/* * General mechanism for wrapping up reading/writing of Windows * HANDLEs into a PuTTY Socket abstraction. */ #include #include #include #include "tree234.h" #include "putty.h" #include "network.h" typedef struct HandleSocket { HANDLE send_H, recv_H, stderr_H; struct handle *send_h, *recv_h, *stderr_h; /* * Freezing one of these sockets is a slightly fiddly business, * because the reads from the handle are happening in a separate * thread as blocking system calls and so once one is in progress * it can't sensibly be interrupted. Hence, after the user tries * to freeze one of these sockets, it's unavoidable that we may * receive one more load of data before we manage to get * winhandl.c to stop reading. */ enum { UNFROZEN, /* reading as normal */ FREEZING, /* have been set to frozen but winhandl is still reading */ FROZEN, /* really frozen - winhandl has been throttled */ THAWING /* we're gradually releasing our remaining data */ } frozen; /* We buffer data here if we receive it from winhandl while frozen. */ bufchain inputdata; /* Handle logging proxy error messages from stderr_H, if we have one. */ ProxyStderrBuf psb; bool defer_close, deferred_close; /* in case of re-entrance */ char *error; Plug *plug; Socket sock; } HandleSocket; static size_t handle_gotdata( struct handle *h, const void *data, size_t len, int err) { HandleSocket *hs = (HandleSocket *)handle_get_privdata(h); if (err) { plug_closing(hs->plug, "Read error from handle", 0, 0); return 0; } else if (len == 0) { plug_closing(hs->plug, NULL, 0, 0); return 0; } else { assert(hs->frozen != FROZEN && hs->frozen != THAWING); if (hs->frozen == FREEZING) { /* * If we've received data while this socket is supposed to * be frozen (because the read winhandl.c started before * sk_set_frozen was called has now returned) then buffer * the data for when we unfreeze. */ bufchain_add(&hs->inputdata, data, len); hs->frozen = FROZEN; /* * And return a very large backlog, to prevent further * data arriving from winhandl until we unfreeze. */ return INT_MAX; } else { plug_receive(hs->plug, 0, data, len); return 0; } } } static size_t handle_stderr( struct handle *h, const void *data, size_t len, int err) { HandleSocket *hs = (HandleSocket *)handle_get_privdata(h); if (!err && len > 0) log_proxy_stderr(hs->plug, &hs->psb, data, len); return 0; } static void handle_sentdata(struct handle *h, size_t new_backlog, int err) { HandleSocket *hs = (HandleSocket *)handle_get_privdata(h); if (err) { plug_closing(hs->plug, win_strerror(err), err, 0); return; } plug_sent(hs->plug, new_backlog); } static Plug *sk_handle_plug(Socket *s, Plug *p) { HandleSocket *hs = container_of(s, HandleSocket, sock); Plug *ret = hs->plug; if (p) hs->plug = p; return ret; } static void sk_handle_close(Socket *s) { HandleSocket *hs = container_of(s, HandleSocket, sock); if (hs->defer_close) { hs->deferred_close = true; return; } handle_free(hs->send_h); handle_free(hs->recv_h); CloseHandle(hs->send_H); if (hs->recv_H != hs->send_H) CloseHandle(hs->recv_H); bufchain_clear(&hs->inputdata); delete_callbacks_for_context(hs); sfree(hs); } static size_t sk_handle_write(Socket *s, const void *data, size_t len) { HandleSocket *hs = container_of(s, HandleSocket, sock); return handle_write(hs->send_h, data, len); } static size_t sk_handle_write_oob(Socket *s, const void *data, size_t len) { /* * oob data is treated as inband; nasty, but nothing really * better we can do */ return sk_handle_write(s, data, len); } static void sk_handle_write_eof(Socket *s) { HandleSocket *hs = container_of(s, HandleSocket, sock); handle_write_eof(hs->send_h); } static void handle_socket_unfreeze(void *hsv) { HandleSocket *hs = (HandleSocket *)hsv; /* * If we've been put into a state other than THAWING since the * last callback, then we're done. */ if (hs->frozen != THAWING) return; /* * Get some of the data we've buffered. */ ptrlen data = bufchain_prefix(&hs->inputdata); assert(data.len > 0); /* * Hand it off to the plug. Be careful of re-entrance - that might * have the effect of trying to close this socket. */ hs->defer_close = true; plug_receive(hs->plug, 0, data.ptr, data.len); bufchain_consume(&hs->inputdata, data.len); hs->defer_close = false; if (hs->deferred_close) { sk_handle_close(&hs->sock); return; } if (bufchain_size(&hs->inputdata) > 0) { /* * If there's still data in our buffer, stay in THAWING state, * and reschedule ourself. */ queue_toplevel_callback(handle_socket_unfreeze, hs); } else { /* * Otherwise, we've successfully thawed! */ hs->frozen = UNFROZEN; handle_unthrottle(hs->recv_h, 0); } } static void sk_handle_set_frozen(Socket *s, bool is_frozen) { HandleSocket *hs = container_of(s, HandleSocket, sock); if (is_frozen) { switch (hs->frozen) { case FREEZING: case FROZEN: return; /* nothing to do */ case THAWING: /* * We were in the middle of emptying our bufchain, and got * frozen again. In that case, winhandl.c is already * throttled, so just return to FROZEN state. The toplevel * callback will notice and disable itself. */ hs->frozen = FROZEN; break; case UNFROZEN: /* * The normal case. Go to FREEZING, and expect one more * load of data from winhandl if we're unlucky. */ hs->frozen = FREEZING; break; } } else { switch (hs->frozen) { case UNFROZEN: case THAWING: return; /* nothing to do */ case FREEZING: /* * If winhandl didn't send us any data throughout the time * we were frozen, then we'll still be in this state and * can just unfreeze in the trivial way. */ assert(bufchain_size(&hs->inputdata) == 0); hs->frozen = UNFROZEN; break; case FROZEN: /* * If we have buffered data, go to THAWING and start * releasing it in top-level callbacks. */ hs->frozen = THAWING; queue_toplevel_callback(handle_socket_unfreeze, hs); } } } static const char *sk_handle_socket_error(Socket *s) { HandleSocket *hs = container_of(s, HandleSocket, sock); return hs->error; } static SocketPeerInfo *sk_handle_peer_info(Socket *s) { HandleSocket *hs = container_of(s, HandleSocket, sock); ULONG pid; static HMODULE kernel32_module; DECL_WINDOWS_FUNCTION(static, BOOL, GetNamedPipeClientProcessId, (HANDLE, PULONG)); if (!kernel32_module) { kernel32_module = load_system32_dll("kernel32.dll"); #if (defined _MSC_VER && _MSC_VER < 1900) || defined __MINGW32__ || defined COVERITY /* For older Visual Studio, and MinGW too (at least as of * Ubuntu 16.04), this function isn't available in the header * files to type-check. Ditto the toolchain I use for * Coveritying the Windows code. */ GET_WINDOWS_FUNCTION_NO_TYPECHECK( kernel32_module, GetNamedPipeClientProcessId); #else GET_WINDOWS_FUNCTION( kernel32_module, GetNamedPipeClientProcessId); #endif } /* * Of course, not all handles managed by this module will be * server ends of named pipes, but if they are, then it's useful * to log what we can find out about the client end. */ if (p_GetNamedPipeClientProcessId && p_GetNamedPipeClientProcessId(hs->send_H, &pid)) { SocketPeerInfo *pi = snew(SocketPeerInfo); pi->addressfamily = ADDRTYPE_LOCAL; pi->addr_text = NULL; pi->port = -1; pi->log_text = dupprintf("process id %lu", (unsigned long)pid); return pi; } return NULL; } static const SocketVtable HandleSocket_sockvt = { .plug = sk_handle_plug, .close = sk_handle_close, .write = sk_handle_write, .write_oob = sk_handle_write_oob, .write_eof = sk_handle_write_eof, .set_frozen = sk_handle_set_frozen, .socket_error = sk_handle_socket_error, .peer_info = sk_handle_peer_info, }; Socket *make_handle_socket(HANDLE send_H, HANDLE recv_H, HANDLE stderr_H, Plug *plug, bool overlapped) { HandleSocket *hs; int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0); hs = snew(HandleSocket); hs->sock.vt = &HandleSocket_sockvt; hs->plug = plug; hs->error = NULL; hs->frozen = UNFROZEN; bufchain_init(&hs->inputdata); psb_init(&hs->psb); hs->recv_H = recv_H; hs->recv_h = handle_input_new(hs->recv_H, handle_gotdata, hs, flags); hs->send_H = send_H; hs->send_h = handle_output_new(hs->send_H, handle_sentdata, hs, flags); hs->stderr_H = stderr_H; if (hs->stderr_H) hs->stderr_h = handle_input_new(hs->stderr_H, handle_stderr, hs, flags); hs->defer_close = hs->deferred_close = false; return &hs->sock; }