/* * sshkeygen.h: routines used internally to key generation. */ /* ---------------------------------------------------------------------- * A table of all the primes that fit in a 16-bit integer. Call * init_primes_array to make sure it's been initialised. */ #define NSMALLPRIMES 6542 /* number of primes < 65536 */ extern const unsigned short *const smallprimes; void init_smallprimes(void); /* ---------------------------------------------------------------------- * A system for making up random candidate integers during prime * generation. This unconditionally ensures that the numbers have the * right number of bits and are not divisible by any prime in the * smallprimes[] array above. It can also impose further constraints, * as documented below. */ typedef struct PrimeCandidateSource PrimeCandidateSource; /* * pcs_new: you say how many bits you want the prime to have (with the * usual semantics that an n-bit number is in the range [2^{n-1},2^n)) * and also optionally specify what you want its topmost 'nfirst' bits * to be. * * (The 'first' system is used for RSA keys, where you need to arrange * that the product of your two primes is in a more tightly * constrained range than the factor of 4 you'd get by just generating * two (n/2)-bit primes and multiplying them.) */ PrimeCandidateSource *pcs_new(unsigned bits); PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits, unsigned first, unsigned nfirst); /* Insist that generated numbers must be congruent to 'res' mod 'mod' */ void pcs_require_residue(PrimeCandidateSource *s, mp_int *mod, mp_int *res); /* Convenience wrapper for the common case where res = 1 */ void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod); /* Same as pcs_require_residue_1, but also records that the modulus is * known to be prime */ void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod); /* Insist that generated numbers must _not_ be congruent to 'res' mod * 'mod'. This is used to avoid being 1 mod the RSA public exponent, * which is small, so it only needs ordinary integer parameters. */ void pcs_avoid_residue_small(PrimeCandidateSource *s, unsigned mod, unsigned res); /* Exclude any prime that has no chance of being a Sophie Germain prime. */ void pcs_try_sophie_germain(PrimeCandidateSource *s); /* Mark a PrimeCandidateSource as one-shot, so that the prime generation * function will return NULL if an attempt fails, rather than looping. */ void pcs_set_oneshot(PrimeCandidateSource *s); /* Prepare a PrimeCandidateSource to actually generate numbers. This * function does last-minute computation that has to be delayed until * all constraints have been input. */ void pcs_ready(PrimeCandidateSource *s); /* Actually generate a candidate integer. You must free the result, of * course. */ mp_int *pcs_generate(PrimeCandidateSource *s); /* Free a PrimeCandidateSource. */ void pcs_free(PrimeCandidateSource *s); /* Return some internal fields of the PCS. Used by testcrypt for * unit-testing this system. */ void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out, mp_int **factor_out, mp_int **addend_out); /* Query functions for primegen to use */ unsigned pcs_get_bits(PrimeCandidateSource *pcs); unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs); mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs); mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout); /* ---------------------------------------------------------------------- * A system for doing Miller-Rabin probabilistic primality tests. * These benefit from having set up some context beforehand, if you're * going to do more than one of them on the same candidate prime, so * we declare an object type here to store that context. */ typedef struct MillerRabin MillerRabin; /* Make and free a Miller-Rabin context. */ MillerRabin *miller_rabin_new(mp_int *p); void miller_rabin_free(MillerRabin *mr); /* Perform a single Miller-Rabin test, using a specified witness value. * Used in the test suite. */ struct mr_result { bool passed; bool potential_primitive_root; }; struct mr_result miller_rabin_test(MillerRabin *mr, mp_int *w); /* Perform a single Miller-Rabin test, using a random witness value. */ bool miller_rabin_test_random(MillerRabin *mr); /* Suggest how many tests are needed to make it sufficiently unlikely * that a composite number will pass them all */ unsigned miller_rabin_checks_needed(unsigned bits); /* An extension to the M-R test, which iterates until it either finds * a witness value that is potentially a primitive root, or one * that proves the number to be composite. */ mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr); /* ---------------------------------------------------------------------- * A system for proving numbers to be prime, using the Pocklington * test, which requires knowing a partial factorisation of p-1 * (specifically, factors whose product is at least cbrt(p)) and a * primitive root. * * The API consists of instantiating a 'Pockle' object, which * internally stores a list of numbers you've already convinced it is * prime, and can accept further primes if you give a satisfactory * certificate of their primality based on primes it already knows * about. */ typedef struct Pockle Pockle; /* In real use, you only really need to know whether the Pockle * successfully accepted your prime. But for testcrypt, it's useful to * expose many different failure modes so we can try to provoke them * all in unit tests and check they're working. */ #define POCKLE_STATUSES(X) \ X(POCKLE_OK) \ X(POCKLE_SMALL_PRIME_NOT_SMALL) \ X(POCKLE_SMALL_PRIME_NOT_PRIME) \ X(POCKLE_PRIME_SMALLER_THAN_2) \ X(POCKLE_FACTOR_NOT_KNOWN_PRIME) \ X(POCKLE_FACTOR_NOT_A_FACTOR) \ X(POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL) \ X(POCKLE_FERMAT_TEST_FAILED) \ X(POCKLE_DISCRIMINANT_IS_SQUARE) \ X(POCKLE_WITNESS_POWER_IS_1) \ X(POCKLE_WITNESS_POWER_NOT_COPRIME) \ /* end of list */ #define DEFINE_ENUM(id) id, typedef enum PockleStatus { POCKLE_STATUSES(DEFINE_ENUM) } PockleStatus; #undef DEFINE_ENUM /* Make a new empty Pockle, containing no primes. */ Pockle *pockle_new(void); /* Insert a prime below 2^32 into the Pockle. No evidence is required: * Pockle will check it itself. */ PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p); /* Insert a general prime into the Pockle. You must provide a list of * prime factors of p-1, whose product exceeds the cube root of p, and * also a primitive root mod p. */ PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p, mp_int **factors, size_t nfactors, mp_int *primitive_root); /* If you call pockle_mark, and later pass the returned value to * pockle_release, it will free all the primes that were added to the * Pockle between those two calls. Useful in recursive algorithms, to * stop the Pockle growing unboundedly if the recursion keeps having * to backtrack. */ size_t pockle_mark(Pockle *pockle); void pockle_release(Pockle *pockle, size_t mark); /* Free a Pockle. */ void pockle_free(Pockle *pockle); /* Generate a certificate of primality for a prime already known to * the Pockle, in a format acceptable to Math::Prime::Util. */ strbuf *pockle_mpu(Pockle *pockle, mp_int *p); /* ---------------------------------------------------------------------- * Callback API that allows key generation to report progress to its * caller. */ typedef struct ProgressReceiverVtable ProgressReceiverVtable; typedef struct ProgressReceiver ProgressReceiver; typedef union ProgressPhase ProgressPhase; union ProgressPhase { int n; void *p; }; struct ProgressReceiver { const ProgressReceiverVtable *vt; }; struct ProgressReceiverVtable { ProgressPhase (*add_linear)(ProgressReceiver *prog, double overall_cost); ProgressPhase (*add_probabilistic)(ProgressReceiver *prog, double cost_per_attempt, double attempt_probability); void (*ready)(ProgressReceiver *prog); void (*start_phase)(ProgressReceiver *prog, ProgressPhase phase); void (*report)(ProgressReceiver *prog, double progress); void (*report_attempt)(ProgressReceiver *prog); void (*report_phase_complete)(ProgressReceiver *prog); }; static inline ProgressPhase progress_add_linear(ProgressReceiver *prog, double c) { return prog->vt->add_linear(prog, c); } static inline ProgressPhase progress_add_probabilistic(ProgressReceiver *prog, double c, double p) { return prog->vt->add_probabilistic(prog, c, p); } static inline void progress_ready(ProgressReceiver *prog) { prog->vt->ready(prog); } static inline void progress_start_phase( ProgressReceiver *prog, ProgressPhase phase) { prog->vt->start_phase(prog, phase); } static inline void progress_report(ProgressReceiver *prog, double progress) { prog->vt->report(prog, progress); } static inline void progress_report_attempt(ProgressReceiver *prog) { prog->vt->report_attempt(prog); } static inline void progress_report_phase_complete(ProgressReceiver *prog) { prog->vt->report_phase_complete(prog); } ProgressPhase null_progress_add_linear( ProgressReceiver *prog, double c); ProgressPhase null_progress_add_probabilistic( ProgressReceiver *prog, double c, double p); void null_progress_ready(ProgressReceiver *prog); void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase); void null_progress_report(ProgressReceiver *prog, double progress); void null_progress_report_attempt(ProgressReceiver *prog); void null_progress_report_phase_complete(ProgressReceiver *prog); extern const ProgressReceiverVtable null_progress_vt; /* A helper function for dreaming up progress cost estimates. */ double estimate_modexp_cost(unsigned bits); /* ---------------------------------------------------------------------- * The top-level API for generating primes. */ typedef struct PrimeGenerationPolicy PrimeGenerationPolicy; typedef struct PrimeGenerationContext PrimeGenerationContext; struct PrimeGenerationContext { const PrimeGenerationPolicy *vt; }; struct PrimeGenerationPolicy { ProgressPhase (*add_progress_phase)(const PrimeGenerationPolicy *policy, ProgressReceiver *prog, unsigned bits); PrimeGenerationContext *(*new_context)( const PrimeGenerationPolicy *policy); void (*free_context)(PrimeGenerationContext *ctx); mp_int *(*generate)( PrimeGenerationContext *ctx, PrimeCandidateSource *pcs, ProgressReceiver *prog); strbuf *(*mpu_certificate)(PrimeGenerationContext *ctx, mp_int *p); const void *extra; /* additional data a particular impl might need */ }; static inline ProgressPhase primegen_add_progress_phase( PrimeGenerationContext *ctx, ProgressReceiver *prog, unsigned bits) { return ctx->vt->add_progress_phase(ctx->vt, prog, bits); } static inline PrimeGenerationContext *primegen_new_context( const PrimeGenerationPolicy *policy) { return policy->new_context(policy); } static inline void primegen_free_context(PrimeGenerationContext *ctx) { ctx->vt->free_context(ctx); } static inline mp_int *primegen_generate( PrimeGenerationContext *ctx, PrimeCandidateSource *pcs, ProgressReceiver *prog) { return ctx->vt->generate(ctx, pcs, prog); } static inline strbuf *primegen_mpu_certificate( PrimeGenerationContext *ctx, mp_int *p) { return ctx->vt->mpu_certificate(ctx, p); } extern const PrimeGenerationPolicy primegen_probabilistic; extern const PrimeGenerationPolicy primegen_provable_fast; extern const PrimeGenerationPolicy primegen_provable_maurer_simple; extern const PrimeGenerationPolicy primegen_provable_maurer_complex; /* ---------------------------------------------------------------------- * The overall top-level API for generating entire key pairs. */ int rsa_generate(RSAKey *key, int bits, bool strong, PrimeGenerationContext *pgc, ProgressReceiver *prog); int dsa_generate(struct dsa_key *key, int bits, PrimeGenerationContext *pgc, ProgressReceiver *prog); int ecdsa_generate(struct ecdsa_key *key, int bits); int eddsa_generate(struct eddsa_key *key, int bits);