/* * SHA-256 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html */ #include "ssh.h" #include /* * Start by deciding whether we can support hardware SHA at all. */ #define HW_SHA256_NONE 0 #define HW_SHA256_NI 1 #define HW_SHA256_NEON 2 #ifdef _FORCE_SHA_NI # define HW_SHA256 HW_SHA256_NI #elif defined(__clang__) # if __has_attribute(target) && __has_include() && \ (defined(__x86_64__) || defined(__i386)) # define HW_SHA256 HW_SHA256_NI # endif #elif defined(__GNUC__) # if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9)) && \ (defined(__x86_64__) || defined(__i386)) # define HW_SHA256 HW_SHA256_NI # endif #elif defined (_MSC_VER) # if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729 # define HW_SHA256 HW_SHA256_NI # endif #endif #ifdef _FORCE_SHA_NEON # define HW_SHA256 HW_SHA256_NEON #elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ /* Arm can potentially support both endiannesses, but this code * hasn't been tested on anything but little. If anyone wants to * run big-endian, they'll need to fix it first. */ #elif defined __ARM_FEATURE_CRYPTO /* If the Arm crypto extension is available already, we can * support NEON SHA without having to enable anything by hand */ # define HW_SHA256 HW_SHA256_NEON #elif defined(__clang__) # if __has_attribute(target) && __has_include() && \ (defined(__aarch64__)) /* clang can enable the crypto extension in AArch64 using * __attribute__((target)) */ # define HW_SHA256 HW_SHA256_NEON # define USE_CLANG_ATTR_TARGET_AARCH64 # endif #elif defined _MSC_VER /* Visual Studio supports the crypto extension when targeting * AArch64, but as of VS2017, the AArch32 header doesn't quite * manage it (declaring the shae/shad intrinsics without a round * key operand). */ # if defined _M_ARM64 # define HW_SHA256 HW_SHA256_NEON # if defined _M_ARM64 # define USE_ARM64_NEON_H /* unusual header name in this case */ # endif # endif #endif #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA256 # undef HW_SHA256 # define HW_SHA256 HW_SHA256_NONE #endif /* * The actual query function that asks if hardware acceleration is * available. */ static bool sha256_hw_available(void); /* * The top-level selection function, caching the results of * sha256_hw_available() so it only has to run once. */ static bool sha256_hw_available_cached(void) { static bool initialised = false; static bool hw_available; if (!initialised) { hw_available = sha256_hw_available(); initialised = true; } return hw_available; } static ssh_hash *sha256_select(const ssh_hashalg *alg) { const ssh_hashalg *real_alg = sha256_hw_available_cached() ? &ssh_sha256_hw : &ssh_sha256_sw; return ssh_hash_new(real_alg); } const ssh_hashalg ssh_sha256 = { .new = sha256_select, .hlen = 32, .blocklen = 64, HASHALG_NAMES_ANNOTATED("SHA-256", "dummy selector vtable"), }; /* ---------------------------------------------------------------------- * Definitions likely to be helpful to multiple implementations. */ static const uint32_t sha256_initial_state[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, }; static const uint32_t sha256_round_constants[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; #define SHA256_ROUNDS 64 typedef struct sha256_block sha256_block; struct sha256_block { uint8_t block[64]; size_t used; uint64_t len; }; static inline void sha256_block_setup(sha256_block *blk) { blk->used = 0; blk->len = 0; } static inline bool sha256_block_write( sha256_block *blk, const void **vdata, size_t *len) { size_t blkleft = sizeof(blk->block) - blk->used; size_t chunk = *len < blkleft ? *len : blkleft; const uint8_t *p = *vdata; memcpy(blk->block + blk->used, p, chunk); *vdata = p + chunk; *len -= chunk; blk->used += chunk; blk->len += chunk; if (blk->used == sizeof(blk->block)) { blk->used = 0; return true; } return false; } static inline void sha256_block_pad(sha256_block *blk, BinarySink *bs) { uint64_t final_len = blk->len << 3; size_t pad = 1 + (63 & (55 - blk->used)); put_byte(bs, 0x80); for (size_t i = 1; i < pad; i++) put_byte(bs, 0); put_uint64(bs, final_len); assert(blk->used == 0 && "Should have exactly hit a block boundary"); } /* ---------------------------------------------------------------------- * Software implementation of SHA-256. */ static inline uint32_t ror(uint32_t x, unsigned y) { return (x << (31 & -y)) | (x >> (31 & y)); } static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0) { return if0 ^ (ctrl & (if1 ^ if0)); } static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); } static inline uint32_t Sigma_0(uint32_t x) { return ror(x,2) ^ ror(x,13) ^ ror(x,22); } static inline uint32_t Sigma_1(uint32_t x) { return ror(x,6) ^ ror(x,11) ^ ror(x,25); } static inline uint32_t sigma_0(uint32_t x) { return ror(x,7) ^ ror(x,18) ^ (x >> 3); } static inline uint32_t sigma_1(uint32_t x) { return ror(x,17) ^ ror(x,19) ^ (x >> 10); } static inline void sha256_sw_round( unsigned round_index, const uint32_t *schedule, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, uint32_t *f, uint32_t *g, uint32_t *h) { uint32_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) + sha256_round_constants[round_index] + schedule[round_index]; uint32_t t2 = Sigma_0(*a) + Maj(*a,*b,*c); *d += t1; *h = t1 + t2; } static void sha256_sw_block(uint32_t *core, const uint8_t *block) { uint32_t w[SHA256_ROUNDS]; uint32_t a,b,c,d,e,f,g,h; for (size_t t = 0; t < 16; t++) w[t] = GET_32BIT_MSB_FIRST(block + 4*t); for (size_t t = 16; t < SHA256_ROUNDS; t++) w[t] = sigma_1(w[t-2]) + w[t-7] + sigma_0(w[t-15]) + w[t-16]; a = core[0]; b = core[1]; c = core[2]; d = core[3]; e = core[4]; f = core[5]; g = core[6]; h = core[7]; for (size_t t = 0; t < SHA256_ROUNDS; t += 8) { sha256_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h); sha256_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g); sha256_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f); sha256_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e); sha256_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d); sha256_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c); sha256_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b); sha256_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a); } core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e; core[5] += f; core[6] += g; core[7] += h; smemclr(w, sizeof(w)); } typedef struct sha256_sw { uint32_t core[8]; sha256_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha256_sw; static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha256_sw_new(const ssh_hashalg *alg) { sha256_sw *s = snew(sha256_sw); s->hash.vt = alg; BinarySink_INIT(s, sha256_sw_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha256_sw_reset(ssh_hash *hash) { sha256_sw *s = container_of(hash, sha256_sw, hash); memcpy(s->core, sha256_initial_state, sizeof(s->core)); sha256_block_setup(&s->blk); } static void sha256_sw_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha256_sw *copy = container_of(hcopy, sha256_sw, hash); sha256_sw *orig = container_of(horig, sha256_sw, hash); memcpy(copy, orig, sizeof(*copy)); BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha256_sw_free(ssh_hash *hash) { sha256_sw *s = container_of(hash, sha256_sw, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha256_sw_write(BinarySink *bs, const void *vp, size_t len) { sha256_sw *s = BinarySink_DOWNCAST(bs, sha256_sw); while (len > 0) if (sha256_block_write(&s->blk, &vp, &len)) sha256_sw_block(s->core, s->blk.block); } static void sha256_sw_digest(ssh_hash *hash, uint8_t *digest) { sha256_sw *s = container_of(hash, sha256_sw, hash); sha256_block_pad(&s->blk, BinarySink_UPCAST(s)); for (size_t i = 0; i < 8; i++) PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]); } const ssh_hashalg ssh_sha256_sw = { .new = sha256_sw_new, .reset = sha256_sw_reset, .copyfrom = sha256_sw_copyfrom, .digest = sha256_sw_digest, .free = sha256_sw_free, .hlen = 32, .blocklen = 64, HASHALG_NAMES_ANNOTATED("SHA-256", "unaccelerated"), }; /* ---------------------------------------------------------------------- * Hardware-accelerated implementation of SHA-256 using x86 SHA-NI. */ #if HW_SHA256 == HW_SHA256_NI /* * Set target architecture for Clang and GCC */ #if defined(__clang__) || defined(__GNUC__) # define FUNC_ISA __attribute__ ((target("sse4.1,sha"))) #if !defined(__clang__) # pragma GCC target("sha") # pragma GCC target("sse4.1") #endif #else # define FUNC_ISA #endif #include #include #include #if defined(__clang__) || defined(__GNUC__) #include #endif #if defined(__clang__) || defined(__GNUC__) #include #define GET_CPU_ID_0(out) \ __cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3]) #define GET_CPU_ID_7(out) \ __cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3]) #else #define GET_CPU_ID_0(out) __cpuid(out, 0) #define GET_CPU_ID_7(out) __cpuidex(out, 7, 0) #endif static bool sha256_hw_available(void) { unsigned int CPUInfo[4]; GET_CPU_ID_0(CPUInfo); if (CPUInfo[0] < 7) return false; GET_CPU_ID_7(CPUInfo); return CPUInfo[1] & (1 << 29); /* Check SHA */ } /* SHA256 implementation using new instructions The code is based on Jeffrey Walton's SHA256 implementation: https://github.com/noloader/SHA-Intrinsics */ FUNC_ISA static inline void sha256_ni_block(__m128i *core, const uint8_t *p) { __m128i STATE0, STATE1; __m128i MSG, TMP; __m128i MSG0, MSG1, MSG2, MSG3; const __m128i *block = (const __m128i *)p; const __m128i MASK = _mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL); /* Load initial values */ STATE0 = core[0]; STATE1 = core[1]; /* Rounds 0-3 */ MSG = _mm_loadu_si128(block); MSG0 = _mm_shuffle_epi8(MSG, MASK); MSG = _mm_add_epi32(MSG0, _mm_set_epi64x( 0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 4-7 */ MSG1 = _mm_loadu_si128(block + 1); MSG1 = _mm_shuffle_epi8(MSG1, MASK); MSG = _mm_add_epi32(MSG1, _mm_set_epi64x( 0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 8-11 */ MSG2 = _mm_loadu_si128(block + 2); MSG2 = _mm_shuffle_epi8(MSG2, MASK); MSG = _mm_add_epi32(MSG2, _mm_set_epi64x( 0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 12-15 */ MSG3 = _mm_loadu_si128(block + 3); MSG3 = _mm_shuffle_epi8(MSG3, MASK); MSG = _mm_add_epi32(MSG3, _mm_set_epi64x( 0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 16-19 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x( 0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 20-23 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x( 0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 24-27 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x( 0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 28-31 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x( 0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 32-35 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x( 0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 36-39 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x( 0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG0 = _mm_sha256msg1_epu32(MSG0, MSG1); /* Rounds 40-43 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x( 0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG1 = _mm_sha256msg1_epu32(MSG1, MSG2); /* Rounds 44-47 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x( 0x106AA070F40E3585ULL, 0xD6990624D192E819ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG3, MSG2, 4); MSG0 = _mm_add_epi32(MSG0, TMP); MSG0 = _mm_sha256msg2_epu32(MSG0, MSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG2 = _mm_sha256msg1_epu32(MSG2, MSG3); /* Rounds 48-51 */ MSG = _mm_add_epi32(MSG0, _mm_set_epi64x( 0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG0, MSG3, 4); MSG1 = _mm_add_epi32(MSG1, TMP); MSG1 = _mm_sha256msg2_epu32(MSG1, MSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); MSG3 = _mm_sha256msg1_epu32(MSG3, MSG0); /* Rounds 52-55 */ MSG = _mm_add_epi32(MSG1, _mm_set_epi64x( 0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG1, MSG0, 4); MSG2 = _mm_add_epi32(MSG2, TMP); MSG2 = _mm_sha256msg2_epu32(MSG2, MSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 56-59 */ MSG = _mm_add_epi32(MSG2, _mm_set_epi64x( 0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(MSG2, MSG1, 4); MSG3 = _mm_add_epi32(MSG3, TMP); MSG3 = _mm_sha256msg2_epu32(MSG3, MSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Rounds 60-63 */ MSG = _mm_add_epi32(MSG3, _mm_set_epi64x( 0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); /* Combine state */ core[0] = _mm_add_epi32(STATE0, core[0]); core[1] = _mm_add_epi32(STATE1, core[1]); } typedef struct sha256_ni { /* * These two vectors store the 8 words of the SHA-256 state, but * not in the same order they appear in the spec: the first word * holds A,B,E,F and the second word C,D,G,H. */ __m128i core[2]; sha256_block blk; void *pointer_to_free; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha256_ni; static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len); static sha256_ni *sha256_ni_alloc(void) { /* * The __m128i variables in the context structure need to be * 16-byte aligned, but not all malloc implementations that this * code has to work with will guarantee to return a 16-byte * aligned pointer. So we over-allocate, manually realign the * pointer ourselves, and store the original one inside the * context so we know how to free it later. */ void *allocation = smalloc(sizeof(sha256_ni) + 15); uintptr_t alloc_address = (uintptr_t)allocation; uintptr_t aligned_address = (alloc_address + 15) & ~15; sha256_ni *s = (sha256_ni *)aligned_address; s->pointer_to_free = allocation; return s; } static ssh_hash *sha256_ni_new(const ssh_hashalg *alg) { if (!sha256_hw_available_cached()) return NULL; sha256_ni *s = sha256_ni_alloc(); s->hash.vt = alg; BinarySink_INIT(s, sha256_ni_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } FUNC_ISA static void sha256_ni_reset(ssh_hash *hash) { sha256_ni *s = container_of(hash, sha256_ni, hash); /* Initialise the core vectors in their storage order */ s->core[0] = _mm_set_epi64x( 0x6a09e667bb67ae85ULL, 0x510e527f9b05688cULL); s->core[1] = _mm_set_epi64x( 0x3c6ef372a54ff53aULL, 0x1f83d9ab5be0cd19ULL); sha256_block_setup(&s->blk); } static void sha256_ni_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha256_ni *copy = container_of(hcopy, sha256_ni, hash); sha256_ni *orig = container_of(horig, sha256_ni, hash); void *ptf_save = copy->pointer_to_free; *copy = *orig; /* structure copy */ copy->pointer_to_free = ptf_save; BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha256_ni_free(ssh_hash *hash) { sha256_ni *s = container_of(hash, sha256_ni, hash); void *ptf = s->pointer_to_free; smemclr(s, sizeof(*s)); sfree(ptf); } static void sha256_ni_write(BinarySink *bs, const void *vp, size_t len) { sha256_ni *s = BinarySink_DOWNCAST(bs, sha256_ni); while (len > 0) if (sha256_block_write(&s->blk, &vp, &len)) sha256_ni_block(s->core, s->blk.block); } FUNC_ISA static void sha256_ni_digest(ssh_hash *hash, uint8_t *digest) { sha256_ni *s = container_of(hash, sha256_ni, hash); sha256_block_pad(&s->blk, BinarySink_UPCAST(s)); /* Rearrange the words into the output order */ __m128i feba = _mm_shuffle_epi32(s->core[0], 0x1B); __m128i dchg = _mm_shuffle_epi32(s->core[1], 0xB1); __m128i dcba = _mm_blend_epi16(feba, dchg, 0xF0); __m128i hgfe = _mm_alignr_epi8(dchg, feba, 8); /* Byte-swap them into the output endianness */ const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12); dcba = _mm_shuffle_epi8(dcba, mask); hgfe = _mm_shuffle_epi8(hgfe, mask); /* And store them */ __m128i *output = (__m128i *)digest; _mm_storeu_si128(output, dcba); _mm_storeu_si128(output+1, hgfe); } const ssh_hashalg ssh_sha256_hw = { .new = sha256_ni_new, .reset = sha256_ni_reset, .copyfrom = sha256_ni_copyfrom, .digest = sha256_ni_digest, .free = sha256_ni_free, .hlen = 32, .blocklen = 64, HASHALG_NAMES_ANNOTATED("SHA-256", "SHA-NI accelerated"), }; /* ---------------------------------------------------------------------- * Hardware-accelerated implementation of SHA-256 using Arm NEON. */ #elif HW_SHA256 == HW_SHA256_NEON /* * Manually set the target architecture, if we decided above that we * need to. */ #ifdef USE_CLANG_ATTR_TARGET_AARCH64 /* * A spot of cheating: redefine some ACLE feature macros before * including arm_neon.h. Otherwise we won't get the SHA intrinsics * defined by that header, because it will be looking at the settings * for the whole translation unit rather than the ones we're going to * put on some particular functions using __attribute__((target)). */ #define __ARM_NEON 1 #define __ARM_FEATURE_CRYPTO 1 #define FUNC_ISA __attribute__ ((target("neon,crypto"))) #endif /* USE_CLANG_ATTR_TARGET_AARCH64 */ #ifndef FUNC_ISA #define FUNC_ISA #endif #ifdef USE_ARM64_NEON_H #include #else #include #endif static bool sha256_hw_available(void) { /* * For Arm, we delegate to a per-platform detection function (see * explanation in sshaes.c). */ return platform_sha256_hw_available(); } typedef struct sha256_neon_core sha256_neon_core; struct sha256_neon_core { uint32x4_t abcd, efgh; }; FUNC_ISA static inline uint32x4_t sha256_neon_load_input(const uint8_t *p) { return vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(p))); } FUNC_ISA static inline uint32x4_t sha256_neon_schedule_update( uint32x4_t m4, uint32x4_t m3, uint32x4_t m2, uint32x4_t m1) { return vsha256su1q_u32(vsha256su0q_u32(m4, m3), m2, m1); } FUNC_ISA static inline sha256_neon_core sha256_neon_round4( sha256_neon_core old, uint32x4_t sched, unsigned round) { sha256_neon_core new; uint32x4_t round_input = vaddq_u32( sched, vld1q_u32(sha256_round_constants + round)); new.abcd = vsha256hq_u32 (old.abcd, old.efgh, round_input); new.efgh = vsha256h2q_u32(old.efgh, old.abcd, round_input); return new; } FUNC_ISA static inline void sha256_neon_block(sha256_neon_core *core, const uint8_t *p) { uint32x4_t s0, s1, s2, s3; sha256_neon_core cr = *core; s0 = sha256_neon_load_input(p); cr = sha256_neon_round4(cr, s0, 0); s1 = sha256_neon_load_input(p+16); cr = sha256_neon_round4(cr, s1, 4); s2 = sha256_neon_load_input(p+32); cr = sha256_neon_round4(cr, s2, 8); s3 = sha256_neon_load_input(p+48); cr = sha256_neon_round4(cr, s3, 12); s0 = sha256_neon_schedule_update(s0, s1, s2, s3); cr = sha256_neon_round4(cr, s0, 16); s1 = sha256_neon_schedule_update(s1, s2, s3, s0); cr = sha256_neon_round4(cr, s1, 20); s2 = sha256_neon_schedule_update(s2, s3, s0, s1); cr = sha256_neon_round4(cr, s2, 24); s3 = sha256_neon_schedule_update(s3, s0, s1, s2); cr = sha256_neon_round4(cr, s3, 28); s0 = sha256_neon_schedule_update(s0, s1, s2, s3); cr = sha256_neon_round4(cr, s0, 32); s1 = sha256_neon_schedule_update(s1, s2, s3, s0); cr = sha256_neon_round4(cr, s1, 36); s2 = sha256_neon_schedule_update(s2, s3, s0, s1); cr = sha256_neon_round4(cr, s2, 40); s3 = sha256_neon_schedule_update(s3, s0, s1, s2); cr = sha256_neon_round4(cr, s3, 44); s0 = sha256_neon_schedule_update(s0, s1, s2, s3); cr = sha256_neon_round4(cr, s0, 48); s1 = sha256_neon_schedule_update(s1, s2, s3, s0); cr = sha256_neon_round4(cr, s1, 52); s2 = sha256_neon_schedule_update(s2, s3, s0, s1); cr = sha256_neon_round4(cr, s2, 56); s3 = sha256_neon_schedule_update(s3, s0, s1, s2); cr = sha256_neon_round4(cr, s3, 60); core->abcd = vaddq_u32(core->abcd, cr.abcd); core->efgh = vaddq_u32(core->efgh, cr.efgh); } typedef struct sha256_neon { sha256_neon_core core; sha256_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha256_neon; static void sha256_neon_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha256_neon_new(const ssh_hashalg *alg) { if (!sha256_hw_available_cached()) return NULL; sha256_neon *s = snew(sha256_neon); s->hash.vt = alg; BinarySink_INIT(s, sha256_neon_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha256_neon_reset(ssh_hash *hash) { sha256_neon *s = container_of(hash, sha256_neon, hash); s->core.abcd = vld1q_u32(sha256_initial_state); s->core.efgh = vld1q_u32(sha256_initial_state + 4); sha256_block_setup(&s->blk); } static void sha256_neon_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha256_neon *copy = container_of(hcopy, sha256_neon, hash); sha256_neon *orig = container_of(horig, sha256_neon, hash); *copy = *orig; /* structure copy */ BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha256_neon_free(ssh_hash *hash) { sha256_neon *s = container_of(hash, sha256_neon, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha256_neon_write(BinarySink *bs, const void *vp, size_t len) { sha256_neon *s = BinarySink_DOWNCAST(bs, sha256_neon); while (len > 0) if (sha256_block_write(&s->blk, &vp, &len)) sha256_neon_block(&s->core, s->blk.block); } static void sha256_neon_digest(ssh_hash *hash, uint8_t *digest) { sha256_neon *s = container_of(hash, sha256_neon, hash); sha256_block_pad(&s->blk, BinarySink_UPCAST(s)); vst1q_u8(digest, vrev32q_u8(vreinterpretq_u8_u32(s->core.abcd))); vst1q_u8(digest + 16, vrev32q_u8(vreinterpretq_u8_u32(s->core.efgh))); } const ssh_hashalg ssh_sha256_hw = { .new = sha256_neon_new, .reset = sha256_neon_reset, .copyfrom = sha256_neon_copyfrom, .digest = sha256_neon_digest, .free = sha256_neon_free, .hlen = 32, .blocklen = 64, HASHALG_NAMES_ANNOTATED("SHA-256", "NEON accelerated"), }; /* ---------------------------------------------------------------------- * Stub functions if we have no hardware-accelerated SHA-256. In this * case, sha256_hw_new returns NULL (though it should also never be * selected by sha256_select, so the only thing that should even be * _able_ to call it is testcrypt). As a result, the remaining vtable * functions should never be called at all. */ #elif HW_SHA256 == HW_SHA256_NONE static bool sha256_hw_available(void) { return false; } static ssh_hash *sha256_stub_new(const ssh_hashalg *alg) { return NULL; } #define STUB_BODY { unreachable("Should never be called"); } static void sha256_stub_reset(ssh_hash *hash) STUB_BODY static void sha256_stub_copyfrom(ssh_hash *hash, ssh_hash *orig) STUB_BODY static void sha256_stub_free(ssh_hash *hash) STUB_BODY static void sha256_stub_digest(ssh_hash *hash, uint8_t *digest) STUB_BODY const ssh_hashalg ssh_sha256_hw = { .new = sha256_stub_new, .reset = sha256_stub_reset, .copyfrom = sha256_stub_copyfrom, .digest = sha256_stub_digest, .free = sha256_stub_free, .hlen = 32, .blocklen = 64, HASHALG_NAMES_ANNOTATED("SHA-256", "!NONEXISTENT ACCELERATED VERSION!"), }; #endif /* HW_SHA256 */