ unsigned (*alloc_sharing_channel)(ConnectionLayer *cl, ssh_sharing_connstate *connstate); void (*delete_sharing_channel)(ConnectionLayer *cl, unsigned localid); /* Indicate that a downstream has sent a global request with the * want-reply flag, so that when a reply arrives it will be passed * back to that downstrean */ void (*sharing_queue_global_request)( ConnectionLayer *cl, ssh_sharing_connstate *connstate); /* Indicate that the last downstream has disconnected */ void (*sharing_no_more_downstreams)(ConnectionLayer *cl); /* Query whether the connection layer is doing agent forwarding */ bool (*agent_forwarding_permitted)(ConnectionLayer *cl); /* Set the size of the main terminal window (if any) */ void (*terminal_size)(ConnectionLayer *cl, int width, int height); /* Indicate that the backlog on standard output has cleared */ void (*stdout_unthrottle)(ConnectionLayer *cl, size_t bufsize); /* Query the size of the backlog on standard _input_ */ size_t (*stdin_backlog)(ConnectionLayer *cl); /* Tell the connection layer that the SSH connection itself has * backed up, so it should tell all currently open channels to * cease reading from their local input sources if they can. (Or * tell it that that state of affairs has gone away again.) */ void (*throttle_all_channels)(ConnectionLayer *cl, bool throttled); /* Ask the connection layer about its current preference for * line-discipline options. */ bool (*ldisc_option)(ConnectionLayer *cl, int option); /* Communicate _to_ the connection layer (from the main session * channel) what its preference for line-discipline options is. */ void (*set_ldisc_option)(ConnectionLayer *cl, int option, bool value); /* Communicate to the connection layer whether X forwarding was * successfully enabled (for purposes of knowing whether to accept * subsequent channel-opens). */ void (*enable_x_fwd)(ConnectionLayer *cl); /* Communicate / query whether the main session channel currently * wants user input. The set function is called by mainchan; the * query function is called by the top-level ssh.c. */ void (*set_wants_user_input)(ConnectionLayer *cl, bool wanted); bool (*get_wants_user_input)(ConnectionLayer *cl); /* Notify the connection layer that more data has been added to * the user input queue. */ void (*got_user_input)(ConnectionLayer *cl); }; struct ConnectionLayer { LogContext *logctx; const struct ConnectionLayerVtable *vt; }; static inline struct ssh_rportfwd *ssh_rportfwd_alloc( ConnectionLayer *cl, const char *sh, int sp, const char *dh, int dp, int af, const char *log, PortFwdRecord *pfr, ssh_sharing_connstate *cs) { return cl->vt->rportfwd_alloc(cl, sh, sp, dh, dp, af, log, pfr, cs); } static inline void ssh_rportfwd_remove( ConnectionLayer *cl, struct ssh_rportfwd *rpf) { cl->vt->rportfwd_remove(cl, rpf); } static inline SshChannel *ssh_lportfwd_open( ConnectionLayer *cl, const char *host, int port, const char *desc, const SocketPeerInfo *pi, Channel *chan) { return cl->vt->lportfwd_open(cl, host, port, desc, pi, chan); } static inline SshChannel *ssh_session_open(ConnectionLayer *cl, Channel *chan) { return cl->vt->session_open(cl, chan); } static inline SshChannel *ssh_serverside_x11_open( ConnectionLayer *cl, Channel *chan, const SocketPeerInfo *pi) { return cl->vt->serverside_x11_open(cl, chan, pi); } static inline SshChannel *ssh_serverside_agent_open( ConnectionLayer *cl, Channel *chan) { return cl->vt->serverside_agent_open(cl, chan); } static inline struct X11FakeAuth *ssh_add_x11_display( ConnectionLayer *cl, int authtype, struct X11Display *x11disp) { return cl->vt->add_x11_display(cl, authtype, x11disp); } static inline struct X11FakeAuth *ssh_add_sharing_x11_display( ConnectionLayer *cl, int authtype, ssh_sharing_connstate *share_cs, share_channel *share_chan) { return cl->vt->add_sharing_x11_display(cl, authtype, share_cs, share_chan); } static inline void ssh_remove_sharing_x11_display( ConnectionLayer *cl, struct X11FakeAuth *auth) { cl->vt->remove_sharing_x11_display(cl, auth); } static inline void ssh_send_packet_from_downstream( ConnectionLayer *cl, unsigned id, int type, const void *pkt, int len, const char *log) { cl->vt->send_packet_from_downstream(cl, id, type, pkt, len, log); } static inline unsigned ssh_alloc_sharing_channel( ConnectionLayer *cl, ssh_sharing_connstate *connstate) { return cl->vt->alloc_sharing_channel(cl, connstate); } static inline void ssh_delete_sharing_channel( ConnectionLayer *cl, unsigned localid) { cl->vt->delete_sharing_channel(cl, localid); } static inline void ssh_sharing_queue_global_request( ConnectionLayer *cl, ssh_sharing_connstate *connstate) { cl->vt->sharing_queue_global_request(cl, connstate); } static inline void ssh_sharing_no_more_downstreams(ConnectionLayer *cl) { cl->vt->sharing_no_more_downstreams(cl); } static inline bool ssh_agent_forwarding_permitted(ConnectionLayer *cl) { return cl->vt->agent_forwarding_permitted(cl); } static inline void ssh_terminal_size(ConnectionLayer *cl, int w, int h) { cl->vt->terminal_size(cl, w, h); } static inline void ssh_stdout_unthrottle(ConnectionLayer *cl, size_t bufsize) { cl->vt->stdout_unthrottle(cl, bufsize); } static inline size_t ssh_stdin_backlog(ConnectionLayer *cl) { return cl->vt->stdin_backlog(cl); } static inline void ssh_throttle_all_channels(ConnectionLayer *cl, bool thr) { cl->vt->throttle_all_channels(cl, thr); } static inline bool ssh_ldisc_option(ConnectionLayer *cl, int option) { return cl->vt->ldisc_option(cl, option); } static inline void ssh_set_ldisc_option(ConnectionLayer *cl, int opt, bool val) { cl->vt->set_ldisc_option(cl, opt, val); } static inline void ssh_enable_x_fwd(ConnectionLayer *cl) { cl->vt->enable_x_fwd(cl); } static inline void ssh_set_wants_user_input(ConnectionLayer *cl, bool wanted) { cl->vt->set_wants_user_input(cl, wanted); } static inline bool ssh_get_wants_user_input(ConnectionLayer *cl) { return cl->vt->get_wants_user_input(cl); } static inline void ssh_got_user_input(ConnectionLayer *cl) { cl->vt->got_user_input(cl); } /* Exports from portfwd.c */ PortFwdManager *portfwdmgr_new(ConnectionLayer *cl); void portfwdmgr_free(PortFwdManager *mgr); void portfwdmgr_config(PortFwdManager *mgr, Conf *conf); void portfwdmgr_close(PortFwdManager *mgr, PortFwdRecord *pfr); void portfwdmgr_close_all(PortFwdManager *mgr); char *portfwdmgr_connect(PortFwdManager *mgr, Channel **chan_ret, char *hostname, int port, SshChannel *c, int addressfamily); bool portfwdmgr_listen(PortFwdManager *mgr, const char *host, int port, const char *keyhost, int keyport, Conf *conf); bool portfwdmgr_unlisten(PortFwdManager *mgr, const char *host, int port); Channel *portfwd_raw_new(ConnectionLayer *cl, Plug **plug, bool start_ready); void portfwd_raw_free(Channel *pfchan); void portfwd_raw_setup(Channel *pfchan, Socket *s, SshChannel *sc); Socket *platform_make_agent_socket(Plug *plug, const char *dirprefix, char **error, char **name); LogContext *ssh_get_logctx(Ssh *ssh); /* Communications back to ssh.c from connection layers */ void ssh_throttle_conn(Ssh *ssh, int adjust); void ssh_got_exitcode(Ssh *ssh, int status); void ssh_ldisc_update(Ssh *ssh); void ssh_check_sendok(Ssh *ssh); void ssh_got_fallback_cmd(Ssh *ssh); bool ssh_is_bare(Ssh *ssh); /* Communications back to ssh.c from the BPP */ void ssh_conn_processed_data(Ssh *ssh); void ssh_sendbuffer_changed(Ssh *ssh); void ssh_check_frozen(Ssh *ssh); /* Functions to abort the connection, for various reasons. */ void ssh_remote_error(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_remote_eof(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_proto_error(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_sw_abort(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_sw_abort_deferred(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_user_close(Ssh *ssh, const char *fmt, ...) PRINTF_LIKE(2, 3); void ssh_spr_close(Ssh *ssh, SeatPromptResult spr, const char *context); /* Bit positions in the SSH-1 cipher protocol word */ #define SSH1_CIPHER_IDEA 1 #define SSH1_CIPHER_DES 2 #define SSH1_CIPHER_3DES 3 #define SSH1_CIPHER_BLOWFISH 6 /* The subset of those that we support, with names for selecting them * on Uppity's command line */ #define SSH1_SUPPORTED_CIPHER_LIST(X) \ X(SSH1_CIPHER_3DES, "3des") \ X(SSH1_CIPHER_BLOWFISH, "blowfish") \ X(SSH1_CIPHER_DES, "des") \ /* end of list */ #define SSH1_CIPHER_LIST_MAKE_MASK(bitpos, name) | (1U << bitpos) #define SSH1_SUPPORTED_CIPHER_MASK \ (0 SSH1_SUPPORTED_CIPHER_LIST(SSH1_CIPHER_LIST_MAKE_MASK)) struct ssh_key { const ssh_keyalg *vt; }; struct RSAKey { int bits; int bytes; mp_int *modulus; mp_int *exponent; mp_int *private_exponent; mp_int *p; mp_int *q; mp_int *iqmp; char *comment; ssh_key sshk; }; struct dsa_key { mp_int *p, *q, *g, *y, *x; ssh_key sshk; }; struct ec_curve; /* Weierstrass form curve */ struct ec_wcurve { WeierstrassCurve *wc; WeierstrassPoint *G; mp_int *G_order; }; /* Montgomery form curve */ struct ec_mcurve { MontgomeryCurve *mc; MontgomeryPoint *G; unsigned log2_cofactor; }; /* Edwards form curve */ struct ec_ecurve { EdwardsCurve *ec; EdwardsPoint *G; mp_int *G_order; unsigned log2_cofactor; }; typedef enum EllipticCurveType { EC_WEIERSTRASS, EC_MONTGOMERY, EC_EDWARDS } EllipticCurveType; struct ec_curve { EllipticCurveType type; /* 'name' is the identifier of the curve when it has to appear in * wire protocol encodings, as it does in e.g. the public key and * signature formats for NIST curves. Curves which do not format * their keys or signatures in this way just have name==NULL. * * 'textname' is non-NULL for all curves, and is a human-readable * identification suitable for putting in log messages. */ const char *name, *textname; size_t fieldBits, fieldBytes; mp_int *p; union { struct ec_wcurve w; struct ec_mcurve m; struct ec_ecurve e; }; }; const ssh_keyalg *ec_alg_by_oid(int len, const void *oid, const struct ec_curve **curve); const unsigned char *ec_alg_oid(const ssh_keyalg *alg, int *oidlen); extern const int ec_nist_curve_lengths[], n_ec_nist_curve_lengths; extern const int ec_ed_curve_lengths[], n_ec_ed_curve_lengths; bool ec_nist_alg_and_curve_by_bits(int bits, const struct ec_curve **curve, const ssh_keyalg **alg); bool ec_ed_alg_and_curve_by_bits(int bits, const struct ec_curve **curve, const ssh_keyalg **alg); struct ecdsa_key { const struct ec_curve *curve; WeierstrassPoint *publicKey; mp_int *privateKey; ssh_key sshk; }; struct eddsa_key { const struct ec_curve *curve; EdwardsPoint *publicKey; mp_int *privateKey; ssh_key sshk; }; WeierstrassPoint *ecdsa_public(mp_int *private_key, const ssh_keyalg *alg); EdwardsPoint *eddsa_public(mp_int *private_key, const ssh_keyalg *alg); typedef enum KeyComponentType { KCT_TEXT, KCT_BINARY, KCT_MPINT } KeyComponentType; typedef struct key_component { char *name; KeyComponentType type; union { strbuf *str; /* used for KCT_TEXT and KCT_BINARY */ mp_int *mp; /* used for KCT_MPINT */ }; } key_component; typedef struct key_components { size_t ncomponents, componentsize; key_component *components; } key_components; key_components *key_components_new(void); void key_components_add_text(key_components *kc, const char *name, const char *value); void key_components_add_text_pl(key_components *kc, const char *name, ptrlen value); void key_components_add_binary(key_components *kc, const char *name, ptrlen value); void key_components_add_mp(key_components *kc, const char *name, mp_int *value); void key_components_add_uint(key_components *kc, const char *name, uintmax_t value); void key_components_add_copy(key_components *kc, const char *name, const key_component *value); void key_components_free(key_components *kc); /* * SSH-1 never quite decided which order to store the two components * of an RSA key. During connection setup, the server sends its host * and server keys with the exponent first; private key files store * the modulus first. The agent protocol is even more confusing, * because the client specifies a key to the server in one order and * the server lists the keys it knows about in the other order! */ typedef enum { RSA_SSH1_EXPONENT_FIRST, RSA_SSH1_MODULUS_FIRST } RsaSsh1Order; void BinarySource_get_rsa_ssh1_pub( BinarySource *src, RSAKey *result, RsaSsh1Order order); void BinarySource_get_rsa_ssh1_priv( BinarySource *src, RSAKey *rsa); RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src); bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key); mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key); bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key, strbuf *outbuf); char *rsastr_fmt(RSAKey *key); char *rsa_ssh1_fingerprint(RSAKey *key); char **rsa_ssh1_fake_all_fingerprints(RSAKey *key); bool rsa_verify(RSAKey *key); void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key, RsaSsh1Order order); int rsa_ssh1_public_blob_len(ptrlen data); void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key); void freersapriv(RSAKey *key); void freersakey(RSAKey *key); key_components *rsa_components(RSAKey *key); uint32_t crc32_rfc1662(ptrlen data); uint32_t crc32_ssh1(ptrlen data); uint32_t crc32_update(uint32_t crc_input, ptrlen data); /* SSH CRC compensation attack detector */ struct crcda_ctx; struct crcda_ctx *crcda_make_context(void); void crcda_free_context(struct crcda_ctx *ctx); bool detect_attack(struct crcda_ctx *ctx, const unsigned char *buf, uint32_t len, const unsigned char *IV); /* * SSH2 RSA key exchange functions */ struct ssh_rsa_kex_extra { int minklen; }; RSAKey *ssh_rsakex_newkey(ptrlen data); void ssh_rsakex_freekey(RSAKey *key); int ssh_rsakex_klen(RSAKey *key); strbuf *ssh_rsakex_encrypt( RSAKey *key, const ssh_hashalg *h, ptrlen plaintext); mp_int *ssh_rsakex_decrypt( RSAKey *key, const ssh_hashalg *h, ptrlen ciphertext); /* * Helper function for k generation in DSA, reused in ECDSA */ mp_int *dsa_gen_k(const char *id_string, mp_int *modulus, mp_int *private_key, unsigned char *digest, int digest_len); struct ssh_cipher { const ssh_cipheralg *vt; }; struct ssh_cipheralg { ssh_cipher *(*new)(const ssh_cipheralg *alg); void (*free)(ssh_cipher *); void (*setiv)(ssh_cipher *, const void *iv); void (*setkey)(ssh_cipher *, const void *key); void (*encrypt)(ssh_cipher *, void *blk, int len); void (*decrypt)(ssh_cipher *, void *blk, int len); /* Ignored unless SSH_CIPHER_SEPARATE_LENGTH flag set */ void (*encrypt_length)(ssh_cipher *, void *blk, int len, unsigned long seq); void (*decrypt_length)(ssh_cipher *, void *blk, int len, unsigned long seq); const char *ssh2_id; int blksize; /* real_keybits is the number of bits of entropy genuinely used by * the cipher scheme; it's used for deciding how big a * Diffie-Hellman group is needed to exchange a key for the * cipher. */ int real_keybits; /* padded_keybytes is the number of bytes of key data expected as * input to the setkey function; it's used for deciding how much * data needs to be generated from the post-kex generation of key * material. In a sensible cipher which uses all its key bytes for * real work, this will just be real_keybits/8, but in DES-type * ciphers which ignore one bit in each byte, it'll be slightly * different. */ int padded_keybytes; unsigned int flags; #define SSH_CIPHER_IS_CBC 1 #define SSH_CIPHER_SEPARATE_LENGTH 2 const char *text_name; /* If set, this takes priority over other MAC. */ const ssh2_macalg *required_mac; /* Pointer to any extra data used by a particular implementation. */ const void *extra; }; static inline ssh_cipher *ssh_cipher_new(const ssh_cipheralg *alg) { return alg->new(alg); } static inline void ssh_cipher_free(ssh_cipher *c) { c->vt->free(c); } static inline void ssh_cipher_setiv(ssh_cipher *c, const void *iv) { c->vt->setiv(c, iv); } static inline void ssh_cipher_setkey(ssh_cipher *c, const void *key) { c->vt->setkey(c, key); } static inline void ssh_cipher_encrypt(ssh_cipher *c, void *blk, int len) { c->vt->encrypt(c, blk, len); } static inline void ssh_cipher_decrypt(ssh_cipher *c, void *blk, int len) { c->vt->decrypt(c, blk, len); } static inline void ssh_cipher_encrypt_length( ssh_cipher *c, void *blk, int len, unsigned long seq) { c->vt->encrypt_length(c, blk, len, seq); } static inline void ssh_cipher_decrypt_length( ssh_cipher *c, void *blk, int len, unsigned long seq) { c->vt->decrypt_length(c, blk, len, seq); } static inline const struct ssh_cipheralg *ssh_cipher_alg(ssh_cipher *c) { return c->vt; } struct ssh2_ciphers { int nciphers; const ssh_cipheralg *const *list; }; struct ssh2_mac { const ssh2_macalg *vt; BinarySink_DELEGATE_IMPLEMENTATION; }; struct ssh2_macalg { /* Passes in the cipher context */ ssh2_mac *(*new)(const ssh2_macalg *alg, ssh_cipher *cipher); void (*free)(ssh2_mac *); void (*setkey)(ssh2_mac *, ptrlen key); void (*start)(ssh2_mac *); void (*genresult)(ssh2_mac *, unsigned char *); const char *(*text_name)(ssh2_mac *); const char *name, *etm_name; int len, keylen; /* Pointer to any extra data used by a particular implementation. */ const void *extra; }; static inline ssh2_mac *ssh2_mac_new( const ssh2_macalg *alg, ssh_cipher *cipher) { return alg->new(alg, cipher); } static inline void ssh2_mac_free(ssh2_mac *m) { m->vt->free(m); } static inline void ssh2_mac_setkey(ssh2_mac *m, ptrlen key) { m->vt->setkey(m, key); } static inline void ssh2_mac_start(ssh2_mac *m) { m->vt->start(m); } static inline void ssh2_mac_genresult(ssh2_mac *m, unsigned char *out) { m->vt->genresult(m, out); } static inline const char *ssh2_mac_text_name(ssh2_mac *m) { return m->vt->text_name(m); } static inline const ssh2_macalg *ssh2_mac_alg(ssh2_mac *m) { return m->vt; } /* Centralised 'methods' for ssh2_mac, defined in mac.c. These run * the MAC in a specifically SSH-2 style, i.e. taking account of a * packet sequence number as well as the data to be authenticated. */ bool ssh2_mac_verresult(ssh2_mac *, const void *); void ssh2_mac_generate(ssh2_mac *, void *, int, unsigned long seq); bool ssh2_mac_verify(ssh2_mac *, const void *, int, unsigned long seq); /* Use a MAC in its raw form, outside SSH-2 context, to MAC a given * string with a given key in the most obvious way. */ void mac_simple(const ssh2_macalg *alg, ptrlen key, ptrlen data, void *output); struct ssh_hash { const ssh_hashalg *vt; BinarySink_DELEGATE_IMPLEMENTATION; }; struct ssh_hashalg { ssh_hash *(*new)(const ssh_hashalg *alg); void (*reset)(ssh_hash *); void (*copyfrom)(ssh_hash *dest, ssh_hash *src); void (*digest)(ssh_hash *, unsigned char *); void (*free)(ssh_hash *); size_t hlen; /* output length in bytes */ size_t blocklen; /* length of the hash's input block, or 0 for N/A */ const char *text_basename; /* the semantic name of the hash */ const char *annotation; /* extra info, e.g. which of multiple impls */ const char *text_name; /* both combined, e.g. "SHA-n (unaccelerated)" */ const void *extra; /* private to the hash implementation */ }; static inline ssh_hash *ssh_hash_new(const ssh_hashalg *alg) { ssh_hash *h = alg->new(alg); if (h) h->vt->reset(h); return h; } static inline ssh_hash *ssh_hash_copy(ssh_hash *orig) { ssh_hash *h = orig->vt->new(orig->vt); h->vt->copyfrom(h, orig); return h; } static inline void ssh_hash_digest(ssh_hash *h, unsigned char *out) { h->vt->digest(h, out); } static inline void ssh_hash_free(ssh_hash *h) { h->vt->free(h); } static inline const ssh_hashalg *ssh_hash_alg(ssh_hash *h) { return h->vt; } /* The reset and copyfrom vtable methods return void. But for call-site * convenience, these wrappers return their input pointer. */ static inline ssh_hash *ssh_hash_reset(ssh_hash *h) { h->vt->reset(h); return h; } static inline ssh_hash *ssh_hash_copyfrom(ssh_hash *dest, ssh_hash *src) { dest->vt->copyfrom(dest, src); return dest; } /* ssh_hash_final emits the digest _and_ frees the ssh_hash */ static inline void ssh_hash_final(ssh_hash *h, unsigned char *out) { h->vt->digest(h, out); h->vt->free(h); } /* ssh_hash_digest_nondestructive generates a finalised hash from the * given object without changing its state, so you can continue * appending data to get a hash of an extended string. */ static inline void ssh_hash_digest_nondestructive(ssh_hash *h, unsigned char *out) { ssh_hash_final(ssh_hash_copy(h), out); } /* Handy macros for defining all those text-name fields at once */ #define HASHALG_NAMES_BARE(base) \ .text_basename = base, .annotation = NULL, .text_name = base #define HASHALG_NAMES_ANNOTATED(base, ann) \ .text_basename = base, .annotation = ann, .text_name = base " (" ann ")" void hash_simple(const ssh_hashalg *alg, ptrlen data, void *output); struct ssh_kex { const char *name, *groupname; enum { KEXTYPE_DH, KEXTYPE_RSA, KEXTYPE_ECDH, KEXTYPE_GSS } main_type; const ssh_hashalg *hash; union { /* publicly visible data for each type */ const ecdh_keyalg *ecdh_vt; /* for KEXTYPE_ECDH */ }; const void *extra; /* private to the kex methods */ }; struct ssh_kexes { int nkexes; const ssh_kex *const *list; }; /* Indices of the negotiation strings in the KEXINIT packet */ enum kexlist { KEXLIST_KEX, KEXLIST_HOSTKEY, KEXLIST_CSCIPHER, KEXLIST_SCCIPHER, KEXLIST_CSMAC, KEXLIST_SCMAC, KEXLIST_CSCOMP, KEXLIST_SCCOMP, NKEXLIST }; struct ssh_keyalg { /* Constructors that create an ssh_key */ ssh_key *(*new_pub) (const ssh_keyalg *self, ptrlen pub); ssh_key *(*new_priv) (const ssh_keyalg *self, ptrlen pub, ptrlen priv); ssh_key *(*new_priv_openssh) (const ssh_keyalg *self, BinarySource *); /* Methods that operate on an existing ssh_key */ void (*freekey) (ssh_key *key); char *(*invalid) (ssh_key *key, unsigned flags); void (*sign) (ssh_key *key, ptrlen data, unsigned flags, BinarySink *); bool (*verify) (ssh_key *key, ptrlen sig, ptrlen data); void (*public_blob)(ssh_key *key, BinarySink *); void (*private_blob)(ssh_key *key, BinarySink *); void (*openssh_blob) (ssh_key *key, BinarySink *); bool (*has_private) (ssh_key *key); char *(*cache_str) (ssh_key *key); key_components *(*components) (ssh_key *key); /* 'Class methods' that don't deal with an ssh_key at all */ int (*pubkey_bits) (const ssh_keyalg *self, ptrlen blob); unsigned (*supported_flags) (const ssh_keyalg *self); const char *(*alternate_ssh_id) (const ssh_keyalg *self, unsigned flags); /* Constant data fields giving information about the key type */ const char *ssh_id; /* string identifier in the SSH protocol */ const char *cache_id; /* identifier used in PuTTY's host key cache */ const void *extra; /* private to the public key methods */ }; static inline ssh_key *ssh_key_new_pub(const ssh_keyalg *self, ptrlen pub) { return self->new_pub(self, pub); } static inline ssh_key *ssh_key_new_priv( const ssh_keyalg *self, ptrlen pub, ptrlen priv) { return self->new_priv(self, pub, priv); } static inline ssh_key *ssh_key_new_priv_openssh( const ssh_keyalg *self, BinarySource *src) { return self->new_priv_openssh(self, src); } static inline void ssh_key_free(ssh_key *key) { key->vt->freekey(key); } static inline char *ssh_key_invalid(ssh_key *key, unsigned flags) { return key->vt->invalid(key, flags); } static inline void ssh_key_sign( ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs) { key->vt->sign(key, data, flags, bs); } static inline bool ssh_key_verify(ssh_key *key, ptrlen sig, ptrlen data) { return key->vt->verify(key, sig, data); } static inline void ssh_key_public_blob(ssh_key *key, BinarySink *bs) { key->vt->public_blob(key, bs); } static inline void ssh_key_private_blob(ssh_key *key, BinarySink *bs) { key->vt->private_blob(key, bs); } static inline void ssh_key_openssh_blob(ssh_key *key, BinarySink *bs) { key->vt->openssh_blob(key, bs); } static inline bool ssh_key_has_private(ssh_key *key) { return key->vt->has_private(key); } static inline char *ssh_key_cache_str(ssh_key *key) { return key->vt->cache_str(key); } static inline key_components *ssh_key_components(ssh_key *key) { return key->vt->components(key); } static inline int ssh_key_public_bits(const ssh_keyalg *self, ptrlen blob) { return self->pubkey_bits(self, blob); } static inline const ssh_keyalg *ssh_key_alg(ssh_key *key) { return key->vt; } static inline const char *ssh_key_ssh_id(ssh_key *key) { return key->vt->ssh_id; } static inline const char *ssh_key_cache_id(ssh_key *key) { return key->vt->cache_id; } static inline const unsigned ssh_key_supported_flags(ssh_key *key) { return key->vt->supported_flags(key->vt); } static inline const unsigned ssh_keyalg_supported_flags(const ssh_keyalg *self) { return self->supported_flags(self); } static inline const char *ssh_keyalg_alternate_ssh_id( const ssh_keyalg *self, unsigned flags) { return self->alternate_ssh_id(self, flags); } /* Stub functions shared between multiple key types */ unsigned nullkey_supported_flags(const ssh_keyalg *self); const char *nullkey_alternate_ssh_id(const ssh_keyalg *self, unsigned flags); /* Utility functions implemented centrally */ ssh_key *ssh_key_clone(ssh_key *key); /* * SSH2 ECDH key exchange vtable */ struct ecdh_key { const ecdh_keyalg *vt; }; struct ecdh_keyalg { /* Unusually, the 'new' method here doesn't directly take a vt * pointer, because it will also need the containing ssh_kex * structure for top-level parameters, and since that contains a * vt pointer anyway, we might as well _only_ pass that. */ ecdh_key *(*new)(const ssh_kex *kex, bool is_server); void (*free)(ecdh_key *key); void (*getpublic)(ecdh_key *key, BinarySink *bs); bool (*getkey)(ecdh_key *key, ptrlen remoteKey, BinarySink *bs); char *(*description)(const ssh_kex *kex); }; static inline ecdh_key *ecdh_key_new(const ssh_kex *kex, bool is_server) { return kex->ecdh_vt->new(kex, is_server); } static inline void ecdh_key_free(ecdh_key *key) { key->vt->free(key); } static inline void ecdh_key_getpublic(ecdh_key *key, BinarySink *bs) { key->vt->getpublic(key, bs); } static inline bool ecdh_key_getkey(ecdh_key *key, ptrlen remoteKey, BinarySink *bs) { return key->vt->getkey(key, remoteKey, bs); } static inline char *ecdh_keyalg_description(const ssh_kex *kex) { return kex->ecdh_vt->description(kex); } /* * Enumeration of signature flags from draft-miller-ssh-agent-02 */ #define SSH_AGENT_RSA_SHA2_256 2 #define SSH_AGENT_RSA_SHA2_512 4 struct ssh_compressor { const ssh_compression_alg *vt; }; struct ssh_decompressor { const ssh_compression_alg *vt; }; struct ssh_compression_alg { const char *name; /* For zlib@openssh.com: if non-NULL, this name will be considered once * userauth has completed successfully. */ const char *delayed_name; ssh_compressor *(*compress_new)(void); void (*compress_free)(ssh_compressor *); void (*compress)(ssh_compressor *, const unsigned char *block, int len, unsigned char **outblock, int *outlen, int minlen); ssh_decompressor *(*decompress_new)(void); void (*decompress_free)(ssh_decompressor *); bool (*decompress)(ssh_decompressor *, const unsigned char *block, int len, unsigned char **outblock, int *outlen); const char *text_name; }; static inline ssh_compressor *ssh_compressor_new( const ssh_compression_alg *alg) { return alg->compress_new(); } static inline ssh_decompressor *ssh_decompressor_new( const ssh_compression_alg *alg) { return alg->decompress_new(); } static inline void ssh_compressor_free(ssh_compressor *c) { c->vt->compress_free(c); } static inline void ssh_decompressor_free(ssh_decompressor *d) { d->vt->decompress_free(d); } static inline void ssh_compressor_compress( ssh_compressor *c, const unsigned char *block, int len, unsigned char **outblock, int *outlen, int minlen) { c->vt->compress(c, block, len, outblock, outlen, minlen); } static inline bool ssh_decompressor_decompress( ssh_decompressor *d, const unsigned char *block, int len, unsigned char **outblock, int *outlen) { return d->vt->decompress(d, block, len, outblock, outlen); } static inline const ssh_compression_alg *ssh_compressor_alg( ssh_compressor *c) { return c->vt; } static inline const ssh_compression_alg *ssh_decompressor_alg( ssh_decompressor *d) { return d->vt; } struct ssh2_userkey { ssh_key *key; /* the key itself */ char *comment; /* the key comment */ }; /* Argon2 password hashing function */ typedef enum { Argon2d = 0, Argon2i = 1, Argon2id = 2 } Argon2Flavour; void argon2(Argon2Flavour, uint32_t mem, uint32_t passes, uint32_t parallel, uint32_t taglen, ptrlen P, ptrlen S, ptrlen K, ptrlen X, strbuf *out); void argon2_choose_passes( Argon2Flavour, uint32_t mem, uint32_t milliseconds, uint32_t *passes, uint32_t parallel, uint32_t taglen, ptrlen P, ptrlen S, ptrlen K, ptrlen X, strbuf *out); /* The H' hash defined in Argon2, exposed just for testcrypt */ strbuf *argon2_long_hash(unsigned length, ptrlen data); /* The maximum length of any hash algorithm. (bytes) */ #define MAX_HASH_LEN (114) /* longest is SHAKE256 with 114-byte output */ extern const ssh_cipheralg ssh_3des_ssh1; extern const ssh_cipheralg ssh_blowfish_ssh1; extern const ssh_cipheralg ssh_3des_ssh2_ctr; extern const ssh_cipheralg ssh_3des_ssh2; extern const ssh_cipheralg ssh_des; extern const ssh_cipheralg ssh_des_sshcom_ssh2; extern const ssh_cipheralg ssh_aes256_sdctr; extern const ssh_cipheralg ssh_aes256_sdctr_ni; extern const ssh_cipheralg ssh_aes256_sdctr_neon; extern const ssh_cipheralg ssh_aes256_sdctr_sw; extern const ssh_cipheralg ssh_aes256_cbc; extern const ssh_cipheralg ssh_aes256_cbc_ni; extern const ssh_cipheralg ssh_aes256_cbc_neon; extern const ssh_cipheralg ssh_aes256_cbc_sw; extern const ssh_cipheralg ssh_aes192_sdctr; extern const ssh_cipheralg ssh_aes192_sdctr_ni; extern const ssh_cipheralg ssh_aes192_sdctr_neon; extern const ssh_cipheralg ssh_aes192_sdctr_sw; extern const ssh_cipheralg ssh_aes192_cbc; extern const ssh_cipheralg ssh_aes192_cbc_ni; extern const ssh_cipheralg ssh_aes192_cbc_neon; extern const ssh_cipheralg ssh_aes192_cbc_sw; extern const ssh_cipheralg ssh_aes128_sdctr; extern const ssh_cipheralg ssh_aes128_sdctr_ni; extern const ssh_cipheralg ssh_aes128_sdctr_neon; extern const ssh_cipheralg ssh_aes128_sdctr_sw; extern const ssh_cipheralg ssh_aes128_cbc; extern const ssh_cipheralg ssh_aes128_cbc_ni; extern const ssh_cipheralg ssh_aes128_cbc_neon; extern const ssh_cipheralg ssh_aes128_cbc_sw; extern const ssh_cipheralg ssh_blowfish_ssh2_ctr; extern const ssh_cipheralg ssh_blowfish_ssh2; extern const ssh_cipheralg ssh_arcfour256_ssh2; extern const ssh_cipheralg ssh_arcfour128_ssh2; extern const ssh_cipheralg ssh2_chacha20_poly1305; extern const ssh2_ciphers ssh2_3des; extern const ssh2_ciphers ssh2_des; extern const ssh2_ciphers ssh2_aes; extern const ssh2_ciphers ssh2_blowfish; extern const ssh2_ciphers ssh2_arcfour; extern const ssh2_ciphers ssh2_ccp; extern const ssh_hashalg ssh_md5; extern const ssh_hashalg ssh_sha1; extern const ssh_hashalg ssh_sha1_ni; extern const ssh_hashalg ssh_sha1_neon; extern const ssh_hashalg ssh_sha1_sw; extern const ssh_hashalg ssh_sha256; extern const ssh_hashalg ssh_sha256_ni; extern const ssh_hashalg ssh_sha256_neon; extern const ssh_hashalg ssh_sha256_sw; extern const ssh_hashalg ssh_sha384; extern const ssh_hashalg ssh_sha384_neon; extern const ssh_hashalg ssh_sha384_sw; extern const ssh_hashalg ssh_sha512; extern const ssh_hashalg ssh_sha512_neon; extern const ssh_hashalg ssh_sha512_sw; extern const ssh_hashalg ssh_sha3_224; extern const ssh_hashalg ssh_sha3_256; extern const ssh_hashalg ssh_sha3_384; extern const ssh_hashalg ssh_sha3_512; extern const ssh_hashalg ssh_shake256_114bytes; extern const ssh_hashalg ssh_blake2b; extern const ssh_kexes ssh_diffiehellman_group1; extern const ssh_kexes ssh_diffiehellman_group14; extern const ssh_kexes ssh_diffiehellman_gex; extern const ssh_kex ssh_diffiehellman_group1_sha1; extern const ssh_kex ssh_diffiehellman_group14_sha256; extern const ssh_kex ssh_diffiehellman_group14_sha1; extern const ssh_kexes ssh_gssk5_sha1_kex; extern const ssh_kexes ssh_rsa_kex; extern const ssh_kex ssh_ec_kex_curve25519; extern const ssh_kex ssh_ec_kex_curve448; extern const ssh_kex ssh_ec_kex_nistp256; extern const ssh_kex ssh_ec_kex_nistp384; extern const ssh_kex ssh_ec_kex_nistp521; extern const ssh_kexes ssh_ecdh_kex; extern const ssh_kexes ssh_ntru_hybrid_kex; extern const ssh_keyalg ssh_dsa; extern const ssh_keyalg ssh_rsa; extern const ssh_keyalg ssh_rsa_sha256; extern const ssh_keyalg ssh_rsa_sha512; extern const ssh_keyalg ssh_ecdsa_ed25519; extern const ssh_keyalg ssh_ecdsa_ed448; extern const ssh_keyalg ssh_ecdsa_nistp256; extern const ssh_keyalg ssh_ecdsa_nistp384; extern const ssh_keyalg ssh_ecdsa_nistp521; extern const ssh2_macalg ssh_hmac_md5; extern const ssh2_macalg ssh_hmac_sha1; extern const ssh2_macalg ssh_hmac_sha1_buggy; extern const ssh2_macalg ssh_hmac_sha1_96; extern const ssh2_macalg ssh_hmac_sha1_96_buggy; extern const ssh2_macalg ssh_hmac_sha256; extern const ssh2_macalg ssh2_poly1305; extern const ssh_compression_alg ssh_zlib; /* Special constructor: BLAKE2b can be instantiated with any hash * length up to 128 bytes */ ssh_hash *blake2b_new_general(unsigned hashlen); /* * On some systems, you have to detect hardware crypto acceleration by * asking the local OS API rather than OS-agnostically asking the CPU * itself. If so, then this function should be implemented in each * platform subdirectory. */ bool platform_aes_neon_available(void); bool platform_sha256_neon_available(void); bool platform_sha1_neon_available(void); bool platform_sha512_neon_available(void); /* * PuTTY version number formatted as an SSH version string. */ extern const char sshver[]; /* * Gross hack: pscp will try to start SFTP but fall back to scp1 if * that fails. This variable is the means by which pscp.c can reach * into the SSH code and find out which one it got. */ extern bool ssh_fallback_cmd(Backend *backend); /* * The PRNG type, defined in prng.c. Visible data fields are * 'savesize', which suggests how many random bytes you should request * from a particular PRNG instance to write to putty.rnd, and a * BinarySink implementation which you can use to write seed data in * between calling prng_seed_{begin,finish}. */ struct prng { size_t savesize; BinarySink_IMPLEMENTATION; /* (also there's a surrounding implementation struct in prng.c) */ }; prng *prng_new(const ssh_hashalg *hashalg); void prng_free(prng *p); void prng_seed_begin(prng *p); void prng_seed_finish(prng *p); void prng_read(prng *p, void *vout, size_t size); void prng_add_entropy(prng *p, unsigned source_id, ptrlen data); size_t prng_seed_bits(prng *p); /* This function must be implemented by the platform, and returns a * timer in milliseconds that the PRNG can use to know whether it's * been reseeded too recently to do it again. * * The PRNG system has its own special timing function not because its * timing needs are unusual in the real applications, but simply so * that testcrypt can mock it to keep the tests deterministic. */ uint64_t prng_reseed_time_ms(void); void random_read(void *out, size_t size); /* Exports from x11fwd.c */ enum { X11_TRANS_IPV4 = 0, X11_TRANS_IPV6 = 6, X11_TRANS_UNIX = 256 }; struct X11Display { /* Broken-down components of the display name itself */ bool unixdomain; char *hostname; int displaynum; int screennum; /* OSX sometimes replaces all the above with a full Unix-socket pathname */ char *unixsocketpath; /* PuTTY networking SockAddr to connect to the display, and associated * gubbins */ SockAddr *addr; int port; char *realhost; /* Our local auth details for talking to the real X display. */ int localauthproto; unsigned char *localauthdata; int localauthdatalen; }; struct X11FakeAuth { /* Auth details we invented for a virtual display on the SSH server. */ int proto; unsigned char *data; int datalen; char *protoname; char *datastring; /* The encrypted form of the first block, in XDM-AUTHORIZATION-1. * Used as part of the key when these structures are organised * into a tree. See x11_invent_fake_auth for explanation. */ unsigned char *xa1_firstblock; /* * Used inside x11fwd.c to remember recently seen * XDM-AUTHORIZATION-1 strings, to avoid replay attacks. */ tree234 *xdmseen; /* * What to do with an X connection matching this auth data. */ struct X11Display *disp; ssh_sharing_connstate *share_cs; share_channel *share_chan; }; int x11_authcmp(void *av, void *bv); /* for putting X11FakeAuth in a tree234 */ /* * x11_setup_display() parses the display variable and fills in an * X11Display structure. Some remote auth details are invented; * the supplied authtype parameter configures the preferred * authorisation protocol to use at the remote end. The local auth * details are looked up by calling platform_get_x11_auth. * * If the returned pointer is NULL, then *error_msg will contain a * dynamically allocated error message string. */ extern struct X11Display *x11_setup_display(const char *display, Conf *, char **error_msg); void x11_free_display(struct X11Display *disp); struct X11FakeAuth *x11_invent_fake_auth(tree234 *t, int authtype); void x11_free_fake_auth(struct X11FakeAuth *auth); Channel *x11_new_channel(tree234 *authtree, SshChannel *c, const char *peeraddr, int peerport, bool connection_sharing_possible); char *x11_display(const char *display); /* Platform-dependent X11 functions */ extern void platform_get_x11_auth(struct X11Display *display, Conf *); /* examine a mostly-filled-in X11Display and fill in localauth* */ extern const bool platform_uses_x11_unix_by_default; /* choose default X transport in the absence of a specified one */ SockAddr *platform_get_x11_unix_address(const char *path, int displaynum); /* make up a SockAddr naming the address for displaynum */ char *platform_get_x_display(void); /* allocated local X display string, if any */ /* X11-related helper functions in utils */ /* * This function does the job of platform_get_x11_auth, provided * it is told where to find a normally formatted .Xauthority file: * it opens that file, parses it to find an auth record which * matches the display details in "display", and fills in the * localauth fields. * * It is expected that most implementations of * platform_get_x11_auth() will work by finding their system's * .Xauthority file, adjusting the display details if necessary * for local oddities like Unix-domain socket transport, and * calling this function to do the rest of the work. */ void x11_get_auth_from_authfile(struct X11Display *display, const char *authfilename); void x11_format_auth_for_authfile( BinarySink *bs, SockAddr *addr, int display_no, ptrlen authproto, ptrlen authdata); void *x11_make_greeting(int endian, int protomajor, int protominor, int auth_proto, const void *auth_data, int auth_len, const char *peer_ip, int peer_port, int *outlen); int x11_identify_auth_proto(ptrlen protoname); void *x11_dehexify(ptrlen hex, int *outlen); bool x11_parse_ip(const char *addr_string, unsigned long *ip); Channel *agentf_new(SshChannel *c); bool dh_is_gex(const ssh_kex *kex); dh_ctx *dh_setup_group(const ssh_kex *kex); dh_ctx *dh_setup_gex(mp_int *pval, mp_int *gval); int dh_modulus_bit_size(const dh_ctx *ctx); void dh_cleanup(dh_ctx *); mp_int *dh_create_e(dh_ctx *); const char *dh_validate_f(dh_ctx *, mp_int *f); mp_int *dh_find_K(dh_ctx *, mp_int *f); static inline bool is_base64_char(char c) { return ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '+' || c == '/' || c == '='); } extern int base64_lines(int datalen); /* ppk_load_* can return this as an error */ extern ssh2_userkey ssh2_wrong_passphrase; #define SSH2_WRONG_PASSPHRASE (&ssh2_wrong_passphrase) bool ppk_encrypted_s(BinarySource *src, char **comment); bool ppk_encrypted_f(const Filename *filename, char **comment); bool rsa1_encrypted_s(BinarySource *src, char **comment); bool rsa1_encrypted_f(const Filename *filename, char **comment); ssh2_userkey *ppk_load_s(BinarySource *src, const char *passphrase, const char **errorstr); ssh2_userkey *ppk_load_f(const Filename *filename, const char *passphrase, const char **errorstr); int rsa1_load_s(BinarySource *src, RSAKey *key, const char *passphrase, const char **errorstr); int rsa1_load_f(const Filename *filename, RSAKey *key, const char *passphrase, const char **errorstr); typedef struct ppk_save_parameters { unsigned fmt_version; /* currently 2 or 3 */ /* * Parameters for fmt_version == 3 */ Argon2Flavour argon2_flavour; uint32_t argon2_mem; /* in Kbyte */ bool argon2_passes_auto; union { uint32_t argon2_passes; /* if auto == false */ uint32_t argon2_milliseconds; /* if auto == true */ }; uint32_t argon2_parallelism; /* The ability to choose a specific salt is only intended for the * use of the automated test of PuTTYgen. It's a (mild) security * risk to do it with any passphrase you actually care about, * because it invalidates the entire point of having a salt in the * first place. */ const uint8_t *salt; size_t saltlen; } ppk_save_parameters; extern const ppk_save_parameters ppk_save_default_parameters; strbuf *ppk_save_sb(ssh2_userkey *key, const char *passphrase, const ppk_save_parameters *params); bool ppk_save_f(const Filename *filename, ssh2_userkey *key, const char *passphrase, const ppk_save_parameters *params); strbuf *rsa1_save_sb(RSAKey *key, const char *passphrase); bool rsa1_save_f(const Filename *filename, RSAKey *key, const char *passphrase); bool ppk_loadpub_s(BinarySource *src, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr); bool ppk_loadpub_f(const Filename *filename, char **algorithm, BinarySink *bs, char **commentptr, const char **errorstr); int rsa1_loadpub_s(BinarySource *src, BinarySink *bs, char **commentptr, const char **errorstr); int rsa1_loadpub_f(const Filename *filename, BinarySink *bs, char **commentptr, const char **errorstr); extern const ssh_keyalg *const all_keyalgs[]; extern const size_t n_keyalgs; const ssh_keyalg *find_pubkey_alg(const char *name); const ssh_keyalg *find_pubkey_alg_len(ptrlen name); ptrlen pubkey_blob_to_alg_name(ptrlen blob); const ssh_keyalg *pubkey_blob_to_alg(ptrlen blob); /* Convenient wrappers on the LoadedFile mechanism suitable for key files */ LoadedFile *lf_load_keyfile(const Filename *filename, const char **errptr); LoadedFile *lf_load_keyfile_fp(FILE *fp, const char **errptr); enum { SSH_KEYTYPE_UNOPENABLE, SSH_KEYTYPE_UNKNOWN, SSH_KEYTYPE_SSH1, SSH_KEYTYPE_SSH2, /* * The OpenSSH key types deserve a little explanation. OpenSSH has * two physical formats for private key storage: an old PEM-based * one largely dictated by their use of OpenSSL and full of ASN.1, * and a new one using the same private key formats used over the * wire for talking to ssh-agent. The old format can only support * a subset of the key types, because it needs redesign for each * key type, and after a while they decided to move to the new * format so as not to have to do that. * * On input, key files are identified as either * SSH_KEYTYPE_OPENSSH_PEM or SSH_KEYTYPE_OPENSSH_NEW, describing * accurately which actual format the keys are stored in. * * On output, however, we default to following OpenSSH's own * policy of writing out PEM-style keys for maximum backwards * compatibility if the key type supports it, and otherwise * switching to the new format. So the formats you can select for * output are SSH_KEYTYPE_OPENSSH_NEW (forcing the new format for * any key type), and SSH_KEYTYPE_OPENSSH_AUTO to use the oldest * format supported by whatever key type you're writing out. * * So we have three type codes, but only two of them usable in any * given circumstance. An input key file will never be identified * as AUTO, only PEM or NEW; key export UIs should not be able to * select PEM, only AUTO or NEW. */ SSH_KEYTYPE_OPENSSH_AUTO, SSH_KEYTYPE_OPENSSH_PEM, SSH_KEYTYPE_OPENSSH_NEW, SSH_KEYTYPE_SSHCOM, /* * Public-key-only formats, which we still want to be able to read * for various purposes. */ SSH_KEYTYPE_SSH1_PUBLIC, SSH_KEYTYPE_SSH2_PUBLIC_RFC4716, SSH_KEYTYPE_SSH2_PUBLIC_OPENSSH }; typedef enum { SSH_FPTYPE_MD5, SSH_FPTYPE_SHA256, } FingerprintType; #define SSH_FPTYPE_DEFAULT SSH_FPTYPE_SHA256 #define SSH_N_FPTYPES (SSH_FPTYPE_SHA256 + 1) FingerprintType ssh2_pick_fingerprint(char **fingerprints, FingerprintType preferred_type); FingerprintType ssh2_pick_default_fingerprint(char **fingerprints); char *ssh1_pubkey_str(RSAKey *ssh1key); void ssh1_write_pubkey(FILE *fp, RSAKey *ssh1key); char *ssh2_pubkey_openssh_str(ssh2_userkey *key); void ssh2_write_pubkey(FILE *fp, const char *comment, const void *v_pub_blob, int pub_len, int keytype); char *ssh2_fingerprint_blob(ptrlen, FingerprintType); char *ssh2_fingerprint(ssh_key *key, FingerprintType); char **ssh2_all_fingerprints_for_blob(ptrlen); char **ssh2_all_fingerprints(ssh_key *key); void ssh2_free_all_fingerprints(char **); int key_type(const Filename *filename); int key_type_s(BinarySource *src); const char *key_type_to_str(int type); bool import_possible(int type); int import_target_type(int type); bool import_encrypted(const Filename *filename, int type, char **comment); bool import_encrypted_s(const Filename *filename, BinarySource *src, int type, char **comment); int import_ssh1(const Filename *filename, int type, RSAKey *key, char *passphrase, const char **errmsg_p); int import_ssh1_s(BinarySource *src, int type, RSAKey *key, char *passphrase, const char **errmsg_p); ssh2_userkey *import_ssh2(const Filename *filename, int type, char *passphrase, const char **errmsg_p); ssh2_userkey *import_ssh2_s(BinarySource *src, int type, char *passphrase, const char **errmsg_p); bool export_ssh1(const Filename *filename, int type, RSAKey *key, char *passphrase); bool export_ssh2(const Filename *filename, int type, ssh2_userkey *key, char *passphrase); void des3_decrypt_pubkey(const void *key, void *blk, int len); void des3_encrypt_pubkey(const void *key, void *blk, int len); void des3_decrypt_pubkey_ossh(const void *key, const void *iv, void *blk, int len); void des3_encrypt_pubkey_ossh(const void *key, const void *iv, void *blk, int len); void aes256_encrypt_pubkey(const void *key, const void *iv, void *blk, int len); void aes256_decrypt_pubkey(const void *key, const void *iv, void *blk, int len); void des_encrypt_xdmauth(const void *key, void *blk, int len); void des_decrypt_xdmauth(const void *key, void *blk, int len); void openssh_bcrypt(ptrlen passphrase, ptrlen salt, int rounds, unsigned char *out, int outbytes); /* * Connection-sharing API provided by platforms. This function must * either: * - return SHARE_NONE and do nothing * - return SHARE_DOWNSTREAM and set *sock to a Socket connected to * downplug * - return SHARE_UPSTREAM and set *sock to a Socket connected to * upplug. */ enum { SHARE_NONE, SHARE_DOWNSTREAM, SHARE_UPSTREAM }; int platform_ssh_share(const char *name, Conf *conf, Plug *downplug, Plug *upplug, Socket **sock, char **logtext, char **ds_err, char **us_err, bool can_upstream, bool can_downstream); void platform_ssh_share_cleanup(const char *name); /* * List macro defining the SSH-1 message type codes. */ #define SSH1_MESSAGE_TYPES(X, y) \ X(y, SSH1_MSG_DISCONNECT, 1) \ X(y, SSH1_SMSG_PUBLIC_KEY, 2) \ X(y, SSH1_CMSG_SESSION_KEY, 3) \ X(y, SSH1_CMSG_USER, 4) \ X(y, SSH1_CMSG_AUTH_RSA, 6) \ X(y, SSH1_SMSG_AUTH_RSA_CHALLENGE, 7) \ X(y, SSH1_CMSG_AUTH_RSA_RESPONSE, 8) \ X(y, SSH1_CMSG_AUTH_PASSWORD, 9) \ X(y, SSH1_CMSG_REQUEST_PTY, 10) \ X(y, SSH1_CMSG_WINDOW_SIZE, 11) \ X(y, SSH1_CMSG_EXEC_SHELL, 12) \ X(y, SSH1_CMSG_EXEC_CMD, 13) \ X(y, SSH1_SMSG_SUCCESS, 14) \ X(y, SSH1_SMSG_FAILURE, 15) \ X(y, SSH1_CMSG_STDIN_DATA, 16) \ X(y, SSH1_SMSG_STDOUT_DATA, 17) \ X(y, SSH1_SMSG_STDERR_DATA, 18) \ X(y, SSH1_CMSG_EOF, 19) \ X(y, SSH1_SMSG_EXIT_STATUS, 20) \ X(y, SSH1_MSG_CHANNEL_OPEN_CONFIRMATION, 21) \ X(y, SSH1_MSG_CHANNEL_OPEN_FAILURE, 22) \ X(y, SSH1_MSG_CHANNEL_DATA, 23) \ X(y, SSH1_MSG_CHANNEL_CLOSE, 24) \ X(y, SSH1_MSG_CHANNEL_CLOSE_CONFIRMATION, 25) \ X(y, SSH1_SMSG_X11_OPEN, 27) \ X(y, SSH1_CMSG_PORT_FORWARD_REQUEST, 28) \ X(y, SSH1_MSG_PORT_OPEN, 29) \ X(y, SSH1_CMSG_AGENT_REQUEST_FORWARDING, 30) \ X(y, SSH1_SMSG_AGENT_OPEN, 31) \ X(y, SSH1_MSG_IGNORE, 32) \ X(y, SSH1_CMSG_EXIT_CONFIRMATION, 33) \ X(y, SSH1_CMSG_X11_REQUEST_FORWARDING, 34) \ X(y, SSH1_CMSG_AUTH_RHOSTS_RSA, 35) \ X(y, SSH1_MSG_DEBUG, 36) \ X(y, SSH1_CMSG_REQUEST_COMPRESSION, 37) \ X(y, SSH1_CMSG_AUTH_TIS, 39) \ X(y, SSH1_SMSG_AUTH_TIS_CHALLENGE, 40) \ X(y, SSH1_CMSG_AUTH_TIS_RESPONSE, 41) \ X(y, SSH1_CMSG_AUTH_CCARD, 70) \ X(y, SSH1_SMSG_AUTH_CCARD_CHALLENGE, 71) \ X(y, SSH1_CMSG_AUTH_CCARD_RESPONSE, 72) \ /* end of list */ #define SSH1_AUTH_RHOSTS 1 /* 0x1 */ #define SSH1_AUTH_RSA 2 /* 0x2 */ #define SSH1_AUTH_PASSWORD 3 /* 0x3 */ #define SSH1_AUTH_RHOSTS_RSA 4 /* 0x4 */ #define SSH1_AUTH_TIS 5 /* 0x5 */ #define SSH1_AUTH_CCARD 16 /* 0x10 */ #define SSH1_PROTOFLAG_SCREEN_NUMBER 1 /* 0x1 */ /* Mask for protoflags we will echo back to server if seen */ #define SSH1_PROTOFLAGS_SUPPORTED 0 /* 0x1 */ /* * List macro defining SSH-2 message type codes. Some of these depend * on particular contexts (i.e. a previously negotiated kex or auth * method) */ #define SSH2_MESSAGE_TYPES(X, K, A, y) \ X(y, SSH2_MSG_DISCONNECT, 1) \ X(y, SSH2_MSG_IGNORE, 2) \ X(y, SSH2_MSG_UNIMPLEMENTED, 3) \ X(y, SSH2_MSG_DEBUG, 4) \ X(y, SSH2_MSG_SERVICE_REQUEST, 5) \ X(y, SSH2_MSG_SERVICE_ACCEPT, 6) \ X(y, SSH2_MSG_EXT_INFO, 7) \ X(y, SSH2_MSG_KEXINIT, 20) \ X(y, SSH2_MSG_NEWKEYS, 21) \ K(y, SSH2_MSG_KEXDH_INIT, 30, SSH2_PKTCTX_DHGROUP) \ K(y, SSH2_MSG_KEXDH_REPLY, 31, SSH2_PKTCTX_DHGROUP) \ K(y, SSH2_MSG_KEX_DH_GEX_REQUEST_OLD, 30, SSH2_PKTCTX_DHGEX) \ K(y, SSH2_MSG_KEX_DH_GEX_REQUEST, 34, SSH2_PKTCTX_DHGEX) \ K(y, SSH2_MSG_KEX_DH_GEX_GROUP, 31, SSH2_PKTCTX_DHGEX) \ K(y, SSH2_MSG_KEX_DH_GEX_INIT, 32, SSH2_PKTCTX_DHGEX) \ K(y, SSH2_MSG_KEX_DH_GEX_REPLY, 33, SSH2_PKTCTX_DHGEX) \ K(y, SSH2_MSG_KEXGSS_INIT, 30, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_CONTINUE, 31, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_COMPLETE, 32, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_HOSTKEY, 33, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_ERROR, 34, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_GROUPREQ, 40, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXGSS_GROUP, 41, SSH2_PKTCTX_GSSKEX) \ K(y, SSH2_MSG_KEXRSA_PUBKEY, 30, SSH2_PKTCTX_RSAKEX) \ K(y, SSH2_MSG_KEXRSA_SECRET, 31, SSH2_PKTCTX_RSAKEX) \ K(y, SSH2_MSG_KEXRSA_DONE, 32, SSH2_PKTCTX_RSAKEX) \ K(y, SSH2_MSG_KEX_ECDH_INIT, 30, SSH2_PKTCTX_ECDHKEX) \ K(y, SSH2_MSG_KEX_ECDH_REPLY, 31, SSH2_PKTCTX_ECDHKEX) \ X(y, SSH2_MSG_USERAUTH_REQUEST, 50) \ X(y, SSH2_MSG_USERAUTH_FAILURE, 51) \ X(y, SSH2_MSG_USERAUTH_SUCCESS, 52) \ X(y, SSH2_MSG_USERAUTH_BANNER, 53) \ A(y, SSH2_MSG_USERAUTH_PK_OK, 60, SSH2_PKTCTX_PUBLICKEY) \ A(y, SSH2_MSG_USERAUTH_PASSWD_CHANGEREQ, 60, SSH2_PKTCTX_PASSWORD) \ A(y, SSH2_MSG_USERAUTH_INFO_REQUEST, 60, SSH2_PKTCTX_KBDINTER) \ A(y, SSH2_MSG_USERAUTH_INFO_RESPONSE, 61, SSH2_PKTCTX_KBDINTER) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_RESPONSE, 60, SSH2_PKTCTX_GSSAPI) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_TOKEN, 61, SSH2_PKTCTX_GSSAPI) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_EXCHANGE_COMPLETE, 63, SSH2_PKTCTX_GSSAPI) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_ERROR, 64, SSH2_PKTCTX_GSSAPI) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_ERRTOK, 65, SSH2_PKTCTX_GSSAPI) \ A(y, SSH2_MSG_USERAUTH_GSSAPI_MIC, 66, SSH2_PKTCTX_GSSAPI) \ X(y, SSH2_MSG_GLOBAL_REQUEST, 80) \ X(y, SSH2_MSG_REQUEST_SUCCESS, 81) \ X(y, SSH2_MSG_REQUEST_FAILURE, 82) \ X(y, SSH2_MSG_CHANNEL_OPEN, 90) \ X(y, SSH2_MSG_CHANNEL_OPEN_CONFIRMATION, 91) \ X(y, SSH2_MSG_CHANNEL_OPEN_FAILURE, 92) \ X(y, SSH2_MSG_CHANNEL_WINDOW_ADJUST, 93) \ X(y, SSH2_MSG_CHANNEL_DATA, 94) \ X(y, SSH2_MSG_CHANNEL_EXTENDED_DATA, 95) \ X(y, SSH2_MSG_CHANNEL_EOF, 96) \ X(y, SSH2_MSG_CHANNEL_CLOSE, 97) \ X(y, SSH2_MSG_CHANNEL_REQUEST, 98) \ X(y, SSH2_MSG_CHANNEL_SUCCESS, 99) \ X(y, SSH2_MSG_CHANNEL_FAILURE, 100) \ /* end of list */ #define DEF_ENUM_UNIVERSAL(y, name, value) name = value, #define DEF_ENUM_CONTEXTUAL(y, name, value, context) name = value, enum { SSH1_MESSAGE_TYPES(DEF_ENUM_UNIVERSAL, y) SSH2_MESSAGE_TYPES(DEF_ENUM_UNIVERSAL, DEF_ENUM_CONTEXTUAL, DEF_ENUM_CONTEXTUAL, y) /* Virtual packet type, for packets too short to even have a type */ SSH_MSG_NO_TYPE_CODE = 256 }; #undef DEF_ENUM_UNIVERSAL #undef DEF_ENUM_CONTEXTUAL /* * SSH-1 agent messages. */ #define SSH1_AGENTC_REQUEST_RSA_IDENTITIES 1 #define SSH1_AGENT_RSA_IDENTITIES_ANSWER 2 #define SSH1_AGENTC_RSA_CHALLENGE 3 #define SSH1_AGENT_RSA_RESPONSE 4 #define SSH1_AGENTC_ADD_RSA_IDENTITY 7 #define SSH1_AGENTC_REMOVE_RSA_IDENTITY 8 #define SSH1_AGENTC_REMOVE_ALL_RSA_IDENTITIES 9 /* openssh private? */ /* * Messages common to SSH-1 and OpenSSH's SSH-2. */ #define SSH_AGENT_FAILURE 5 #define SSH_AGENT_SUCCESS 6 /* * OpenSSH's SSH-2 agent messages. */ #define SSH2_AGENTC_REQUEST_IDENTITIES 11 #define SSH2_AGENT_IDENTITIES_ANSWER 12 #define SSH2_AGENTC_SIGN_REQUEST 13 #define SSH2_AGENT_SIGN_RESPONSE 14 #define SSH2_AGENTC_ADD_IDENTITY 17 #define SSH2_AGENTC_REMOVE_IDENTITY 18 #define SSH2_AGENTC_REMOVE_ALL_IDENTITIES 19 #define SSH2_AGENTC_EXTENSION 27 #define SSH_AGENT_EXTENSION_FAILURE 28 /* * Assorted other SSH-related enumerations. */ #define SSH2_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1 /* 0x1 */ #define SSH2_DISCONNECT_PROTOCOL_ERROR 2 /* 0x2 */ #define SSH2_DISCONNECT_KEY_EXCHANGE_FAILED 3 /* 0x3 */ #define SSH2_DISCONNECT_HOST_AUTHENTICATION_FAILED 4 /* 0x4 */ #define SSH2_DISCONNECT_MAC_ERROR 5 /* 0x5 */ #define SSH2_DISCONNECT_COMPRESSION_ERROR 6 /* 0x6 */ #define SSH2_DISCONNECT_SERVICE_NOT_AVAILABLE 7 /* 0x7 */ #define SSH2_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 8 /* 0x8 */ #define SSH2_DISCONNECT_HOST_KEY_NOT_VERIFIABLE 9 /* 0x9 */ #define SSH2_DISCONNECT_CONNECTION_LOST 10 /* 0xa */ #define SSH2_DISCONNECT_BY_APPLICATION 11 /* 0xb */ #define SSH2_DISCONNECT_TOO_MANY_CONNECTIONS 12 /* 0xc */ #define SSH2_DISCONNECT_AUTH_CANCELLED_BY_USER 13 /* 0xd */ #define SSH2_DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE 14 /* 0xe */ #define SSH2_DISCONNECT_ILLEGAL_USER_NAME 15 /* 0xf */ #define SSH2_OPEN_ADMINISTRATIVELY_PROHIBITED 1 /* 0x1 */ #define SSH2_OPEN_CONNECT_FAILED 2 /* 0x2 */ #define SSH2_OPEN_UNKNOWN_CHANNEL_TYPE 3 /* 0x3 */ #define SSH2_OPEN_RESOURCE_SHORTAGE 4 /* 0x4 */ #define SSH2_EXTENDED_DATA_STDERR 1 /* 0x1 */ enum { /* TTY modes with opcodes defined consistently in the SSH specs. */ #define TTYMODE_CHAR(name, val, index) SSH_TTYMODE_##name = val, #define TTYMODE_FLAG(name, val, field, mask) SSH_TTYMODE_##name = val, #include "ssh/ttymode-list.h" #undef TTYMODE_CHAR #undef TTYMODE_FLAG /* Modes encoded differently between SSH-1 and SSH-2, for which we * make up our own dummy opcodes to avoid confusion. */ TTYMODE_dummy = 255, TTYMODE_ISPEED, TTYMODE_OSPEED, /* Limiting value that we can use as an array bound below */ TTYMODE_LIMIT, /* The real opcodes for terminal speeds. */ TTYMODE_ISPEED_SSH1 = 192, TTYMODE_OSPEED_SSH1 = 193, TTYMODE_ISPEED_SSH2 = 128, TTYMODE_OSPEED_SSH2 = 129, /* And the opcode that ends a list. */ TTYMODE_END_OF_LIST = 0 }; struct ssh_ttymodes { /* A boolean per mode, indicating whether it's set. */ bool have_mode[TTYMODE_LIMIT]; /* The actual value for each mode. */ unsigned mode_val[TTYMODE_LIMIT]; }; struct ssh_ttymodes get_ttymodes_from_conf(Seat *seat, Conf *conf); struct ssh_ttymodes read_ttymodes_from_packet( BinarySource *bs, int ssh_version); void write_ttymodes_to_packet(BinarySink *bs, int ssh_version, struct ssh_ttymodes modes); const char *ssh1_pkt_type(int type); const char *ssh2_pkt_type(Pkt_KCtx pkt_kctx, Pkt_ACtx pkt_actx, int type); bool ssh2_pkt_type_code_valid(unsigned type); /* * Need this to warn about support for the original SSH-2 keyfile * format. */ void old_keyfile_warning(void); /* * Flags indicating implementation bugs that we know how to mitigate * if we think the other end has them. */ #define SSH_IMPL_BUG_LIST(X) \ X(BUG_CHOKES_ON_SSH1_IGNORE) \ X(BUG_SSH2_HMAC) \ X(BUG_NEEDS_SSH1_PLAIN_PASSWORD) \ X(BUG_CHOKES_ON_RSA) \ X(BUG_SSH2_RSA_PADDING) \ X(BUG_SSH2_DERIVEKEY) \ X(BUG_SSH2_REKEY) \ X(BUG_SSH2_PK_SESSIONID) \ X(BUG_SSH2_MAXPKT) \ X(BUG_CHOKES_ON_SSH2_IGNORE) \ X(BUG_CHOKES_ON_WINADJ) \ X(BUG_SENDS_LATE_REQUEST_REPLY) \ X(BUG_SSH2_OLDGEX) \ /* end of list */ #define TMP_DECLARE_LOG2_ENUM(thing) log2_##thing, enum { SSH_IMPL_BUG_LIST(TMP_DECLARE_LOG2_ENUM) }; #undef TMP_DECLARE_LOG2_ENUM #define TMP_DECLARE_REAL_ENUM(thing) thing = 1 << log2_##thing, enum { SSH_IMPL_BUG_LIST(TMP_DECLARE_REAL_ENUM) }; #undef TMP_DECLARE_REAL_ENUM /* Shared system for allocating local SSH channel ids. Expects to be * passed a tree full of structs that have a field called 'localid' of * type unsigned, and will check that! */ unsigned alloc_channel_id_general(tree234 *channels, size_t localid_offset); #define alloc_channel_id(tree, type) \ TYPECHECK(&((type *)0)->localid == (unsigned *)0, \ alloc_channel_id_general(tree, offsetof(type, localid))) void add_to_commasep(strbuf *buf, const char *data); void add_to_commasep_pl(strbuf *buf, ptrlen data); bool get_commasep_word(ptrlen *list, ptrlen *word); SeatPromptResult verify_ssh_host_key( InteractionReadySeat iseat, Conf *conf, const char *host, int port, ssh_key *key, const char *keytype, char *keystr, const char *keydisp, char **fingerprints, void (*callback)(void *ctx, SeatPromptResult result), void *ctx); typedef struct ssh_transient_hostkey_cache ssh_transient_hostkey_cache; ssh_transient_hostkey_cache *ssh_transient_hostkey_cache_new(void); void ssh_transient_hostkey_cache_free(ssh_transient_hostkey_cache *thc); void ssh_transient_hostkey_cache_add( ssh_transient_hostkey_cache *thc, ssh_key *key); bool ssh_transient_hostkey_cache_verify( ssh_transient_hostkey_cache *thc, ssh_key *key); bool ssh_transient_hostkey_cache_has( ssh_transient_hostkey_cache *thc, const ssh_keyalg *alg); bool ssh_transient_hostkey_cache_non_empty(ssh_transient_hostkey_cache *thc);