/* * Platform-independent utility routines used throughout this code base. * * This file is linked into stand-alone test utilities which only want * to include the things they really need, so functions in here should * avoid depending on any functions outside it. Utility routines that * are more tightly integrated into the main code should live in * misc.c. */ #include #include #include #include #include #include #include "defs.h" #include "misc.h" /* * Parse a string block size specification. This is approximately a * subset of the block size specs supported by GNU fileutils: * "nk" = n kilobytes * "nM" = n megabytes * "nG" = n gigabytes * All numbers are decimal, and suffixes refer to powers of two. * Case-insensitive. */ unsigned long parse_blocksize(const char *bs) { char *suf; unsigned long r = strtoul(bs, &suf, 10); if (*suf != '\0') { while (*suf && isspace((unsigned char)*suf)) suf++; switch (*suf) { case 'k': case 'K': r *= 1024ul; break; case 'm': case 'M': r *= 1024ul * 1024ul; break; case 'g': case 'G': r *= 1024ul * 1024ul * 1024ul; break; case '\0': default: break; } } return r; } /* * Parse a ^C style character specification. * Returns NULL in `next' if we didn't recognise it as a control character, * in which case `c' should be ignored. * The precise current parsing is an oddity inherited from the terminal * answerback-string parsing code. All sequences start with ^; all except * ^<123> are two characters. The ones that are worth keeping are probably: * ^? 127 * ^@A-Z[\]^_ 0-31 * a-z 1-26 * specified by number (decimal, 0octal, 0xHEX) * ~ ^ escape */ char ctrlparse(char *s, char **next) { char c = 0; if (*s != '^') { *next = NULL; } else { s++; if (*s == '\0') { *next = NULL; } else if (*s == '<') { s++; c = (char)strtol(s, next, 0); if ((*next == s) || (**next != '>')) { c = 0; *next = NULL; } else (*next)++; } else if (*s >= 'a' && *s <= 'z') { c = (*s - ('a' - 1)); *next = s+1; } else if ((*s >= '@' && *s <= '_') || *s == '?' || (*s & 0x80)) { c = ('@' ^ *s); *next = s+1; } else if (*s == '~') { c = '^'; *next = s+1; } } return c; } /* * Find a character in a string, unless it's a colon contained within * square brackets. Used for untangling strings of the form * 'host:port', where host can be an IPv6 literal. * * We provide several variants of this function, with semantics like * various standard string.h functions. */ static const char *host_strchr_internal(const char *s, const char *set, bool first) { int brackets = 0; const char *ret = NULL; while (1) { if (!*s) return ret; if (*s == '[') brackets++; else if (*s == ']' && brackets > 0) brackets--; else if (brackets && *s == ':') /* never match */ ; else if (strchr(set, *s)) { ret = s; if (first) return ret; } s++; } } size_t host_strcspn(const char *s, const char *set) { const char *answer = host_strchr_internal(s, set, true); if (answer) return answer - s; else return strlen(s); } char *host_strchr(const char *s, int c) { char set[2]; set[0] = c; set[1] = '\0'; return (char *) host_strchr_internal(s, set, true); } char *host_strrchr(const char *s, int c) { char set[2]; set[0] = c; set[1] = '\0'; return (char *) host_strchr_internal(s, set, false); } #ifdef TEST_HOST_STRFOO int main(void) { int passes = 0, fails = 0; #define TEST1(func, string, arg2, suffix, result) do \ { \ const char *str = string; \ unsigned ret = func(string, arg2) suffix; \ if (ret == result) { \ passes++; \ } else { \ printf("fail: %s(%s,%s)%s = %u, expected %u\n", \ #func, #string, #arg2, #suffix, ret, \ (unsigned)result); \ fails++; \ } \ } while (0) TEST1(host_strchr, "[1:2:3]:4:5", ':', -str, 7); TEST1(host_strrchr, "[1:2:3]:4:5", ':', -str, 9); TEST1(host_strcspn, "[1:2:3]:4:5", "/:",, 7); TEST1(host_strchr, "[1:2:3]", ':', == NULL, 1); TEST1(host_strrchr, "[1:2:3]", ':', == NULL, 1); TEST1(host_strcspn, "[1:2:3]", "/:",, 7); TEST1(host_strcspn, "[1:2/3]", "/:",, 4); TEST1(host_strcspn, "[1:2:3]/", "/:",, 7); printf("passed %d failed %d total %d\n", passes, fails, passes+fails); return fails != 0 ? 1 : 0; } /* Stubs to stop the rest of this module causing compile failures. */ static NORETURN void fatal_error(const char *p, ...) { va_list ap; fprintf(stderr, "host_string_test: "); va_start(ap, p); vfprintf(stderr, p, ap); va_end(ap); fputc('\n', stderr); exit(1); } void out_of_memory(void) { fatal_error("out of memory"); } #endif /* TEST_HOST_STRFOO */ /* * Trim square brackets off the outside of an IPv6 address literal. * Leave all other strings unchanged. Returns a fresh dynamically * allocated string. */ char *host_strduptrim(const char *s) { if (s[0] == '[') { const char *p = s+1; int colons = 0; while (*p && *p != ']') { if (isxdigit((unsigned char)*p)) /* OK */; else if (*p == ':') colons++; else break; p++; } if (*p == '%') { /* * This delimiter character introduces an RFC 4007 scope * id suffix (e.g. suffixing the address literal with * %eth1 or %2 or some such). There's no syntax * specification for the scope id, so just accept anything * except the closing ]. */ p += strcspn(p, "]"); } if (*p == ']' && !p[1] && colons > 1) { /* * This looks like an IPv6 address literal (hex digits and * at least two colons, plus optional scope id, contained * in square brackets). Trim off the brackets. */ return dupprintf("%.*s", (int)(p - (s+1)), s+1); } } /* * Any other shape of string is simply duplicated. */ return dupstr(s); } /* ---------------------------------------------------------------------- * String handling routines. */ char *dupstr(const char *s) { char *p = NULL; if (s) { int len = strlen(s); p = snewn(len + 1, char); strcpy(p, s); } return p; } /* Allocate the concatenation of N strings. Terminate arg list with NULL. */ char *dupcat_fn(const char *s1, ...) { int len; char *p, *q, *sn; va_list ap; len = strlen(s1); va_start(ap, s1); while (1) { sn = va_arg(ap, char *); if (!sn) break; len += strlen(sn); } va_end(ap); p = snewn(len + 1, char); strcpy(p, s1); q = p + strlen(p); va_start(ap, s1); while (1) { sn = va_arg(ap, char *); if (!sn) break; strcpy(q, sn); q += strlen(q); } va_end(ap); return p; } void burnstr(char *string) /* sfree(str), only clear it first */ { if (string) { smemclr(string, strlen(string)); sfree(string); } } int string_length_for_printf(size_t s) { /* Truncate absurdly long strings (should one show up) to fit * within a positive 'int', which is what the "%.*s" format will * expect. */ if (s > INT_MAX) return INT_MAX; return s; } /* Work around lack of va_copy in old MSC */ #if defined _MSC_VER && !defined va_copy #define va_copy(a, b) TYPECHECK( \ (va_list *)0 == &(a) && (va_list *)0 == &(b), \ memcpy(&a, &b, sizeof(va_list))) #endif /* Also lack of vsnprintf before VS2015 */ #if defined _WINDOWS && \ !defined __MINGW32__ && \ !defined __WINE__ && \ _MSC_VER < 1900 #define vsnprintf _vsnprintf #endif /* * Do an sprintf(), but into a custom-allocated buffer. * * Currently I'm doing this via vsnprintf. This has worked so far, * but it's not good, because vsnprintf is not available on all * platforms. There's an ifdef to use `_vsnprintf', which seems * to be the local name for it on Windows. Other platforms may * lack it completely, in which case it'll be time to rewrite * this function in a totally different way. * * The only `properly' portable solution I can think of is to * implement my own format string scanner, which figures out an * upper bound for the length of each formatting directive, * allocates the buffer as it goes along, and calls sprintf() to * actually process each directive. If I ever need to actually do * this, some caveats: * * - It's very hard to find a reliable upper bound for * floating-point values. %f, in particular, when supplied with * a number near to the upper or lower limit of representable * numbers, could easily take several hundred characters. It's * probably feasible to predict this statically using the * constants in , or even to predict it dynamically by * looking at the exponent of the specific float provided, but * it won't be fun. * * - Don't forget to _check_, after calling sprintf, that it's * used at most the amount of space we had available. * * - Fault any formatting directive we don't fully understand. The * aim here is to _guarantee_ that we never overflow the buffer, * because this is a security-critical function. If we see a * directive we don't know about, we should panic and die rather * than run any risk. */ static char *dupvprintf_inner(char *buf, size_t oldlen, size_t *sizeptr, const char *fmt, va_list ap) { size_t size = *sizeptr; sgrowarrayn_nm(buf, size, oldlen, 512); while (1) { va_list aq; va_copy(aq, ap); int len = vsnprintf(buf + oldlen, size - oldlen, fmt, aq); va_end(aq); if (len >= 0 && len < size) { /* This is the C99-specified criterion for snprintf to have * been completely successful. */ *sizeptr = size; return buf; } else if (len > 0) { /* This is the C99 error condition: the returned length is * the required buffer size not counting the NUL. */ sgrowarrayn_nm(buf, size, oldlen + 1, len); } else { /* This is the pre-C99 glibc error condition: <0 means the * buffer wasn't big enough, so we enlarge it a bit and hope. */ sgrowarray_nm(buf, size, size); } } } char *dupvprintf(const char *fmt, va_list ap) { size_t size = 0; return dupvprintf_inner(NULL, 0, &size, fmt, ap); } char *dupprintf(const char *fmt, ...) { char *ret; va_list ap; va_start(ap, fmt); ret = dupvprintf(fmt, ap); va_end(ap); return ret; } struct strbuf_impl { size_t size; struct strbuf visible; bool nm; /* true if we insist on non-moving buffer resizes */ }; #define STRBUF_SET_UPTR(buf) \ ((buf)->visible.u = (unsigned char *)(buf)->visible.s) #define STRBUF_SET_PTR(buf, ptr) \ ((buf)->visible.s = (ptr), STRBUF_SET_UPTR(buf)) void *strbuf_append(strbuf *buf_o, size_t len) { struct strbuf_impl *buf = container_of(buf_o, struct strbuf_impl, visible); char *toret; sgrowarray_general( buf->visible.s, buf->size, buf->visible.len + 1, len, buf->nm); STRBUF_SET_UPTR(buf); toret = buf->visible.s + buf->visible.len; buf->visible.len += len; buf->visible.s[buf->visible.len] = '\0'; return toret; } void strbuf_shrink_to(strbuf *buf, size_t new_len) { assert(new_len <= buf->len); buf->len = new_len; buf->s[buf->len] = '\0'; } void strbuf_shrink_by(strbuf *buf, size_t amount_to_remove) { assert(amount_to_remove <= buf->len); buf->len -= amount_to_remove; buf->s[buf->len] = '\0'; } bool strbuf_chomp(strbuf *buf, char char_to_remove) { if (buf->len > 0 && buf->s[buf->len-1] == char_to_remove) { strbuf_shrink_by(buf, 1); return true; } return false; } static void strbuf_BinarySink_write( BinarySink *bs, const void *data, size_t len) { strbuf *buf_o = BinarySink_DOWNCAST(bs, strbuf); memcpy(strbuf_append(buf_o, len), data, len); } static strbuf *strbuf_new_general(bool nm) { struct strbuf_impl *buf = snew(struct strbuf_impl); BinarySink_INIT(&buf->visible, strbuf_BinarySink_write); buf->visible.len = 0; buf->size = 512; buf->nm = nm; STRBUF_SET_PTR(buf, snewn(buf->size, char)); *buf->visible.s = '\0'; return &buf->visible; } strbuf *strbuf_new(void) { return strbuf_new_general(false); } strbuf *strbuf_new_nm(void) { return strbuf_new_general(true); } void strbuf_free(strbuf *buf_o) { struct strbuf_impl *buf = container_of(buf_o, struct strbuf_impl, visible); if (buf->visible.s) { smemclr(buf->visible.s, buf->size); sfree(buf->visible.s); } sfree(buf); } char *strbuf_to_str(strbuf *buf_o) { struct strbuf_impl *buf = container_of(buf_o, struct strbuf_impl, visible); char *ret = buf->visible.s; sfree(buf); return ret; } void strbuf_catfv(strbuf *buf_o, const char *fmt, va_list ap) { struct strbuf_impl *buf = container_of(buf_o, struct strbuf_impl, visible); STRBUF_SET_PTR(buf, dupvprintf_inner(buf->visible.s, buf->visible.len, &buf->size, fmt, ap)); buf->visible.len += strlen(buf->visible.s + buf->visible.len); } void strbuf_catf(strbuf *buf_o, const char *fmt, ...) { va_list ap; va_start(ap, fmt); strbuf_catfv(buf_o, fmt, ap); va_end(ap); } strbuf *strbuf_new_for_agent_query(void) { strbuf *buf = strbuf_new(); strbuf_append(buf, 4); return buf; } void strbuf_finalise_agent_query(strbuf *buf_o) { struct strbuf_impl *buf = container_of(buf_o, struct strbuf_impl, visible); assert(buf->visible.len >= 5); PUT_32BIT_MSB_FIRST(buf->visible.u, buf->visible.len - 4); } /* * Read an entire line of text from a file. Return a buffer * malloced to be as big as necessary (caller must free). */ char *fgetline(FILE *fp) { char *ret = snewn(512, char); size_t size = 512, len = 0; while (fgets(ret + len, size - len, fp)) { len += strlen(ret + len); if (len > 0 && ret[len-1] == '\n') break; /* got a newline, we're done */ sgrowarrayn_nm(ret, size, len, 512); } if (len == 0) { /* first fgets returned NULL */ sfree(ret); return NULL; } ret[len] = '\0'; return ret; } /* * Read an entire file into a BinarySink. */ bool read_file_into(BinarySink *bs, FILE *fp) { char buf[4096]; while (1) { size_t retd = fread(buf, 1, sizeof(buf), fp); if (retd == 0) return !ferror(fp); put_data(bs, buf, retd); } } /* * Perl-style 'chomp', for a line we just read with fgetline. Unlike * Perl chomp, however, we're deliberately forgiving of strange * line-ending conventions. Also we forgive NULL on input, so you can * just write 'line = chomp(fgetline(fp));' and not bother checking * for NULL until afterwards. */ char *chomp(char *str) { if (str) { int len = strlen(str); while (len > 0 && (str[len-1] == '\r' || str[len-1] == '\n')) len--; str[len] = '\0'; } return str; } /* ---------------------------------------------------------------------- * Core base64 encoding and decoding routines. */ void base64_encode_atom(const unsigned char *data, int n, char *out) { static const char base64_chars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; unsigned word; word = data[0] << 16; if (n > 1) word |= data[1] << 8; if (n > 2) word |= data[2]; out[0] = base64_chars[(word >> 18) & 0x3F]; out[1] = base64_chars[(word >> 12) & 0x3F]; if (n > 1) out[2] = base64_chars[(word >> 6) & 0x3F]; else out[2] = '='; if (n > 2) out[3] = base64_chars[word & 0x3F]; else out[3] = '='; } int base64_decode_atom(const char *atom, unsigned char *out) { int vals[4]; int i, v, len; unsigned word; char c; for (i = 0; i < 4; i++) { c = atom[i]; if (c >= 'A' && c <= 'Z') v = c - 'A'; else if (c >= 'a' && c <= 'z') v = c - 'a' + 26; else if (c >= '0' && c <= '9') v = c - '0' + 52; else if (c == '+') v = 62; else if (c == '/') v = 63; else if (c == '=') v = -1; else return 0; /* invalid atom */ vals[i] = v; } if (vals[0] == -1 || vals[1] == -1) return 0; if (vals[2] == -1 && vals[3] != -1) return 0; if (vals[3] != -1) len = 3; else if (vals[2] != -1) len = 2; else len = 1; word = ((vals[0] << 18) | (vals[1] << 12) | ((vals[2] & 0x3F) << 6) | (vals[3] & 0x3F)); out[0] = (word >> 16) & 0xFF; if (len > 1) out[1] = (word >> 8) & 0xFF; if (len > 2) out[2] = word & 0xFF; return len; } /* ---------------------------------------------------------------------- * Generic routines to deal with send buffers: a linked list of * smallish blocks, with the operations * * - add an arbitrary amount of data to the end of the list * - remove the first N bytes from the list * - return a (pointer,length) pair giving some initial data in * the list, suitable for passing to a send or write system * call * - retrieve a larger amount of initial data from the list * - return the current size of the buffer chain in bytes */ #define BUFFER_MIN_GRANULE 512 struct bufchain_granule { struct bufchain_granule *next; char *bufpos, *bufend, *bufmax; }; static void uninitialised_queue_idempotent_callback(IdempotentCallback *ic) { unreachable("bufchain callback used while uninitialised"); } void bufchain_init(bufchain *ch) { ch->head = ch->tail = NULL; ch->buffersize = 0; ch->ic = NULL; ch->queue_idempotent_callback = uninitialised_queue_idempotent_callback; } void bufchain_clear(bufchain *ch) { struct bufchain_granule *b; while (ch->head) { b = ch->head; ch->head = ch->head->next; smemclr(b, sizeof(*b)); sfree(b); } ch->tail = NULL; ch->buffersize = 0; } size_t bufchain_size(bufchain *ch) { return ch->buffersize; } void bufchain_set_callback_inner( bufchain *ch, IdempotentCallback *ic, void (*queue_idempotent_callback)(IdempotentCallback *ic)) { ch->queue_idempotent_callback = queue_idempotent_callback; ch->ic = ic; } void bufchain_add(bufchain *ch, const void *data, size_t len) { const char *buf = (const char *)data; if (len == 0) return; ch->buffersize += len; while (len > 0) { if (ch->tail && ch->tail->bufend < ch->tail->bufmax) { size_t copylen = min(len, ch->tail->bufmax - ch->tail->bufend); memcpy(ch->tail->bufend, buf, copylen); buf += copylen; len -= copylen; ch->tail->bufend += copylen; } if (len > 0) { size_t grainlen = max(sizeof(struct bufchain_granule) + len, BUFFER_MIN_GRANULE); struct bufchain_granule *newbuf; newbuf = smalloc(grainlen); newbuf->bufpos = newbuf->bufend = (char *)newbuf + sizeof(struct bufchain_granule); newbuf->bufmax = (char *)newbuf + grainlen; newbuf->next = NULL; if (ch->tail) ch->tail->next = newbuf; else ch->head = newbuf; ch->tail = newbuf; } } if (ch->ic) ch->queue_idempotent_callback(ch->ic); } void bufchain_consume(bufchain *ch, size_t len) { struct bufchain_granule *tmp; assert(ch->buffersize >= len); while (len > 0) { int remlen = len; assert(ch->head != NULL); if (remlen >= ch->head->bufend - ch->head->bufpos) { remlen = ch->head->bufend - ch->head->bufpos; tmp = ch->head; ch->head = tmp->next; if (!ch->head) ch->tail = NULL; smemclr(tmp, sizeof(*tmp)); sfree(tmp); } else ch->head->bufpos += remlen; ch->buffersize -= remlen; len -= remlen; } } ptrlen bufchain_prefix(bufchain *ch) { return make_ptrlen(ch->head->bufpos, ch->head->bufend - ch->head->bufpos); } void bufchain_fetch(bufchain *ch, void *data, size_t len) { struct bufchain_granule *tmp; char *data_c = (char *)data; tmp = ch->head; assert(ch->buffersize >= len); while (len > 0) { int remlen = len; assert(tmp != NULL); if (remlen >= tmp->bufend - tmp->bufpos) remlen = tmp->bufend - tmp->bufpos; memcpy(data_c, tmp->bufpos, remlen); tmp = tmp->next; len -= remlen; data_c += remlen; } } void bufchain_fetch_consume(bufchain *ch, void *data, size_t len) { bufchain_fetch(ch, data, len); bufchain_consume(ch, len); } bool bufchain_try_fetch_consume(bufchain *ch, void *data, size_t len) { if (ch->buffersize >= len) { bufchain_fetch_consume(ch, data, len); return true; } else { return false; } } size_t bufchain_fetch_consume_up_to(bufchain *ch, void *data, size_t len) { if (len > ch->buffersize) len = ch->buffersize; if (len) bufchain_fetch_consume(ch, data, len); return len; } /* ---------------------------------------------------------------------- * Debugging routines. */ #ifdef DEBUG extern void dputs(const char *); /* defined in per-platform *misc.c */ void debug_printf(const char *fmt, ...) { char *buf; va_list ap; va_start(ap, fmt); buf = dupvprintf(fmt, ap); dputs(buf); sfree(buf); va_end(ap); } void debug_memdump(const void *buf, int len, bool L) { int i; const unsigned char *p = buf; char foo[17]; if (L) { int delta; debug_printf("\t%d (0x%x) bytes:\n", len, len); delta = 15 & (uintptr_t)p; p -= delta; len += delta; } for (; 0 < len; p += 16, len -= 16) { dputs(" "); if (L) debug_printf("%p: ", p); strcpy(foo, "................"); /* sixteen dots */ for (i = 0; i < 16 && i < len; ++i) { if (&p[i] < (unsigned char *) buf) { dputs(" "); /* 3 spaces */ foo[i] = ' '; } else { debug_printf("%c%2.2x", &p[i] != (unsigned char *) buf && i % 4 ? '.' : ' ', p[i] ); if (p[i] >= ' ' && p[i] <= '~') foo[i] = (char) p[i]; } } foo[i] = '\0'; debug_printf("%*s%s\n", (16 - i) * 3 + 2, "", foo); } } #endif /* def DEBUG */ #ifndef PLATFORM_HAS_SMEMCLR /* * Securely wipe memory. * * The actual wiping is no different from what memset would do: the * point of 'securely' is to try to be sure over-clever compilers * won't optimise away memsets on variables that are about to be freed * or go out of scope. See * https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html * * Some platforms (e.g. Windows) may provide their own version of this * function. */ void smemclr(void *b, size_t n) { volatile char *vp; if (b && n > 0) { /* * Zero out the memory. */ memset(b, 0, n); /* * Perform a volatile access to the object, forcing the * compiler to admit that the previous memset was important. * * This while loop should in practice run for zero iterations * (since we know we just zeroed the object out), but in * theory (as far as the compiler knows) it might range over * the whole object. (If we had just written, say, '*vp = * *vp;', a compiler could in principle have 'helpfully' * optimised the memset into only zeroing out the first byte. * This should be robust.) */ vp = b; while (*vp) vp++; } } #endif bool smemeq(const void *av, const void *bv, size_t len) { const unsigned char *a = (const unsigned char *)av; const unsigned char *b = (const unsigned char *)bv; unsigned val = 0; while (len-- > 0) { val |= *a++ ^ *b++; } /* Now val is 0 iff we want to return 1, and in the range * 0x01..0xFF iff we want to return 0. So subtracting from 0x100 * will clear bit 8 iff we want to return 0, and leave it set iff * we want to return 1, so then we can just shift down. */ return (0x100 - val) >> 8; } int nullstrcmp(const char *a, const char *b) { if (a == NULL && b == NULL) return 0; if (a == NULL) return -1; if (b == NULL) return +1; return strcmp(a, b); } bool ptrlen_eq_string(ptrlen pl, const char *str) { size_t len = strlen(str); return (pl.len == len && !memcmp(pl.ptr, str, len)); } bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2) { return (pl1.len == pl2.len && !memcmp(pl1.ptr, pl2.ptr, pl1.len)); } int ptrlen_strcmp(ptrlen pl1, ptrlen pl2) { size_t minlen = pl1.len < pl2.len ? pl1.len : pl2.len; if (minlen) { /* tolerate plX.ptr==NULL as long as plX.len==0 */ int cmp = memcmp(pl1.ptr, pl2.ptr, minlen); if (cmp) return cmp; } return pl1.len < pl2.len ? -1 : pl1.len > pl2.len ? +1 : 0; } bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail) { if (whole.len >= prefix.len && !memcmp(whole.ptr, prefix.ptr, prefix.len)) { if (tail) { tail->ptr = (const char *)whole.ptr + prefix.len; tail->len = whole.len - prefix.len; } return true; } return false; } bool ptrlen_endswith(ptrlen whole, ptrlen suffix, ptrlen *tail) { if (whole.len >= suffix.len && !memcmp((char *)whole.ptr + (whole.len - suffix.len), suffix.ptr, suffix.len)) { if (tail) { tail->ptr = whole.ptr; tail->len = whole.len - suffix.len; } return true; } return false; } ptrlen ptrlen_get_word(ptrlen *input, const char *separators) { const char *p = input->ptr, *end = p + input->len; ptrlen toret; while (p < end && strchr(separators, *p)) p++; toret.ptr = p; while (p < end && !strchr(separators, *p)) p++; toret.len = p - (const char *)toret.ptr; size_t to_consume = p - (const char *)input->ptr; assert(to_consume <= input->len); input->ptr = (const char *)input->ptr + to_consume; input->len -= to_consume; return toret; } char *mkstr(ptrlen pl) { char *p = snewn(pl.len + 1, char); memcpy(p, pl.ptr, pl.len); p[pl.len] = '\0'; return p; } bool strstartswith(const char *s, const char *t) { return !strncmp(s, t, strlen(t)); } bool strendswith(const char *s, const char *t) { size_t slen = strlen(s), tlen = strlen(t); return slen >= tlen && !strcmp(s + (slen - tlen), t); } size_t encode_utf8(void *output, unsigned long ch) { unsigned char *start = (unsigned char *)output, *p = start; if (ch < 0x80) { *p++ = ch; } else if (ch < 0x800) { *p++ = 0xC0 | (ch >> 6); *p++ = 0x80 | (ch & 0x3F); } else if (ch < 0x10000) { *p++ = 0xE0 | (ch >> 12); *p++ = 0x80 | ((ch >> 6) & 0x3F); *p++ = 0x80 | (ch & 0x3F); } else { *p++ = 0xF0 | (ch >> 18); *p++ = 0x80 | ((ch >> 12) & 0x3F); *p++ = 0x80 | ((ch >> 6) & 0x3F); *p++ = 0x80 | (ch & 0x3F); } return p - start; } void write_c_string_literal(FILE *fp, ptrlen str) { for (const char *p = str.ptr; p < (const char *)str.ptr + str.len; p++) { char c = *p; if (c == '\n') fputs("\\n", fp); else if (c == '\r') fputs("\\r", fp); else if (c == '\t') fputs("\\t", fp); else if (c == '\b') fputs("\\b", fp); else if (c == '\\') fputs("\\\\", fp); else if (c == '"') fputs("\\\"", fp); else if (c >= 32 && c <= 126) fputc(c, fp); else fprintf(fp, "\\%03o", (unsigned char)c); } } void memxor(uint8_t *out, const uint8_t *in1, const uint8_t *in2, size_t size) { switch (size & 15) { case 0: while (size >= 16) { size -= 16; *out++ = *in1++ ^ *in2++; case 15: *out++ = *in1++ ^ *in2++; case 14: *out++ = *in1++ ^ *in2++; case 13: *out++ = *in1++ ^ *in2++; case 12: *out++ = *in1++ ^ *in2++; case 11: *out++ = *in1++ ^ *in2++; case 10: *out++ = *in1++ ^ *in2++; case 9: *out++ = *in1++ ^ *in2++; case 8: *out++ = *in1++ ^ *in2++; case 7: *out++ = *in1++ ^ *in2++; case 6: *out++ = *in1++ ^ *in2++; case 5: *out++ = *in1++ ^ *in2++; case 4: *out++ = *in1++ ^ *in2++; case 3: *out++ = *in1++ ^ *in2++; case 2: *out++ = *in1++ ^ *in2++; case 1: *out++ = *in1++ ^ *in2++; } } }