/* * primecandidate.c: implementation of the PrimeCandidateSource * abstraction declared in sshkeygen.h. */ #include #include "ssh.h" #include "mpint.h" #include "mpunsafe.h" #include "sshkeygen.h" struct avoid { unsigned mod, res; }; struct PrimeCandidateSource { unsigned bits; bool ready, try_sophie_germain; bool one_shot, thrown_away_my_shot; /* We'll start by making up a random number strictly less than this ... */ mp_int *limit; /* ... then we'll multiply by 'factor', and add 'addend'. */ mp_int *factor, *addend; /* Then we'll try to add a small multiple of 'factor' to it to * avoid it being a multiple of any small prime. Also, for RSA, we * may need to avoid it being _this_ multiple of _this_: */ unsigned avoid_residue, avoid_modulus; /* Once we're actually running, this will be the complete list of * (modulus, residue) pairs we want to avoid. */ struct avoid *avoids; size_t navoids, avoidsize; /* List of known primes that our number will be congruent to 1 modulo */ mp_int **kps; size_t nkps, kpsize; }; PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits, unsigned first, unsigned nfirst) { PrimeCandidateSource *s = snew(PrimeCandidateSource); assert(first >> (nfirst-1) == 1); s->bits = bits; s->ready = false; s->try_sophie_germain = false; s->one_shot = false; s->thrown_away_my_shot = false; s->kps = NULL; s->nkps = s->kpsize = 0; s->avoids = NULL; s->navoids = s->avoidsize = 0; /* Make the number that's the lower limit of our range */ mp_int *firstmp = mp_from_integer(first); mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst); mp_free(firstmp); /* Set the low bit of that, because all (nontrivial) primes are odd */ mp_set_bit(base, 0, 1); /* That's our addend. Now initialise factor to 2, to ensure we * only generate odd numbers */ s->factor = mp_from_integer(2); s->addend = base; /* And that means the limit of our random numbers must be one * factor of two _less_ than the position of the low bit of * 'first', because we'll be multiplying the random number by * 2 immediately afterwards. */ s->limit = mp_power_2(bits - nfirst - 1); /* avoid_modulus == 0 signals that there's no extra residue to avoid */ s->avoid_residue = 1; s->avoid_modulus = 0; return s; } PrimeCandidateSource *pcs_new(unsigned bits) { return pcs_new_with_firstbits(bits, 1, 1); } void pcs_free(PrimeCandidateSource *s) { mp_free(s->limit); mp_free(s->factor); mp_free(s->addend); for (size_t i = 0; i < s->nkps; i++) mp_free(s->kps[i]); sfree(s->avoids); sfree(s->kps); sfree(s); } void pcs_try_sophie_germain(PrimeCandidateSource *s) { s->try_sophie_germain = true; } void pcs_set_oneshot(PrimeCandidateSource *s) { s->one_shot = true; } static void pcs_require_residue_inner(PrimeCandidateSource *s, mp_int *mod, mp_int *res) { /* * We already have a factor and addend. Ensure this one doesn't * contradict it. */ mp_int *gcd = mp_gcd(mod, s->factor); mp_int *test1 = mp_mod(s->addend, gcd); mp_int *test2 = mp_mod(res, gcd); assert(mp_cmp_eq(test1, test2)); mp_free(test1); mp_free(test2); /* * Reduce our input factor and addend, which are constraints on * the ultimate output number, so that they're constraints on the * initial cofactor we're going to make up. * * If we're generating x and we want to ensure ax+b == r (mod m), * how does that work? We've already checked that b == r modulo g * = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So * let's write a=gA, m=gM, (r-b)=gR, and then we can start by * dividing that off: * * ax == r-b (mod m ) * => gAx == gR (mod gM) * => Ax == R (mod M) * * Now the moduli A,M are coprime, which makes things easier. * * We're going to need to generate the x in this equation by * generating a new smaller value y, multiplying it by M, and * adding some constant K. So we have x = My + K, and we need to * work out what K will satisfy the above equation. In other * words, we need A(My+K) == R (mod M), and the AMy term vanishes, * so we just need AK == R (mod M). So our congruence is solved by * setting K to be R * A^{-1} mod M. */ mp_int *A = mp_div(s->factor, gcd); mp_int *M = mp_div(mod, gcd); mp_int *Rpre = mp_modsub(res, s->addend, mod); mp_int *R = mp_div(Rpre, gcd); mp_int *Ainv = mp_invert(A, M); mp_int *K = mp_modmul(R, Ainv, M); mp_free(gcd); mp_free(Rpre); mp_free(Ainv); mp_free(A); mp_free(R); /* * So we know we have to transform our existing (factor, addend) * pair into (factor * M, addend * factor * K). Now we just need * to work out what the limit should be on the random value we're * generating. * * If we need My+K < old_limit, then y < (old_limit-K)/M. But the * RHS is a fraction, so in integers, we need y < ceil of it. */ assert(!mp_cmp_hs(K, s->limit)); mp_int *dividend = mp_add(s->limit, M); mp_sub_integer_into(dividend, dividend, 1); mp_sub_into(dividend, dividend, K); mp_free(s->limit); s->limit = mp_div(dividend, M); mp_free(dividend); /* * Now just update the real factor and addend, and we're done. */ mp_int *addend_old = s->addend; mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */ s->addend = mp_add(s->addend, tmp); mp_free(tmp); mp_free(addend_old); mp_int *factor_old = s->factor; s->factor = mp_mul(s->factor, M); mp_free(factor_old); mp_free(M); mp_free(K); s->factor = mp_unsafe_shrink(s->factor); s->addend = mp_unsafe_shrink(s->addend); s->limit = mp_unsafe_shrink(s->limit); } void pcs_require_residue(PrimeCandidateSource *s, mp_int *mod, mp_int *res_orig) { /* * Reduce the input residue to its least non-negative value, in * case it was given as a larger equivalent value. */ mp_int *res_reduced = mp_mod(res_orig, mod); pcs_require_residue_inner(s, mod, res_reduced); mp_free(res_reduced); } void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod) { mp_int *res = mp_from_integer(1); pcs_require_residue(s, mod, res); mp_free(res); } void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod) { pcs_require_residue_1(s, mod); sgrowarray(s->kps, s->kpsize, s->nkps); s->kps[s->nkps++] = mp_copy(mod); } void pcs_avoid_residue_small(PrimeCandidateSource *s, unsigned mod, unsigned res) { assert(!s->avoid_modulus); /* can't cope with more than one */ s->avoid_modulus = mod; s->avoid_residue = res % mod; /* reduce, just in case */ } static int avoid_cmp(const void *av, const void *bv) { const struct avoid *a = (const struct avoid *)av; const struct avoid *b = (const struct avoid *)bv; return a->mod < b->mod ? -1 : a->mod > b->mod ? +1 : 0; } static uint64_t invert(uint64_t a, uint64_t m) { int64_t v0 = a, i0 = 1; int64_t v1 = m, i1 = 0; while (v0) { int64_t tmp, q = v1 / v0; tmp = v0; v0 = v1 - q*v0; v1 = tmp; tmp = i0; i0 = i1 - q*i0; i1 = tmp; } assert(v1 == 1 || v1 == -1); return i1 * v1; } void pcs_ready(PrimeCandidateSource *s) { /* * List all the small (modulus, residue) pairs we want to avoid. */ init_smallprimes(); #define ADD_AVOID(newmod, newres) do { \ sgrowarray(s->avoids, s->avoidsize, s->navoids); \ s->avoids[s->navoids].mod = (newmod); \ s->avoids[s->navoids].res = (newres); \ s->navoids++; \ } while (0) unsigned limit = (mp_hs_integer(s->addend, 65536) ? 65536 : mp_get_integer(s->addend)); /* * Don't be divisible by any small prime, or at least, any prime * smaller than our output number might actually manage to be. (If * asked to generate a really small prime, it would be * embarrassing to rule out legitimate answers on the grounds that * they were divisible by themselves.) */ for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++) ADD_AVOID(smallprimes[i], 0); if (s->try_sophie_germain) { /* * If we're aiming to generate a Sophie Germain prime (i.e. p * such that 2p+1 is also prime), then we also want to ensure * 2p+1 is not congruent to 0 mod any small prime, because if * it is, we'll waste a lot of time generating a p for which * 2p+1 can't possibly work. So we have to avoid an extra * residue mod each odd q. * * We can simplify: 2p+1 == 0 (mod q) * => 2p == -1 (mod q) * => p == -2^{-1} (mod q) * * There's no need to do Euclid's algorithm to compute those * inverses, because for any odd q, the modular inverse of -2 * mod q is just (q-1)/2. (Proof: multiplying it by -2 gives * 1-q, which is congruent to 1 mod q.) */ for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++) if (smallprimes[i] != 2) ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2); } /* * Finally, if there's a particular modulus and residue we've been * told to avoid, put it on the list. */ if (s->avoid_modulus) ADD_AVOID(s->avoid_modulus, s->avoid_residue); #undef ADD_AVOID /* * Sort our to-avoid list by modulus. Partly this is so that we'll * check the smaller moduli first during the live runs, which lets * us spot most failing cases earlier rather than later. Also, it * brings equal moduli together, so that we can reuse the residue * we computed from a previous one. */ qsort(s->avoids, s->navoids, sizeof(*s->avoids), avoid_cmp); /* * Next, adjust each of these moduli to take account of our factor * and addend. If we want factor*x+addend to avoid being congruent * to 'res' modulo 'mod', then x itself must avoid being congruent * to (res - addend) * factor^{-1}. * * If factor == 0 modulo mod, then the answer will have a fixed * residue anyway, so we can discard it from our list to test. */ int64_t factor_m = 0, addend_m = 0, last_mod = 0; size_t out = 0; for (size_t i = 0; i < s->navoids; i++) { int64_t mod = s->avoids[i].mod, res = s->avoids[i].res; if (mod != last_mod) { last_mod = mod; addend_m = mp_unsafe_mod_integer(s->addend, mod); factor_m = mp_unsafe_mod_integer(s->factor, mod); } if (factor_m == 0) { assert(res != addend_m); continue; } res = (res - addend_m) * invert(factor_m, mod); res %= mod; if (res < 0) res += mod; s->avoids[out].mod = mod; s->avoids[out].res = res; out++; } s->navoids = out; s->ready = true; } mp_int *pcs_generate(PrimeCandidateSource *s) { assert(s->ready); if (s->one_shot) { if (s->thrown_away_my_shot) return NULL; s->thrown_away_my_shot = true; } while (true) { mp_int *x = mp_random_upto(s->limit); int64_t x_res = 0, last_mod = 0; bool ok = true; for (size_t i = 0; i < s->navoids; i++) { int64_t mod = s->avoids[i].mod, avoid_res = s->avoids[i].res; if (mod != last_mod) { last_mod = mod; x_res = mp_unsafe_mod_integer(x, mod); } if (x_res == avoid_res) { ok = false; break; } } if (!ok) { mp_free(x); continue; /* try a new x */ } /* * We've found a viable x. Make the final output value. */ mp_int *toret = mp_new(s->bits); mp_mul_into(toret, x, s->factor); mp_add_into(toret, toret, s->addend); mp_free(x); return toret; } } void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out, mp_int **factor_out, mp_int **addend_out) { *limit_out = mp_copy(pcs->limit); *factor_out = mp_copy(pcs->factor); *addend_out = mp_copy(pcs->addend); } unsigned pcs_get_bits(PrimeCandidateSource *pcs) { return pcs->bits; } unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs) { return mp_get_nbits(pcs->limit); } mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs) { /* Compute (limit-1) * factor + addend */ mp_int *tmp = mp_mul(pcs->limit, pcs->factor); mp_int *bound = mp_add(tmp, pcs->addend); mp_free(tmp); mp_sub_into(bound, bound, pcs->factor); return bound; } mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout) { *nout = pcs->nkps; return pcs->kps; }