/* * SHA-512 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html * * Modifications made for SHA-384 also */ #include #include "ssh.h" /* * Start by deciding whether we can support hardware SHA at all. */ #define HW_SHA512_NONE 0 #define HW_SHA512_NEON 1 #ifdef _FORCE_SHA512_NEON # define HW_SHA512 HW_SHA512_NEON #elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ /* Arm can potentially support both endiannesses, but this code * hasn't been tested on anything but little. If anyone wants to * run big-endian, they'll need to fix it first. */ #elif defined __ARM_FEATURE_SHA512 /* If the Arm SHA-512 extension is available already, we can * support NEON SHA without having to enable anything by hand */ # define HW_SHA512 HW_SHA512_NEON #elif defined(__clang__) # if __has_attribute(target) && __has_include() && \ (defined(__aarch64__)) /* clang can enable the crypto extension in AArch64 using * __attribute__((target)) */ # define HW_SHA512 HW_SHA512_NEON # define USE_CLANG_ATTR_TARGET_AARCH64 # endif #endif #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA512 # undef HW_SHA512 # define HW_SHA512 HW_SHA512_NONE #endif /* * The actual query function that asks if hardware acceleration is * available. */ static bool sha512_hw_available(void); /* * The top-level selection function, caching the results of * sha512_hw_available() so it only has to run once. */ static bool sha512_hw_available_cached(void) { static bool initialised = false; static bool hw_available; if (!initialised) { hw_available = sha512_hw_available(); initialised = true; } return hw_available; } struct sha512_select_options { const ssh_hashalg *hw, *sw; }; static ssh_hash *sha512_select(const ssh_hashalg *alg) { const struct sha512_select_options *options = (const struct sha512_select_options *)alg->extra; const ssh_hashalg *real_alg = sha512_hw_available_cached() ? options->hw : options->sw; return ssh_hash_new(real_alg); } const struct sha512_select_options ssh_sha512_select_options = { &ssh_sha512_hw, &ssh_sha512_sw, }; const struct sha512_select_options ssh_sha384_select_options = { &ssh_sha384_hw, &ssh_sha384_sw, }; const ssh_hashalg ssh_sha512 = { .new = sha512_select, .hlen = 64, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-512", "dummy selector vtable"), .extra = &ssh_sha512_select_options, }; const ssh_hashalg ssh_sha384 = { .new = sha512_select, .hlen = 48, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-384", "dummy selector vtable"), .extra = &ssh_sha384_select_options, }; /* ---------------------------------------------------------------------- * Definitions likely to be helpful to multiple implementations. */ static const uint64_t sha512_initial_state[] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL, }; static const uint64_t sha384_initial_state[] = { 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL, }; static const uint64_t sha512_round_constants[] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, }; #define SHA512_ROUNDS 80 typedef struct sha512_block sha512_block; struct sha512_block { uint8_t block[128]; size_t used; uint64_t lenhi, lenlo; }; static inline void sha512_block_setup(sha512_block *blk) { blk->used = 0; blk->lenhi = blk->lenlo = 0; } static inline bool sha512_block_write( sha512_block *blk, const void **vdata, size_t *len) { size_t blkleft = sizeof(blk->block) - blk->used; size_t chunk = *len < blkleft ? *len : blkleft; const uint8_t *p = *vdata; memcpy(blk->block + blk->used, p, chunk); *vdata = p + chunk; *len -= chunk; blk->used += chunk; size_t chunkbits = chunk << 3; blk->lenlo += chunkbits; blk->lenhi += (blk->lenlo < chunkbits); if (blk->used == sizeof(blk->block)) { blk->used = 0; return true; } return false; } static inline void sha512_block_pad(sha512_block *blk, BinarySink *bs) { uint64_t final_lenhi = blk->lenhi; uint64_t final_lenlo = blk->lenlo; size_t pad = 127 & (111 - blk->used); put_byte(bs, 0x80); put_padding(bs, pad, 0); put_uint64(bs, final_lenhi); put_uint64(bs, final_lenlo); assert(blk->used == 0 && "Should have exactly hit a block boundary"); } /* ---------------------------------------------------------------------- * Software implementation of SHA-512. */ static inline uint64_t ror(uint64_t x, unsigned y) { return (x << (63 & -y)) | (x >> (63 & y)); } static inline uint64_t Ch(uint64_t ctrl, uint64_t if1, uint64_t if0) { return if0 ^ (ctrl & (if1 ^ if0)); } static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); } static inline uint64_t Sigma_0(uint64_t x) { return ror(x,28) ^ ror(x,34) ^ ror(x,39); } static inline uint64_t Sigma_1(uint64_t x) { return ror(x,14) ^ ror(x,18) ^ ror(x,41); } static inline uint64_t sigma_0(uint64_t x) { return ror(x,1) ^ ror(x,8) ^ (x >> 7); } static inline uint64_t sigma_1(uint64_t x) { return ror(x,19) ^ ror(x,61) ^ (x >> 6); } static inline void sha512_sw_round( unsigned round_index, const uint64_t *schedule, uint64_t *a, uint64_t *b, uint64_t *c, uint64_t *d, uint64_t *e, uint64_t *f, uint64_t *g, uint64_t *h) { uint64_t t1 = *h + Sigma_1(*e) + Ch(*e,*f,*g) + sha512_round_constants[round_index] + schedule[round_index]; uint64_t t2 = Sigma_0(*a) + Maj(*a,*b,*c); *d += t1; *h = t1 + t2; } static void sha512_sw_block(uint64_t *core, const uint8_t *block) { uint64_t w[SHA512_ROUNDS]; uint64_t a,b,c,d,e,f,g,h; int t; for (t = 0; t < 16; t++) w[t] = GET_64BIT_MSB_FIRST(block + 8*t); for (t = 16; t < SHA512_ROUNDS; t++) w[t] = w[t-16] + w[t-7] + sigma_0(w[t-15]) + sigma_1(w[t-2]); a = core[0]; b = core[1]; c = core[2]; d = core[3]; e = core[4]; f = core[5]; g = core[6]; h = core[7]; for (t = 0; t < SHA512_ROUNDS; t+=8) { sha512_sw_round(t+0, w, &a,&b,&c,&d,&e,&f,&g,&h); sha512_sw_round(t+1, w, &h,&a,&b,&c,&d,&e,&f,&g); sha512_sw_round(t+2, w, &g,&h,&a,&b,&c,&d,&e,&f); sha512_sw_round(t+3, w, &f,&g,&h,&a,&b,&c,&d,&e); sha512_sw_round(t+4, w, &e,&f,&g,&h,&a,&b,&c,&d); sha512_sw_round(t+5, w, &d,&e,&f,&g,&h,&a,&b,&c); sha512_sw_round(t+6, w, &c,&d,&e,&f,&g,&h,&a,&b); sha512_sw_round(t+7, w, &b,&c,&d,&e,&f,&g,&h,&a); } core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e; core[5] += f; core[6] += g; core[7] += h; smemclr(w, sizeof(w)); } typedef struct sha512_sw { uint64_t core[8]; sha512_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha512_sw; static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha512_sw_new(const ssh_hashalg *alg) { sha512_sw *s = snew(sha512_sw); s->hash.vt = alg; BinarySink_INIT(s, sha512_sw_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha512_sw_reset(ssh_hash *hash) { sha512_sw *s = container_of(hash, sha512_sw, hash); /* The 'extra' field in the ssh_hashalg indicates which * initialisation vector we're using */ memcpy(s->core, hash->vt->extra, sizeof(s->core)); sha512_block_setup(&s->blk); } static void sha512_sw_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha512_sw *copy = container_of(hcopy, sha512_sw, hash); sha512_sw *orig = container_of(horig, sha512_sw, hash); memcpy(copy, orig, sizeof(*copy)); BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha512_sw_free(ssh_hash *hash) { sha512_sw *s = container_of(hash, sha512_sw, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha512_sw_write(BinarySink *bs, const void *vp, size_t len) { sha512_sw *s = BinarySink_DOWNCAST(bs, sha512_sw); while (len > 0) if (sha512_block_write(&s->blk, &vp, &len)) sha512_sw_block(s->core, s->blk.block); } static void sha512_sw_digest(ssh_hash *hash, uint8_t *digest) { sha512_sw *s = container_of(hash, sha512_sw, hash); sha512_block_pad(&s->blk, BinarySink_UPCAST(s)); for (size_t i = 0; i < hash->vt->hlen / 8; i++) PUT_64BIT_MSB_FIRST(digest + 8*i, s->core[i]); } const ssh_hashalg ssh_sha512_sw = { .new = sha512_sw_new, .reset = sha512_sw_reset, .copyfrom = sha512_sw_copyfrom, .digest = sha512_sw_digest, .free = sha512_sw_free, .hlen = 64, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-512", "unaccelerated"), .extra = sha512_initial_state, }; const ssh_hashalg ssh_sha384_sw = { .new = sha512_sw_new, .reset = sha512_sw_reset, .copyfrom = sha512_sw_copyfrom, .digest = sha512_sw_digest, .free = sha512_sw_free, .hlen = 48, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-384", "unaccelerated"), .extra = sha384_initial_state, }; /* ---------------------------------------------------------------------- * Hardware-accelerated implementation of SHA-512 using Arm NEON. */ #if HW_SHA512 == HW_SHA512_NEON /* * Manually set the target architecture, if we decided above that we * need to. */ #ifdef USE_CLANG_ATTR_TARGET_AARCH64 /* * A spot of cheating: redefine some ACLE feature macros before * including arm_neon.h. Otherwise we won't get the SHA intrinsics * defined by that header, because it will be looking at the settings * for the whole translation unit rather than the ones we're going to * put on some particular functions using __attribute__((target)). */ #define __ARM_NEON 1 #define __ARM_FEATURE_CRYPTO 1 #define FUNC_ISA __attribute__ ((target("neon,sha3"))) #endif /* USE_CLANG_ATTR_TARGET_AARCH64 */ #ifndef FUNC_ISA #define FUNC_ISA #endif #ifdef USE_ARM64_NEON_H #include #else #include #endif static bool sha512_hw_available(void) { /* * For Arm, we delegate to a per-platform detection function (see * explanation in sshaes.c). */ return platform_sha512_hw_available(); } #if defined __clang__ /* * As of 2020-12-24, I've found that clang doesn't provide the SHA-512 * NEON intrinsics. So I define my own set using inline assembler, and * use #define to effectively rename them over the top of the standard * names. * * The aim of that #define technique is that it should avoid a build * failure if these intrinsics _are_ defined in . * Obviously it would be better in that situation to switch back to * using the real intrinsics, but until I see a version of clang that * supports them, I won't know what version number to test in the * ifdef. */ static inline FUNC_ISA uint64x2_t vsha512su0q_u64_asm(uint64x2_t x, uint64x2_t y) { __asm__("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y)); return x; } static inline FUNC_ISA uint64x2_t vsha512su1q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) { __asm__("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z)); return x; } static inline FUNC_ISA uint64x2_t vsha512hq_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) { __asm__("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z)); return x; } static inline FUNC_ISA uint64x2_t vsha512h2q_u64_asm(uint64x2_t x, uint64x2_t y, uint64x2_t z) { __asm__("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z)); return x; } #undef vsha512su0q_u64 #define vsha512su0q_u64 vsha512su0q_u64_asm #undef vsha512su1q_u64 #define vsha512su1q_u64 vsha512su1q_u64_asm #undef vsha512hq_u64 #define vsha512hq_u64 vsha512hq_u64_asm #undef vsha512h2q_u64 #define vsha512h2q_u64 vsha512h2q_u64_asm #endif /* defined __clang__ */ typedef struct sha512_neon_core sha512_neon_core; struct sha512_neon_core { uint64x2_t ab, cd, ef, gh; }; FUNC_ISA static inline uint64x2_t sha512_neon_load_input(const uint8_t *p) { return vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(p))); } FUNC_ISA static inline uint64x2_t sha512_neon_schedule_update( uint64x2_t m8, uint64x2_t m7, uint64x2_t m4, uint64x2_t m3, uint64x2_t m1) { /* * vsha512su0q_u64() takes words from a long way back in the * schedule and performs the sigma_0 half of the computation of * the next two 64-bit message-schedule words. * * vsha512su1q_u64() combines the result of that with the sigma_1 * steps, to output the finished version of those two words. The * total amount of input data it requires fits nicely into three * 128-bit vector registers, but one of those registers is * misaligned compared to the 128-bit chunks that the message * schedule is stored in. So we use vextq_u64 to make one of its * input words out of the second half of m4 and the first half of * m3. */ return vsha512su1q_u64(vsha512su0q_u64(m8, m7), m1, vextq_u64(m4, m3, 1)); } FUNC_ISA static inline void sha512_neon_round2( unsigned round_index, uint64x2_t schedule_words, uint64x2_t *ab, uint64x2_t *cd, uint64x2_t *ef, uint64x2_t *gh) { /* * vsha512hq_u64 performs the Sigma_1 and Ch half of the * computation of two rounds of SHA-512 (including feeding back * one of the outputs from the first of those half-rounds into the * second one). * * vsha512h2q_u64 combines the result of that with the Sigma_0 and * Maj steps, and outputs one 128-bit vector that replaces the gh * piece of the input hash state, and a second that updates cd by * addition. * * Similarly to vsha512su1q_u64 above, some of the input registers * expected by these instructions are misaligned by 64 bits * relative to the chunks we've divided the hash state into, so we * have to start by making 'de' and 'fg' words out of our input * cd,ef,gh, using vextq_u64. * * Also, one of the inputs to vsha512hq_u64 is expected to contain * the results of summing gh + two round constants + two words of * message schedule, but the two words of the message schedule * have to be the opposite way round in the vector register from * the way that vsha512su1q_u64 output them. Hence, there's * another vextq_u64 in here that swaps the two halves of the * initial_sum vector register. * * (This also means that I don't have to prepare a specially * reordered version of the sha512_round_constants[] array: as * long as I'm unavoidably doing a swap at run time _anyway_, I * can load from the normally ordered version of that array, and * just take care to fold in that data _before_ the swap rather * than after.) */ /* Load two round constants, with the first one in the low half */ uint64x2_t round_constants = vld1q_u64( sha512_round_constants + round_index); /* Add schedule words to round constants */ uint64x2_t initial_sum = vaddq_u64(schedule_words, round_constants); /* Swap that sum around so the word used in the first of the two * rounds is in the _high_ half of the vector, matching where h * lives in the gh vector */ uint64x2_t swapped_initial_sum = vextq_u64(initial_sum, initial_sum, 1); /* Add gh to that, now that they're matching ways round */ uint64x2_t sum = vaddq_u64(swapped_initial_sum, *gh); /* Make the misaligned de and fg words */ uint64x2_t de = vextq_u64(*cd, *ef, 1); uint64x2_t fg = vextq_u64(*ef, *gh, 1); /* Now we're ready to put all the pieces together. The output from * vsha512h2q_u64 can be used directly as the new gh, and the * output from vsha512hq_u64 is simultaneously the intermediate * value passed to h2 and the thing you have to add on to cd. */ uint64x2_t intermed = vsha512hq_u64(sum, fg, de); *gh = vsha512h2q_u64(intermed, *cd, *ab); *cd = vaddq_u64(*cd, intermed); } FUNC_ISA static inline void sha512_neon_block(sha512_neon_core *core, const uint8_t *p) { uint64x2_t s0, s1, s2, s3, s4, s5, s6, s7; uint64x2_t ab = core->ab, cd = core->cd, ef = core->ef, gh = core->gh; s0 = sha512_neon_load_input(p + 16*0); sha512_neon_round2(0, s0, &ab, &cd, &ef, &gh); s1 = sha512_neon_load_input(p + 16*1); sha512_neon_round2(2, s1, &gh, &ab, &cd, &ef); s2 = sha512_neon_load_input(p + 16*2); sha512_neon_round2(4, s2, &ef, &gh, &ab, &cd); s3 = sha512_neon_load_input(p + 16*3); sha512_neon_round2(6, s3, &cd, &ef, &gh, &ab); s4 = sha512_neon_load_input(p + 16*4); sha512_neon_round2(8, s4, &ab, &cd, &ef, &gh); s5 = sha512_neon_load_input(p + 16*5); sha512_neon_round2(10, s5, &gh, &ab, &cd, &ef); s6 = sha512_neon_load_input(p + 16*6); sha512_neon_round2(12, s6, &ef, &gh, &ab, &cd); s7 = sha512_neon_load_input(p + 16*7); sha512_neon_round2(14, s7, &cd, &ef, &gh, &ab); s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7); sha512_neon_round2(16, s0, &ab, &cd, &ef, &gh); s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0); sha512_neon_round2(18, s1, &gh, &ab, &cd, &ef); s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1); sha512_neon_round2(20, s2, &ef, &gh, &ab, &cd); s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2); sha512_neon_round2(22, s3, &cd, &ef, &gh, &ab); s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3); sha512_neon_round2(24, s4, &ab, &cd, &ef, &gh); s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4); sha512_neon_round2(26, s5, &gh, &ab, &cd, &ef); s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5); sha512_neon_round2(28, s6, &ef, &gh, &ab, &cd); s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6); sha512_neon_round2(30, s7, &cd, &ef, &gh, &ab); s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7); sha512_neon_round2(32, s0, &ab, &cd, &ef, &gh); s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0); sha512_neon_round2(34, s1, &gh, &ab, &cd, &ef); s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1); sha512_neon_round2(36, s2, &ef, &gh, &ab, &cd); s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2); sha512_neon_round2(38, s3, &cd, &ef, &gh, &ab); s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3); sha512_neon_round2(40, s4, &ab, &cd, &ef, &gh); s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4); sha512_neon_round2(42, s5, &gh, &ab, &cd, &ef); s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5); sha512_neon_round2(44, s6, &ef, &gh, &ab, &cd); s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6); sha512_neon_round2(46, s7, &cd, &ef, &gh, &ab); s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7); sha512_neon_round2(48, s0, &ab, &cd, &ef, &gh); s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0); sha512_neon_round2(50, s1, &gh, &ab, &cd, &ef); s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1); sha512_neon_round2(52, s2, &ef, &gh, &ab, &cd); s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2); sha512_neon_round2(54, s3, &cd, &ef, &gh, &ab); s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3); sha512_neon_round2(56, s4, &ab, &cd, &ef, &gh); s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4); sha512_neon_round2(58, s5, &gh, &ab, &cd, &ef); s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5); sha512_neon_round2(60, s6, &ef, &gh, &ab, &cd); s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6); sha512_neon_round2(62, s7, &cd, &ef, &gh, &ab); s0 = sha512_neon_schedule_update(s0, s1, s4, s5, s7); sha512_neon_round2(64, s0, &ab, &cd, &ef, &gh); s1 = sha512_neon_schedule_update(s1, s2, s5, s6, s0); sha512_neon_round2(66, s1, &gh, &ab, &cd, &ef); s2 = sha512_neon_schedule_update(s2, s3, s6, s7, s1); sha512_neon_round2(68, s2, &ef, &gh, &ab, &cd); s3 = sha512_neon_schedule_update(s3, s4, s7, s0, s2); sha512_neon_round2(70, s3, &cd, &ef, &gh, &ab); s4 = sha512_neon_schedule_update(s4, s5, s0, s1, s3); sha512_neon_round2(72, s4, &ab, &cd, &ef, &gh); s5 = sha512_neon_schedule_update(s5, s6, s1, s2, s4); sha512_neon_round2(74, s5, &gh, &ab, &cd, &ef); s6 = sha512_neon_schedule_update(s6, s7, s2, s3, s5); sha512_neon_round2(76, s6, &ef, &gh, &ab, &cd); s7 = sha512_neon_schedule_update(s7, s0, s3, s4, s6); sha512_neon_round2(78, s7, &cd, &ef, &gh, &ab); core->ab = vaddq_u64(core->ab, ab); core->cd = vaddq_u64(core->cd, cd); core->ef = vaddq_u64(core->ef, ef); core->gh = vaddq_u64(core->gh, gh); } typedef struct sha512_neon { sha512_neon_core core; sha512_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha512_neon; static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha512_neon_new(const ssh_hashalg *alg) { if (!sha512_hw_available_cached()) return NULL; sha512_neon *s = snew(sha512_neon); s->hash.vt = alg; BinarySink_INIT(s, sha512_neon_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static void sha512_neon_reset(ssh_hash *hash) { sha512_neon *s = container_of(hash, sha512_neon, hash); const uint64_t *iv = (const uint64_t *)hash->vt->extra; s->core.ab = vld1q_u64(iv); s->core.cd = vld1q_u64(iv+2); s->core.ef = vld1q_u64(iv+4); s->core.gh = vld1q_u64(iv+6); sha512_block_setup(&s->blk); } static void sha512_neon_copyfrom(ssh_hash *hcopy, ssh_hash *horig) { sha512_neon *copy = container_of(hcopy, sha512_neon, hash); sha512_neon *orig = container_of(horig, sha512_neon, hash); *copy = *orig; /* structure copy */ BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); } static void sha512_neon_free(ssh_hash *hash) { sha512_neon *s = container_of(hash, sha512_neon, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha512_neon_write(BinarySink *bs, const void *vp, size_t len) { sha512_neon *s = BinarySink_DOWNCAST(bs, sha512_neon); while (len > 0) if (sha512_block_write(&s->blk, &vp, &len)) sha512_neon_block(&s->core, s->blk.block); } static void sha512_neon_digest(ssh_hash *hash, uint8_t *digest) { sha512_neon *s = container_of(hash, sha512_neon, hash); sha512_block_pad(&s->blk, BinarySink_UPCAST(s)); vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab))); vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd))); vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef))); vst1q_u8(digest+48, vrev64q_u8(vreinterpretq_u8_u64(s->core.gh))); } static void sha384_neon_digest(ssh_hash *hash, uint8_t *digest) { sha512_neon *s = container_of(hash, sha512_neon, hash); sha512_block_pad(&s->blk, BinarySink_UPCAST(s)); vst1q_u8(digest, vrev64q_u8(vreinterpretq_u8_u64(s->core.ab))); vst1q_u8(digest+16, vrev64q_u8(vreinterpretq_u8_u64(s->core.cd))); vst1q_u8(digest+32, vrev64q_u8(vreinterpretq_u8_u64(s->core.ef))); } const ssh_hashalg ssh_sha512_hw = { .new = sha512_neon_new, .reset = sha512_neon_reset, .copyfrom = sha512_neon_copyfrom, .digest = sha512_neon_digest, .free = sha512_neon_free, .hlen = 64, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-512", "NEON accelerated"), .extra = sha512_initial_state, }; const ssh_hashalg ssh_sha384_hw = { .new = sha512_neon_new, .reset = sha512_neon_reset, .copyfrom = sha512_neon_copyfrom, .digest = sha384_neon_digest, .free = sha512_neon_free, .hlen = 48, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-384", "NEON accelerated"), .extra = sha384_initial_state, }; /* ---------------------------------------------------------------------- * Stub functions if we have no hardware-accelerated SHA-512. In this * case, sha512_hw_new returns NULL (though it should also never be * selected by sha512_select, so the only thing that should even be * _able_ to call it is testcrypt). As a result, the remaining vtable * functions should never be called at all. */ #elif HW_SHA512 == HW_SHA512_NONE static bool sha512_hw_available(void) { return false; } static ssh_hash *sha512_stub_new(const ssh_hashalg *alg) { return NULL; } #define STUB_BODY { unreachable("Should never be called"); } static void sha512_stub_reset(ssh_hash *hash) STUB_BODY static void sha512_stub_copyfrom(ssh_hash *hash, ssh_hash *orig) STUB_BODY static void sha512_stub_free(ssh_hash *hash) STUB_BODY static void sha512_stub_digest(ssh_hash *hash, uint8_t *digest) STUB_BODY const ssh_hashalg ssh_sha512_hw = { .new = sha512_stub_new, .reset = sha512_stub_reset, .copyfrom = sha512_stub_copyfrom, .digest = sha512_stub_digest, .free = sha512_stub_free, .hlen = 64, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-512", "!NONEXISTENT ACCELERATED VERSION!"), }; const ssh_hashalg ssh_sha384_hw = { .new = sha512_stub_new, .reset = sha512_stub_reset, .copyfrom = sha512_stub_copyfrom, .digest = sha512_stub_digest, .free = sha512_stub_free, .hlen = 48, .blocklen = 128, HASHALG_NAMES_ANNOTATED("SHA-384", "!NONEXISTENT ACCELERATED VERSION!"), }; #endif /* HW_SHA512 */