/* * RSA implementation for PuTTY. */ #include #include #include #include #include "ssh.h" #include "mpint.h" #include "misc.h" void BinarySource_get_rsa_ssh1_pub( BinarySource *src, RSAKey *rsa, RsaSsh1Order order) { unsigned bits; mp_int *e, *m; bits = get_uint32(src); if (order == RSA_SSH1_EXPONENT_FIRST) { e = get_mp_ssh1(src); m = get_mp_ssh1(src); } else { m = get_mp_ssh1(src); e = get_mp_ssh1(src); } if (rsa) { rsa->bits = bits; rsa->exponent = e; rsa->modulus = m; rsa->bytes = (mp_get_nbits(m) + 7) / 8; } else { mp_free(e); mp_free(m); } } void BinarySource_get_rsa_ssh1_priv( BinarySource *src, RSAKey *rsa) { rsa->private_exponent = get_mp_ssh1(src); } key_components *rsa_components(RSAKey *rsa) { key_components *kc = key_components_new(); key_components_add_text(kc, "key_type", "RSA"); key_components_add_mp(kc, "public_modulus", rsa->modulus); key_components_add_mp(kc, "public_exponent", rsa->exponent); if (rsa->private_exponent) { key_components_add_mp(kc, "private_exponent", rsa->private_exponent); key_components_add_mp(kc, "private_p", rsa->p); key_components_add_mp(kc, "private_q", rsa->q); key_components_add_mp(kc, "private_inverse_q_mod_p", rsa->iqmp); } return kc; } RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src) { RSAKey *rsa = snew(RSAKey); memset(rsa, 0, sizeof(RSAKey)); get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST); get_rsa_ssh1_priv(src, rsa); /* SSH-1 names p and q the other way round, i.e. we have the * inverse of p mod q and not of q mod p. We swap the names, * because our internal RSA wants iqmp. */ rsa->iqmp = get_mp_ssh1(src); rsa->q = get_mp_ssh1(src); rsa->p = get_mp_ssh1(src); return rsa; } bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key) { mp_int *b1, *b2; int i; unsigned char *p; if (key->bytes < length + 4) return false; /* RSA key too short! */ memmove(data + key->bytes - length, data, length); data[0] = 0; data[1] = 2; size_t npad = key->bytes - length - 3; /* * Generate a sequence of nonzero padding bytes. We do this in a * reasonably uniform way and without having to loop round * retrying the random number generation, by first generating an * integer in [0,2^n) for an appropriately large n; then we * repeatedly multiply by 255 to give an integer in [0,255*2^n), * extract the top 8 bits to give an integer in [0,255), and mask * those bits off before multiplying up again for the next digit. * This gives us a sequence of numbers in [0,255), and of course * adding 1 to each of them gives numbers in [1,256) as we wanted. * * (You could imagine this being a sort of fixed-point operation: * given a uniformly random binary _fraction_, multiplying it by k * and subtracting off the integer part will yield you a sequence * of integers each in [0,k). I'm just doing that scaled up by a * power of 2 to avoid the fractions.) */ size_t random_bits = (npad + 16) * 8; mp_int *randval = mp_new(random_bits + 8); mp_int *tmp = mp_random_bits(random_bits); mp_copy_into(randval, tmp); mp_free(tmp); for (i = 2; i < key->bytes - length - 1; i++) { mp_mul_integer_into(randval, randval, 255); uint8_t byte = mp_get_byte(randval, random_bits / 8); assert(byte != 255); data[i] = byte + 1; mp_reduce_mod_2to(randval, random_bits); } mp_free(randval); data[key->bytes - length - 1] = 0; b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes)); b2 = mp_modpow(b1, key->exponent, key->modulus); p = data; for (i = key->bytes; i--;) { *p++ = mp_get_byte(b2, i); } mp_free(b1); mp_free(b2); return true; } /* * Compute (base ^ exp) % mod, provided mod == p * q, with p,q * distinct primes, and iqmp is the multiplicative inverse of q mod p. * Uses Chinese Remainder Theorem to speed computation up over the * obvious implementation of a single big modpow. */ static mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod, mp_int *p, mp_int *q, mp_int *iqmp) { mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult; mp_int *diff, *multiplier, *ret0, *ret; /* * Reduce the exponent mod phi(p) and phi(q), to save time when * exponentiating mod p and mod q respectively. Of course, since p * and q are prime, phi(p) == p-1 and similarly for q. */ pm1 = mp_copy(p); mp_sub_integer_into(pm1, pm1, 1); qm1 = mp_copy(q); mp_sub_integer_into(qm1, qm1, 1); pexp = mp_mod(exp, pm1); qexp = mp_mod(exp, qm1); /* * Do the two modpows. */ mp_int *base_mod_p = mp_mod(base, p); presult = mp_modpow(base_mod_p, pexp, p); mp_free(base_mod_p); mp_int *base_mod_q = mp_mod(base, q); qresult = mp_modpow(base_mod_q, qexp, q); mp_free(base_mod_q); /* * Recombine the results. We want a value which is congruent to * qresult mod q, and to presult mod p. * * We know that iqmp * q is congruent to 1 * mod p (by definition * of iqmp) and to 0 mod q (obviously). So we start with qresult * (which is congruent to qresult mod both primes), and add on * (presult-qresult) * (iqmp * q) which adjusts it to be congruent * to presult mod p without affecting its value mod q. * * (If presult-qresult < 0, we add p to it to keep it positive.) */ unsigned presult_too_small = mp_cmp_hs(qresult, presult); mp_cond_add_into(presult, presult, p, presult_too_small); diff = mp_sub(presult, qresult); multiplier = mp_mul(iqmp, q); ret0 = mp_mul(multiplier, diff); mp_add_into(ret0, ret0, qresult); /* * Finally, reduce the result mod n. */ ret = mp_mod(ret0, mod); /* * Free all the intermediate results before returning. */ mp_free(pm1); mp_free(qm1); mp_free(pexp); mp_free(qexp); mp_free(presult); mp_free(qresult); mp_free(diff); mp_free(multiplier); mp_free(ret0); return ret; } /* * Wrapper on crt_modpow that looks up all the right values from an * RSAKey. */ static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key) { return crt_modpow(input, key->private_exponent, key->modulus, key->p, key->q, key->iqmp); } mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key) { return rsa_privkey_op(input, key); } bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key, strbuf *outbuf) { strbuf *data = strbuf_new_nm(); bool success = false; BinarySource src[1]; { mp_int *b = rsa_ssh1_decrypt(input, key); for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) { put_byte(data, mp_get_byte(b, i)); } mp_free(b); } BinarySource_BARE_INIT(src, data->u, data->len); /* Check PKCS#1 formatting prefix */ if (get_byte(src) != 0) goto out; if (get_byte(src) != 2) goto out; while (1) { unsigned char byte = get_byte(src); if (get_err(src)) goto out; if (byte == 0) break; } /* Everything else is the payload */ success = true; put_data(outbuf, get_ptr(src), get_avail(src)); out: strbuf_free(data); return success; } static void append_hex_to_strbuf(strbuf *sb, mp_int *x) { if (sb->len > 0) put_byte(sb, ','); put_data(sb, "0x", 2); char *hex = mp_get_hex(x); size_t hexlen = strlen(hex); put_data(sb, hex, hexlen); smemclr(hex, hexlen); sfree(hex); } char *rsastr_fmt(RSAKey *key) { strbuf *sb = strbuf_new(); append_hex_to_strbuf(sb, key->exponent); append_hex_to_strbuf(sb, key->modulus); return strbuf_to_str(sb); } /* * Generate a fingerprint string for the key. Compatible with the * OpenSSH fingerprint code. */ char *rsa_ssh1_fingerprint(RSAKey *key) { unsigned char digest[16]; strbuf *out; int i; /* * The hash preimage for SSH-1 key fingerprinting consists of the * modulus and exponent _without_ any preceding length field - * just the minimum number of bytes to represent each integer, * stored big-endian, concatenated with no marker at the division * between them. */ ssh_hash *hash = ssh_hash_new(&ssh_md5); for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) put_byte(hash, mp_get_byte(key->modulus, i)); for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;) put_byte(hash, mp_get_byte(key->exponent, i)); ssh_hash_final(hash, digest); out = strbuf_new(); strbuf_catf(out, "%"SIZEu" ", mp_get_nbits(key->modulus)); for (i = 0; i < 16; i++) strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]); if (key->comment) strbuf_catf(out, " %s", key->comment); return strbuf_to_str(out); } /* * Verify that the public data in an RSA key matches the private * data. We also check the private data itself: we ensure that p > * q and that iqmp really is the inverse of q mod p. */ bool rsa_verify(RSAKey *key) { mp_int *n, *ed, *pm1, *qm1; unsigned ok = 1; /* Preliminary checks: p,q can't be 0 or 1. (Of course no other * very small value is any good either, but these are the values * we _must_ check for to avoid assertion failures further down * this function.) */ if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2))) return false; /* n must equal pq. */ n = mp_mul(key->p, key->q); ok &= mp_cmp_eq(n, key->modulus); mp_free(n); /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */ pm1 = mp_copy(key->p); mp_sub_integer_into(pm1, pm1, 1); ed = mp_modmul(key->exponent, key->private_exponent, pm1); mp_free(pm1); ok &= mp_eq_integer(ed, 1); mp_free(ed); qm1 = mp_copy(key->q); mp_sub_integer_into(qm1, qm1, 1); ed = mp_modmul(key->exponent, key->private_exponent, qm1); mp_free(qm1); ok &= mp_eq_integer(ed, 1); mp_free(ed); /* * Ensure p > q. * * I have seen key blobs in the wild which were generated with * p < q, so instead of rejecting the key in this case we * should instead flip them round into the canonical order of * p > q. This also involves regenerating iqmp. */ mp_int *p_new = mp_max(key->p, key->q); mp_int *q_new = mp_min(key->p, key->q); mp_free(key->p); mp_free(key->q); mp_free(key->iqmp); key->p = p_new; key->q = q_new; key->iqmp = mp_invert(key->q, key->p); return ok; } void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key, RsaSsh1Order order) { put_uint32(bs, mp_get_nbits(key->modulus)); if (order == RSA_SSH1_EXPONENT_FIRST) { put_mp_ssh1(bs, key->exponent); put_mp_ssh1(bs, key->modulus); } else { put_mp_ssh1(bs, key->modulus); put_mp_ssh1(bs, key->exponent); } } void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key) { rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST); put_mp_ssh1(bs, key->private_exponent); put_mp_ssh1(bs, key->iqmp); put_mp_ssh1(bs, key->q); put_mp_ssh1(bs, key->p); } /* Given an SSH-1 public key blob, determine its length. */ int rsa_ssh1_public_blob_len(ptrlen data) { BinarySource src[1]; BinarySource_BARE_INIT_PL(src, data); /* Expect a length word, then exponent and modulus. (It doesn't * even matter which order.) */ get_uint32(src); mp_free(get_mp_ssh1(src)); mp_free(get_mp_ssh1(src)); if (get_err(src)) return -1; /* Return the number of bytes consumed. */ return src->pos; } void freersapriv(RSAKey *key) { if (key->private_exponent) { mp_free(key->private_exponent); key->private_exponent = NULL; } if (key->p) { mp_free(key->p); key->p = NULL; } if (key->q) { mp_free(key->q); key->q = NULL; } if (key->iqmp) { mp_free(key->iqmp); key->iqmp = NULL; } } void freersakey(RSAKey *key) { freersapriv(key); if (key->modulus) { mp_free(key->modulus); key->modulus = NULL; } if (key->exponent) { mp_free(key->exponent); key->exponent = NULL; } if (key->comment) { sfree(key->comment); key->comment = NULL; } } /* ---------------------------------------------------------------------- * Implementation of the ssh-rsa signing key type family. */ struct ssh2_rsa_extra { unsigned signflags; }; static void rsa2_freekey(ssh_key *key); /* forward reference */ static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data) { BinarySource src[1]; RSAKey *rsa; BinarySource_BARE_INIT_PL(src, data); if (!ptrlen_eq_string(get_string(src), "ssh-rsa")) return NULL; rsa = snew(RSAKey); rsa->sshk.vt = self; rsa->exponent = get_mp_ssh2(src); rsa->modulus = get_mp_ssh2(src); rsa->private_exponent = NULL; rsa->p = rsa->q = rsa->iqmp = NULL; rsa->comment = NULL; if (get_err(src)) { rsa2_freekey(&rsa->sshk); return NULL; } return &rsa->sshk; } static void rsa2_freekey(ssh_key *key) { RSAKey *rsa = container_of(key, RSAKey, sshk); freersakey(rsa); sfree(rsa); } static char *rsa2_cache_str(ssh_key *key) { RSAKey *rsa = container_of(key, RSAKey, sshk); return rsastr_fmt(rsa); } static key_components *rsa2_components(ssh_key *key) { RSAKey *rsa = container_of(key, RSAKey, sshk); return rsa_components(rsa); } static void rsa2_public_blob(ssh_key *key, BinarySink *bs) { RSAKey *rsa = container_of(key, RSAKey, sshk); put_stringz(bs, "ssh-rsa"); put_mp_ssh2(bs, rsa->exponent); put_mp_ssh2(bs, rsa->modulus); } static void rsa2_private_blob(ssh_key *key, BinarySink *bs) { RSAKey *rsa = container_of(key, RSAKey, sshk); put_mp_ssh2(bs, rsa->private_exponent); put_mp_ssh2(bs, rsa->p); put_mp_ssh2(bs, rsa->q); put_mp_ssh2(bs, rsa->iqmp); } static ssh_key *rsa2_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv) { BinarySource src[1]; ssh_key *sshk; RSAKey *rsa; sshk = rsa2_new_pub(self, pub); if (!sshk) return NULL; rsa = container_of(sshk, RSAKey, sshk); BinarySource_BARE_INIT_PL(src, priv); rsa->private_exponent = get_mp_ssh2(src); rsa->p = get_mp_ssh2(src); rsa->q = get_mp_ssh2(src); rsa->iqmp = get_mp_ssh2(src); if (get_err(src) || !rsa_verify(rsa)) { rsa2_freekey(&rsa->sshk); return NULL; } return &rsa->sshk; } static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self, BinarySource *src) { RSAKey *rsa; rsa = snew(RSAKey); rsa->sshk.vt = &ssh_rsa; rsa->comment = NULL; rsa->modulus = get_mp_ssh2(src); rsa->exponent = get_mp_ssh2(src); rsa->private_exponent = get_mp_ssh2(src); rsa->iqmp = get_mp_ssh2(src); rsa->p = get_mp_ssh2(src); rsa->q = get_mp_ssh2(src); if (get_err(src) || !rsa_verify(rsa)) { rsa2_freekey(&rsa->sshk); return NULL; } return &rsa->sshk; } static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs) { RSAKey *rsa = container_of(key, RSAKey, sshk); put_mp_ssh2(bs, rsa->modulus); put_mp_ssh2(bs, rsa->exponent); put_mp_ssh2(bs, rsa->private_exponent); put_mp_ssh2(bs, rsa->iqmp); put_mp_ssh2(bs, rsa->p); put_mp_ssh2(bs, rsa->q); } static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub) { ssh_key *sshk; RSAKey *rsa; int ret; sshk = rsa2_new_pub(self, pub); if (!sshk) return -1; rsa = container_of(sshk, RSAKey, sshk); ret = mp_get_nbits(rsa->modulus); rsa2_freekey(&rsa->sshk); return ret; } static inline const ssh_hashalg *rsa2_hash_alg_for_flags( unsigned flags, const char **protocol_id_out) { const ssh_hashalg *halg; const char *protocol_id; if (flags & SSH_AGENT_RSA_SHA2_256) { halg = &ssh_sha256; protocol_id = "rsa-sha2-256"; } else if (flags & SSH_AGENT_RSA_SHA2_512) { halg = &ssh_sha512; protocol_id = "rsa-sha2-512"; } else { halg = &ssh_sha1; protocol_id = "ssh-rsa"; } if (protocol_id_out) *protocol_id_out = protocol_id; return halg; } static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg) { if (halg == &ssh_sha1) { /* * This is the magic ASN.1/DER prefix that goes in the decoded * signature, between the string of FFs and the actual SHA-1 * hash value. The meaning of it is: * * 00 -- this marks the end of the FFs; not part of the ASN.1 * bit itself * * 30 21 -- a constructed SEQUENCE of length 0x21 * 30 09 -- a constructed sub-SEQUENCE of length 9 * 06 05 -- an object identifier, length 5 * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 } * (the 1,3 comes from 0x2B = 43 = 40*1+3) * 05 00 -- NULL * 04 14 -- a primitive OCTET STRING of length 0x14 * [0x14 bytes of hash data follows] * * The object id in the middle there is listed as `id-sha1' in * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn * (the ASN module for PKCS #1) and its expanded form is as * follows: * * id-sha1 OBJECT IDENTIFIER ::= { * iso(1) identified-organization(3) oiw(14) secsig(3) * algorithms(2) 26 } */ static const unsigned char sha1_asn1_prefix[] = { 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14, }; return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix); } if (halg == &ssh_sha256) { /* * A similar piece of ASN.1 used for signatures using SHA-256, * in the same format but differing only in various length * fields and OID. */ static const unsigned char sha256_asn1_prefix[] = { 0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, }; return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix); } if (halg == &ssh_sha512) { /* * And one more for SHA-512. */ static const unsigned char sha512_asn1_prefix[] = { 0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40, }; return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix); } unreachable("bad hash algorithm for RSA PKCS#1"); } static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg) { ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg); return halg->hlen + asn1_prefix.len + 2; } static unsigned char *rsa_pkcs1_signature_string( size_t nbytes, const ssh_hashalg *halg, ptrlen data) { size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg); assert(nbytes >= fixed_parts); size_t padding = nbytes - fixed_parts; ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg); unsigned char *bytes = snewn(nbytes, unsigned char); bytes[0] = 0; bytes[1] = 1; memset(bytes + 2, 0xFF, padding); memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len); ssh_hash *h = ssh_hash_new(halg); put_datapl(h, data); ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len); return bytes; } static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data) { RSAKey *rsa = container_of(key, RSAKey, sshk); BinarySource src[1]; ptrlen type, in_pl; mp_int *in, *out; const struct ssh2_rsa_extra *extra = (const struct ssh2_rsa_extra *)key->vt->extra; const ssh_hashalg *halg = rsa2_hash_alg_for_flags(extra->signflags, NULL); /* Start by making sure the key is even long enough to encode a * signature. If not, everything fails to verify. */ size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8; if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) return false; BinarySource_BARE_INIT_PL(src, sig); type = get_string(src); /* * RFC 4253 section 6.6: the signature integer in an ssh-rsa * signature is 'without lengths or padding'. That is, we _don't_ * expect the usual leading zero byte if the topmost bit of the * first byte is set. (However, because of the possibility of * BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's * there.) So we can't use get_mp_ssh2, which enforces that * leading-byte scheme; instead we use get_string and * mp_from_bytes_be, which will tolerate anything. */ in_pl = get_string(src); if (get_err(src) || !ptrlen_eq_string(type, key->vt->ssh_id)) return false; in = mp_from_bytes_be(in_pl); out = mp_modpow(in, rsa->exponent, rsa->modulus); mp_free(in); unsigned diff = 0; unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data); for (size_t i = 0; i < nbytes; i++) diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i); smemclr(bytes, nbytes); sfree(bytes); mp_free(out); return diff == 0; } static void rsa2_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs) { RSAKey *rsa = container_of(key, RSAKey, sshk); unsigned char *bytes; size_t nbytes; mp_int *in, *out; const ssh_hashalg *halg; const char *sign_alg_name; const struct ssh2_rsa_extra *extra = (const struct ssh2_rsa_extra *)key->vt->extra; flags |= extra->signflags; halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name); nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8; bytes = rsa_pkcs1_signature_string(nbytes, halg, data); in = mp_from_bytes_be(make_ptrlen(bytes, nbytes)); smemclr(bytes, nbytes); sfree(bytes); out = rsa_privkey_op(in, rsa); mp_free(in); put_stringz(bs, sign_alg_name); nbytes = (mp_get_nbits(out) + 7) / 8; put_uint32(bs, nbytes); for (size_t i = 0; i < nbytes; i++) put_byte(bs, mp_get_byte(out, nbytes - 1 - i)); mp_free(out); } static char *rsa2_invalid(ssh_key *key, unsigned flags) { RSAKey *rsa = container_of(key, RSAKey, sshk); size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8; const char *sign_alg_name; const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name); if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) { return dupprintf( "%"SIZEu"-bit RSA key is too short to generate %s signatures", bits, sign_alg_name); } return NULL; } static const struct ssh2_rsa_extra rsa_extra = { 0 }, rsa_sha256_extra = { SSH_AGENT_RSA_SHA2_256 }, rsa_sha512_extra = { SSH_AGENT_RSA_SHA2_512 }; #define COMMON_KEYALG_FIELDS \ .new_pub = rsa2_new_pub, \ .new_priv = rsa2_new_priv, \ .new_priv_openssh = rsa2_new_priv_openssh, \ .freekey = rsa2_freekey, \ .invalid = rsa2_invalid, \ .sign = rsa2_sign, \ .verify = rsa2_verify, \ .public_blob = rsa2_public_blob, \ .private_blob = rsa2_private_blob, \ .openssh_blob = rsa2_openssh_blob, \ .cache_str = rsa2_cache_str, \ .components = rsa2_components, \ .pubkey_bits = rsa2_pubkey_bits, \ .cache_id = "rsa2" const ssh_keyalg ssh_rsa = { COMMON_KEYALG_FIELDS, .ssh_id = "ssh-rsa", .supported_flags = SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512, .extra = &rsa_extra, }; const ssh_keyalg ssh_rsa_sha256 = { COMMON_KEYALG_FIELDS, .ssh_id = "rsa-sha2-256", .supported_flags = 0, .extra = &rsa_sha256_extra, }; const ssh_keyalg ssh_rsa_sha512 = { COMMON_KEYALG_FIELDS, .ssh_id = "rsa-sha2-512", .supported_flags = 0, .extra = &rsa_sha512_extra, }; RSAKey *ssh_rsakex_newkey(ptrlen data) { ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data); if (!sshk) return NULL; return container_of(sshk, RSAKey, sshk); } void ssh_rsakex_freekey(RSAKey *key) { rsa2_freekey(&key->sshk); } int ssh_rsakex_klen(RSAKey *rsa) { return mp_get_nbits(rsa->modulus); } static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen, void *vdata, int datalen) { unsigned char *data = (unsigned char *)vdata; unsigned count = 0; ssh_hash *s = ssh_hash_new(h); while (datalen > 0) { int i, max = (datalen > h->hlen ? h->hlen : datalen); unsigned char hash[MAX_HASH_LEN]; ssh_hash_reset(s); assert(h->hlen <= MAX_HASH_LEN); put_data(s, seed, seedlen); put_uint32(s, count); ssh_hash_digest(s, hash); count++; for (i = 0; i < max; i++) data[i] ^= hash[i]; data += max; datalen -= max; } ssh_hash_free(s); } strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in) { mp_int *b1, *b2; int k, i; char *p; const int HLEN = h->hlen; /* * Here we encrypt using RSAES-OAEP. Essentially this means: * * - we have a SHA-based `mask generation function' which * creates a pseudo-random stream of mask data * deterministically from an input chunk of data. * * - we have a random chunk of data called a seed. * * - we use the seed to generate a mask which we XOR with our * plaintext. * * - then we use _the masked plaintext_ to generate a mask * which we XOR with the seed. * * - then we concatenate the masked seed and the masked * plaintext, and RSA-encrypt that lot. * * The result is that the data input to the encryption function * is random-looking and (hopefully) contains no exploitable * structure such as PKCS1-v1_5 does. * * For a precise specification, see RFC 3447, section 7.1.1. * Some of the variable names below are derived from that, so * it'd probably help to read it anyway. */ /* k denotes the length in octets of the RSA modulus. */ k = (7 + mp_get_nbits(rsa->modulus)) / 8; /* The length of the input data must be at most k - 2hLen - 2. */ assert(in.len > 0 && in.len <= k - 2*HLEN - 2); /* The length of the output data wants to be precisely k. */ strbuf *toret = strbuf_new_nm(); int outlen = k; unsigned char *out = strbuf_append(toret, outlen); /* * Now perform EME-OAEP encoding. First set up all the unmasked * output data. */ /* Leading byte zero. */ out[0] = 0; /* At position 1, the seed: HLEN bytes of random data. */ random_read(out + 1, HLEN); /* At position 1+HLEN, the data block DB, consisting of: */ /* The hash of the label (we only support an empty label here) */ hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1); /* A bunch of zero octets */ memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1)); /* A single 1 octet, followed by the input message data. */ out[outlen - in.len - 1] = 1; memcpy(out + outlen - in.len, in.ptr, in.len); /* * Now use the seed data to mask the block DB. */ oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1); /* * And now use the masked DB to mask the seed itself. */ oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN); /* * Now `out' contains precisely the data we want to * RSA-encrypt. */ b1 = mp_from_bytes_be(make_ptrlen(out, outlen)); b2 = mp_modpow(b1, rsa->exponent, rsa->modulus); p = (char *)out; for (i = outlen; i--;) { *p++ = mp_get_byte(b2, i); } mp_free(b1); mp_free(b2); /* * And we're done. */ return toret; } mp_int *ssh_rsakex_decrypt( RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext) { mp_int *b1, *b2; int outlen, i; unsigned char *out; unsigned char labelhash[64]; BinarySource src[1]; const int HLEN = h->hlen; /* * Decryption side of the RSA key exchange operation. */ /* The length of the encrypted data should be exactly the length * in octets of the RSA modulus.. */ outlen = (7 + mp_get_nbits(rsa->modulus)) / 8; if (ciphertext.len != outlen) return NULL; /* Do the RSA decryption, and extract the result into a byte array. */ b1 = mp_from_bytes_be(ciphertext); b2 = rsa_privkey_op(b1, rsa); out = snewn(outlen, unsigned char); for (i = 0; i < outlen; i++) out[i] = mp_get_byte(b2, outlen-1-i); mp_free(b1); mp_free(b2); /* Do the OAEP masking operations, in the reverse order from encryption */ oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN); oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1); /* Check the leading byte is zero. */ if (out[0] != 0) { sfree(out); return NULL; } /* Check the label hash at position 1+HLEN */ assert(HLEN <= lenof(labelhash)); hash_simple(h, PTRLEN_LITERAL(""), labelhash); if (memcmp(out + HLEN + 1, labelhash, HLEN)) { sfree(out); return NULL; } /* Expect zero bytes followed by a 1 byte */ for (i = 1 + 2 * HLEN; i < outlen; i++) { if (out[i] == 1) { i++; /* skip over the 1 byte */ break; } else if (out[i] != 0) { sfree(out); return NULL; } } /* And what's left is the input message data, which should be * encoded as an ordinary SSH-2 mpint. */ BinarySource_BARE_INIT(src, out + i, outlen - i); b1 = get_mp_ssh2(src); sfree(out); if (get_err(src) || get_avail(src) != 0) { mp_free(b1); return NULL; } /* Success! */ return b1; } static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 }; static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 }; static const ssh_kex ssh_rsa_kex_sha1 = { "rsa1024-sha1", NULL, KEXTYPE_RSA, &ssh_sha1, &ssh_rsa_kex_extra_sha1, }; static const ssh_kex ssh_rsa_kex_sha256 = { "rsa2048-sha256", NULL, KEXTYPE_RSA, &ssh_sha256, &ssh_rsa_kex_extra_sha256, }; static const ssh_kex *const rsa_kex_list[] = { &ssh_rsa_kex_sha256, &ssh_rsa_kex_sha1 }; const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };