/* * Elliptic-curve crypto module for PuTTY * Implements the three required curves, no optional curves * * NOTE: Only curves on prime field are handled by the maths functions * in Weierstrass form using Jacobian co-ordinates. * * Montgomery form curves are supported for DH. (Curve25519) * * Edwards form curves are supported for DSA. (Ed25519) */ /* * References: * * Elliptic curves in SSH are specified in RFC 5656: * http://tools.ietf.org/html/rfc5656 * * That specification delegates details of public key formatting and a * lot of underlying mechanism to SEC 1: * http://www.secg.org/sec1-v2.pdf * * Montgomery maths from: * Handbook of elliptic and hyperelliptic curve cryptography, Chapter 13 * http://cs.ucsb.edu/~koc/ccs130h/2013/EllipticHyperelliptic-CohenFrey.pdf * * Curve25519 spec from libssh (with reference to other things in the * libssh code): * https://git.libssh.org/users/aris/libssh.git/tree/doc/curve25519-sha256@libssh.org.txt * * Edwards DSA: * http://ed25519.cr.yp.to/ed25519-20110926.pdf */ #include #include #include "ssh.h" #include "mpint.h" #include "ecc.h" /* ---------------------------------------------------------------------- * Elliptic curve definitions */ static void initialise_common( struct ec_curve *curve, EllipticCurveType type, mp_int *p, unsigned extrabits) { curve->type = type; curve->p = mp_copy(p); curve->fieldBits = mp_get_nbits(p); curve->fieldBytes = (curve->fieldBits + extrabits + 7) / 8; } static void initialise_wcurve( struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b, mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order) { initialise_common(curve, EC_WEIERSTRASS, p, 0); curve->w.wc = ecc_weierstrass_curve(p, a, b, nonsquare); curve->w.G = ecc_weierstrass_point_new(curve->w.wc, G_x, G_y); curve->w.G_order = mp_copy(G_order); } static void initialise_mcurve( struct ec_curve *curve, mp_int *p, mp_int *a, mp_int *b, mp_int *G_x, unsigned log2_cofactor) { initialise_common(curve, EC_MONTGOMERY, p, 0); curve->m.mc = ecc_montgomery_curve(p, a, b); curve->m.log2_cofactor = log2_cofactor; curve->m.G = ecc_montgomery_point_new(curve->m.mc, G_x); } static void initialise_ecurve( struct ec_curve *curve, mp_int *p, mp_int *d, mp_int *a, mp_int *nonsquare, mp_int *G_x, mp_int *G_y, mp_int *G_order, unsigned log2_cofactor) { /* Ensure curve->fieldBytes is long enough to store an extra bit * for a compressed point */ initialise_common(curve, EC_EDWARDS, p, 1); curve->e.ec = ecc_edwards_curve(p, d, a, nonsquare); curve->e.log2_cofactor = log2_cofactor; curve->e.G = ecc_edwards_point_new(curve->e.ec, G_x, G_y); curve->e.G_order = mp_copy(G_order); } static struct ec_curve *ec_p256(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff); mp_int *a = MP_LITERAL(0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc); mp_int *b = MP_LITERAL(0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b); mp_int *G_x = MP_LITERAL(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296); mp_int *G_y = MP_LITERAL(0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5); mp_int *G_order = MP_LITERAL(0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551); mp_int *nonsquare_mod_p = mp_from_integer(3); initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order); mp_free(p); mp_free(a); mp_free(b); mp_free(G_x); mp_free(G_y); mp_free(G_order); mp_free(nonsquare_mod_p); curve.textname = curve.name = "nistp256"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } static struct ec_curve *ec_p384(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff); mp_int *a = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc); mp_int *b = MP_LITERAL(0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef); mp_int *G_x = MP_LITERAL(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7); mp_int *G_y = MP_LITERAL(0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f); mp_int *G_order = MP_LITERAL(0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973); mp_int *nonsquare_mod_p = mp_from_integer(19); initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order); mp_free(p); mp_free(a); mp_free(b); mp_free(G_x); mp_free(G_y); mp_free(G_order); mp_free(nonsquare_mod_p); curve.textname = curve.name = "nistp384"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } static struct ec_curve *ec_p521(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); mp_int *a = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc); mp_int *b = MP_LITERAL(0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00); mp_int *G_x = MP_LITERAL(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66); mp_int *G_y = MP_LITERAL(0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650); mp_int *G_order = MP_LITERAL(0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409); mp_int *nonsquare_mod_p = mp_from_integer(3); initialise_wcurve(&curve, p, a, b, nonsquare_mod_p, G_x, G_y, G_order); mp_free(p); mp_free(a); mp_free(b); mp_free(G_x); mp_free(G_y); mp_free(G_order); mp_free(nonsquare_mod_p); curve.textname = curve.name = "nistp521"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } static struct ec_curve *ec_curve25519(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); mp_int *a = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000076d06); mp_int *b = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000001); mp_int *G_x = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000009); initialise_mcurve(&curve, p, a, b, G_x, 3); mp_free(p); mp_free(a); mp_free(b); mp_free(G_x); /* This curve doesn't need a name, because it's never used in * any format that embeds the curve name */ curve.name = NULL; curve.textname = "Curve25519"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } static struct ec_curve *ec_curve448(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff); mp_int *a = MP_LITERAL(0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000262a6); mp_int *b = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001); mp_int *G_x = MP_LITERAL(0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005); initialise_mcurve(&curve, p, a, b, G_x, 2); mp_free(p); mp_free(a); mp_free(b); mp_free(G_x); /* This curve doesn't need a name, because it's never used in * any format that embeds the curve name */ curve.name = NULL; curve.textname = "Curve448"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } static struct ec_curve *ec_ed25519(void) { static struct ec_curve curve = { 0 }; static bool initialised = false; if (!initialised) { mp_int *p = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed); mp_int *d = MP_LITERAL(0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3); mp_int *a = MP_LITERAL(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec); /* == p-1 */ mp_int *G_x = MP_LITERAL(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a); mp_int *G_y = MP_LITERAL(0x6666666666666666666666666666666666666666666666666666666666666658); mp_int *G_order = MP_LITERAL(0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed); mp_int *nonsquare_mod_p = mp_from_integer(2); initialise_ecurve(&curve, p, d, a, nonsquare_mod_p, G_x, G_y, G_order, 3); mp_free(p); mp_free(d); mp_free(a); mp_free(G_x); mp_free(G_y); mp_free(G_order); mp_free(nonsquare_mod_p); /* This curve doesn't need a name, because it's never used in * any format that embeds the curve name */ curve.name = NULL; curve.textname = "Ed25519"; /* Now initialised, no need to do it again */ initialised = true; } return &curve; } /* ---------------------------------------------------------------------- * Public point from private */ struct ecsign_extra { struct ec_curve *(*curve)(void); const ssh_hashalg *hash; /* These fields are used by the OpenSSH PEM format importer/exporter */ const unsigned char *oid; int oidlen; }; WeierstrassPoint *ecdsa_public(mp_int *private_key, const ssh_keyalg *alg) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_WEIERSTRASS); mp_int *priv_reduced = mp_mod(private_key, curve->p); WeierstrassPoint *toret = ecc_weierstrass_multiply( curve->w.G, priv_reduced); mp_free(priv_reduced); return toret; } static mp_int *eddsa_exponent_from_hash( ptrlen hash, const struct ec_curve *curve) { /* * Make an integer out of the hash data, little-endian. */ assert(hash.len >= curve->fieldBytes); mp_int *e = mp_from_bytes_le(make_ptrlen(hash.ptr, curve->fieldBytes)); /* * Set the highest bit that fits in the modulus, and clear any * above that. */ mp_set_bit(e, curve->fieldBits - 1, 1); mp_reduce_mod_2to(e, curve->fieldBits); /* * Clear a curve-specific number of low bits. */ for (unsigned bit = 0; bit < curve->e.log2_cofactor; bit++) mp_set_bit(e, bit, 0); return e; } EdwardsPoint *eddsa_public(mp_int *private_key, const ssh_keyalg *alg) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_EDWARDS); ssh_hash *h = ssh_hash_new(extra->hash); for (size_t i = 0; i < curve->fieldBytes; ++i) put_byte(h, mp_get_byte(private_key, i)); unsigned char hash[MAX_HASH_LEN]; ssh_hash_final(h, hash); mp_int *exponent = eddsa_exponent_from_hash( make_ptrlen(hash, extra->hash->hlen), curve); EdwardsPoint *toret = ecc_edwards_multiply(curve->e.G, exponent); mp_free(exponent); return toret; } /* ---------------------------------------------------------------------- * Marshalling and unmarshalling functions */ static mp_int *BinarySource_get_mp_le(BinarySource *src) { return mp_from_bytes_le(get_string(src)); } #define get_mp_le(src) BinarySource_get_mp_le(BinarySource_UPCAST(src)) static void BinarySink_put_mp_le_fixedlen(BinarySink *bs, mp_int *x, size_t bytes) { put_uint32(bs, bytes); for (size_t i = 0; i < bytes; ++i) put_byte(bs, mp_get_byte(x, i)); } #define put_mp_le_fixedlen(bs, x, bytes) \ BinarySink_put_mp_le_fixedlen(BinarySink_UPCAST(bs), x, bytes) static WeierstrassPoint *ecdsa_decode( ptrlen encoded, const struct ec_curve *curve) { assert(curve->type == EC_WEIERSTRASS); BinarySource src[1]; BinarySource_BARE_INIT_PL(src, encoded); unsigned char format_type = get_byte(src); WeierstrassPoint *P; size_t len = get_avail(src); mp_int *x; mp_int *y; switch (format_type) { case 0: /* The identity. */ P = ecc_weierstrass_point_new_identity(curve->w.wc); break; case 2: case 3: /* A compressed point, in which the x-coordinate is stored in * full, and y is deduced from that and a single bit * indicating its parity (stored in the format type byte). */ x = mp_from_bytes_be(get_data(src, len)); P = ecc_weierstrass_point_new_from_x(curve->w.wc, x, format_type & 1); mp_free(x); if (!P) /* this can fail if the input is invalid */ return NULL; break; case 4: /* An uncompressed point: the x,y coordinates are stored in * full. We expect the rest of the string to have even length, * and be divided half and half between the two values. */ if (len % 2 != 0) return NULL; len /= 2; x = mp_from_bytes_be(get_data(src, len)); y = mp_from_bytes_be(get_data(src, len)); P = ecc_weierstrass_point_new(curve->w.wc, x, y); mp_free(x); mp_free(y); break; default: /* An unrecognised type byte. */ return NULL; } /* Verify the point is on the curve */ if (!ecc_weierstrass_point_valid(P)) { ecc_weierstrass_point_free(P); return NULL; } return P; } static WeierstrassPoint *BinarySource_get_wpoint( BinarySource *src, const struct ec_curve *curve) { ptrlen str = get_string(src); if (get_err(src)) return NULL; return ecdsa_decode(str, curve); } #define get_wpoint(src, curve) \ BinarySource_get_wpoint(BinarySource_UPCAST(src), curve) static void BinarySink_put_wpoint( BinarySink *bs, WeierstrassPoint *point, const struct ec_curve *curve, bool bare) { strbuf *sb; BinarySink *bs_inner; if (!bare) { /* * Encapsulate the raw data inside an outermost string layer. */ sb = strbuf_new(); bs_inner = BinarySink_UPCAST(sb); } else { /* * Just write the data directly to the output. */ bs_inner = bs; } if (ecc_weierstrass_is_identity(point)) { put_byte(bs_inner, 0); } else { mp_int *x, *y; ecc_weierstrass_get_affine(point, &x, &y); /* * For ECDSA, we only ever output uncompressed points. */ put_byte(bs_inner, 0x04); for (size_t i = curve->fieldBytes; i--;) put_byte(bs_inner, mp_get_byte(x, i)); for (size_t i = curve->fieldBytes; i--;) put_byte(bs_inner, mp_get_byte(y, i)); mp_free(x); mp_free(y); } if (!bare) put_stringsb(bs, sb); } #define put_wpoint(bs, point, curve, bare) \ BinarySink_put_wpoint(BinarySink_UPCAST(bs), point, curve, bare) static EdwardsPoint *eddsa_decode(ptrlen encoded, const struct ec_curve *curve) { assert(curve->type == EC_EDWARDS); mp_int *y = mp_from_bytes_le(encoded); /* The topmost bit of the encoding isn't part of y, so it stores * the bottom bit of x. Extract it, and zero that bit in y. */ unsigned desired_x_parity = mp_get_bit(y, curve->fieldBytes * 8 - 1); mp_set_bit(y, curve->fieldBytes * 8 - 1, 0); /* What's left should now be within the range of the curve's modulus */ if (mp_cmp_hs(y, curve->p)) { mp_free(y); return NULL; } EdwardsPoint *P = ecc_edwards_point_new_from_y( curve->e.ec, y, desired_x_parity); mp_free(y); /* A point constructed in this way will always satisfy the curve * equation, unless ecc.c wasn't able to construct one at all, in * which case P is now NULL. Either way, return it. */ return P; } static EdwardsPoint *BinarySource_get_epoint( BinarySource *src, const struct ec_curve *curve) { ptrlen str = get_string(src); if (get_err(src)) return NULL; return eddsa_decode(str, curve); } #define get_epoint(src, curve) \ BinarySource_get_epoint(BinarySource_UPCAST(src), curve) static void BinarySink_put_epoint( BinarySink *bs, EdwardsPoint *point, const struct ec_curve *curve, bool bare) { mp_int *x, *y; ecc_edwards_get_affine(point, &x, &y); assert(curve->fieldBytes >= 2); /* * EdDSA requires point compression. We store a single integer, * with bytes in little-endian order, which mostly contains y but * in which the topmost bit is the low bit of x. */ if (!bare) put_uint32(bs, curve->fieldBytes); /* string length field */ for (size_t i = 0; i < curve->fieldBytes - 1; i++) put_byte(bs, mp_get_byte(y, i)); put_byte(bs, (mp_get_byte(y, curve->fieldBytes - 1) & 0x7F) | (mp_get_bit(x, 0) << 7)); mp_free(x); mp_free(y); } #define put_epoint(bs, point, curve, bare) \ BinarySink_put_epoint(BinarySink_UPCAST(bs), point, curve, bare) /* ---------------------------------------------------------------------- * Exposed ECDSA interface */ static void ecdsa_freekey(ssh_key *key) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); if (ek->publicKey) ecc_weierstrass_point_free(ek->publicKey); if (ek->privateKey) mp_free(ek->privateKey); sfree(ek); } static void eddsa_freekey(ssh_key *key) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); if (ek->publicKey) ecc_edwards_point_free(ek->publicKey); if (ek->privateKey) mp_free(ek->privateKey); sfree(ek); } static char *ec_signkey_invalid(ssh_key *key, unsigned flags) { /* All validity criteria for both ECDSA and EdDSA were checked * when we loaded the key in the first place */ return NULL; } static ssh_key *ecdsa_new_pub(const ssh_keyalg *alg, ptrlen data) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_WEIERSTRASS); BinarySource src[1]; BinarySource_BARE_INIT_PL(src, data); get_string(src); /* Curve name is duplicated for Weierstrass form */ if (!ptrlen_eq_string(get_string(src), curve->name)) return NULL; struct ecdsa_key *ek = snew(struct ecdsa_key); ek->sshk.vt = alg; ek->curve = curve; ek->privateKey = NULL; ek->publicKey = get_wpoint(src, curve); if (!ek->publicKey) { ecdsa_freekey(&ek->sshk); return NULL; } return &ek->sshk; } static ssh_key *eddsa_new_pub(const ssh_keyalg *alg, ptrlen data) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_EDWARDS); BinarySource src[1]; BinarySource_BARE_INIT_PL(src, data); get_string(src); struct eddsa_key *ek = snew(struct eddsa_key); ek->sshk.vt = alg; ek->curve = curve; ek->privateKey = NULL; ek->publicKey = get_epoint(src, curve); if (!ek->publicKey) { eddsa_freekey(&ek->sshk); return NULL; } return &ek->sshk; } static char *ecc_cache_str_shared( const char *curve_name, mp_int *x, mp_int *y) { strbuf *sb = strbuf_new(); if (curve_name) strbuf_catf(sb, "%s,", curve_name); char *hx = mp_get_hex(x); char *hy = mp_get_hex(y); strbuf_catf(sb, "0x%s,0x%s", hx, hy); sfree(hx); sfree(hy); return strbuf_to_str(sb); } static char *ecdsa_cache_str(ssh_key *key) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); mp_int *x, *y; ecc_weierstrass_get_affine(ek->publicKey, &x, &y); char *toret = ecc_cache_str_shared(ek->curve->name, x, y); mp_free(x); mp_free(y); return toret; } static key_components *ecdsa_components(ssh_key *key) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); key_components *kc = key_components_new(); key_components_add_text(kc, "key_type", "ECDSA"); key_components_add_text(kc, "curve_name", ek->curve->textname); mp_int *x, *y; ecc_weierstrass_get_affine(ek->publicKey, &x, &y); key_components_add_mp(kc, "public_affine_x", x); key_components_add_mp(kc, "public_affine_y", y); mp_free(x); mp_free(y); if (ek->privateKey) key_components_add_mp(kc, "private_exponent", ek->privateKey); return kc; } static char *eddsa_cache_str(ssh_key *key) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); mp_int *x, *y; ecc_edwards_get_affine(ek->publicKey, &x, &y); char *toret = ecc_cache_str_shared(ek->curve->name, x, y); mp_free(x); mp_free(y); return toret; } static key_components *eddsa_components(ssh_key *key) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); key_components *kc = key_components_new(); key_components_add_text(kc, "key_type", "EdDSA"); key_components_add_text(kc, "curve_name", ek->curve->textname); mp_int *x, *y; ecc_edwards_get_affine(ek->publicKey, &x, &y); key_components_add_mp(kc, "public_affine_x", x); key_components_add_mp(kc, "public_affine_y", y); mp_free(x); mp_free(y); if (ek->privateKey) key_components_add_mp(kc, "private_exponent", ek->privateKey); return kc; } static void ecdsa_public_blob(ssh_key *key, BinarySink *bs) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); put_stringz(bs, ek->sshk.vt->ssh_id); put_stringz(bs, ek->curve->name); put_wpoint(bs, ek->publicKey, ek->curve, false); } static void eddsa_public_blob(ssh_key *key, BinarySink *bs) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); put_stringz(bs, ek->sshk.vt->ssh_id); put_epoint(bs, ek->publicKey, ek->curve, false); } static void ecdsa_private_blob(ssh_key *key, BinarySink *bs) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); /* ECDSA uses ordinary SSH-2 mpint format to store the private key */ assert(ek->privateKey); put_mp_ssh2(bs, ek->privateKey); } static void eddsa_private_blob(ssh_key *key, BinarySink *bs) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); /* EdDSA stores the private key integer little-endian and unsigned */ assert(ek->privateKey); put_mp_le_fixedlen(bs, ek->privateKey, ek->curve->fieldBytes); } static ssh_key *ecdsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv) { ssh_key *sshk = ecdsa_new_pub(alg, pub); if (!sshk) return NULL; struct ecdsa_key *ek = container_of(sshk, struct ecdsa_key, sshk); BinarySource src[1]; BinarySource_BARE_INIT_PL(src, priv); ek->privateKey = get_mp_ssh2(src); return &ek->sshk; } static ssh_key *eddsa_new_priv(const ssh_keyalg *alg, ptrlen pub, ptrlen priv) { ssh_key *sshk = eddsa_new_pub(alg, pub); if (!sshk) return NULL; struct eddsa_key *ek = container_of(sshk, struct eddsa_key, sshk); BinarySource src[1]; BinarySource_BARE_INIT_PL(src, priv); ek->privateKey = get_mp_le(src); return &ek->sshk; } static ssh_key *eddsa_new_priv_openssh( const ssh_keyalg *alg, BinarySource *src) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_EDWARDS); ptrlen pubkey_pl = get_string(src); ptrlen privkey_extended_pl = get_string(src); if (get_err(src) || pubkey_pl.len != curve->fieldBytes) return NULL; /* * The OpenSSH format for ed25519 private keys also for some * reason encodes an extra copy of the public key in the second * half of the secret-key string. Check that that's present and * correct as well, otherwise the key we think we've imported * won't behave identically to the way OpenSSH would have treated * it. */ BinarySource subsrc[1]; BinarySource_BARE_INIT_PL(subsrc, privkey_extended_pl); ptrlen privkey_pl = get_data(subsrc, curve->fieldBytes); ptrlen pubkey_copy_pl = get_data(subsrc, curve->fieldBytes); if (get_err(subsrc) || get_avail(subsrc)) return NULL; if (!ptrlen_eq_ptrlen(pubkey_pl, pubkey_copy_pl)) return NULL; struct eddsa_key *ek = snew(struct eddsa_key); ek->sshk.vt = alg; ek->curve = curve; ek->privateKey = NULL; ek->publicKey = eddsa_decode(pubkey_pl, curve); if (!ek->publicKey) { eddsa_freekey(&ek->sshk); return NULL; } ek->privateKey = mp_from_bytes_le(privkey_pl); return &ek->sshk; } static void eddsa_openssh_blob(ssh_key *key, BinarySink *bs) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); assert(ek->curve->type == EC_EDWARDS); /* Encode the public and private points as strings */ strbuf *pub_sb = strbuf_new(); put_epoint(pub_sb, ek->publicKey, ek->curve, false); ptrlen pub = make_ptrlen(pub_sb->s + 4, pub_sb->len - 4); strbuf *priv_sb = strbuf_new_nm(); put_mp_le_fixedlen(priv_sb, ek->privateKey, ek->curve->fieldBytes); ptrlen priv = make_ptrlen(priv_sb->s + 4, priv_sb->len - 4); put_stringpl(bs, pub); /* Encode the private key as the concatenation of the * little-endian key integer and the public key again */ put_uint32(bs, priv.len + pub.len); put_datapl(bs, priv); put_datapl(bs, pub); strbuf_free(pub_sb); strbuf_free(priv_sb); } static ssh_key *ecdsa_new_priv_openssh( const ssh_keyalg *alg, BinarySource *src) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); assert(curve->type == EC_WEIERSTRASS); get_string(src); struct ecdsa_key *ek = snew(struct ecdsa_key); ek->sshk.vt = alg; ek->curve = curve; ek->privateKey = NULL; ek->publicKey = get_wpoint(src, curve); if (!ek->publicKey) { ecdsa_freekey(&ek->sshk); return NULL; } ek->privateKey = get_mp_ssh2(src); return &ek->sshk; } static void ecdsa_openssh_blob(ssh_key *key, BinarySink *bs) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); put_stringz(bs, ek->curve->name); put_wpoint(bs, ek->publicKey, ek->curve, false); put_mp_ssh2(bs, ek->privateKey); } static int ec_shared_pubkey_bits(const ssh_keyalg *alg, ptrlen blob) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; struct ec_curve *curve = extra->curve(); return curve->fieldBits; } static mp_int *ecdsa_signing_exponent_from_data( const struct ec_curve *curve, const struct ecsign_extra *extra, ptrlen data) { /* Hash the data being signed. */ unsigned char hash[MAX_HASH_LEN]; ssh_hash *h = ssh_hash_new(extra->hash); put_datapl(h, data); ssh_hash_final(h, hash); /* * Take the leftmost b bits of the hash of the signed data (where * b is the number of bits in order(G)), interpreted big-endian. */ mp_int *z = mp_from_bytes_be(make_ptrlen(hash, extra->hash->hlen)); size_t zbits = mp_get_nbits(z); size_t nbits = mp_get_nbits(curve->w.G_order); size_t shift = zbits - nbits; /* Bound the shift count below at 0, using bit twiddling to avoid * a conditional branch */ shift &= ~-(shift >> (CHAR_BIT * sizeof(size_t) - 1)); mp_int *toret = mp_rshift_safe(z, shift); mp_free(z); return toret; } static bool ecdsa_verify(ssh_key *key, ptrlen sig, ptrlen data) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); const struct ecsign_extra *extra = (const struct ecsign_extra *)ek->sshk.vt->extra; BinarySource src[1]; BinarySource_BARE_INIT_PL(src, sig); /* Check the signature starts with the algorithm name */ if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id)) return false; /* Everything else is nested inside a sub-string. Descend into that. */ ptrlen sigstr = get_string(src); if (get_err(src)) return false; BinarySource_BARE_INIT_PL(src, sigstr); /* Extract the signature integers r,s */ mp_int *r = get_mp_ssh2(src); mp_int *s = get_mp_ssh2(src); if (get_err(src)) { mp_free(r); mp_free(s); return false; } /* Basic sanity checks: 0 < r,s < order(G) */ unsigned invalid = 0; invalid |= mp_eq_integer(r, 0); invalid |= mp_eq_integer(s, 0); invalid |= mp_cmp_hs(r, ek->curve->w.G_order); invalid |= mp_cmp_hs(s, ek->curve->w.G_order); /* Get the hash of the signed data, converted to an integer */ mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data); /* Verify the signature integers against the hash */ mp_int *w = mp_invert(s, ek->curve->w.G_order); mp_int *u1 = mp_modmul(z, w, ek->curve->w.G_order); mp_free(z); mp_int *u2 = mp_modmul(r, w, ek->curve->w.G_order); mp_free(w); WeierstrassPoint *u1G = ecc_weierstrass_multiply(ek->curve->w.G, u1); mp_free(u1); WeierstrassPoint *u2P = ecc_weierstrass_multiply(ek->publicKey, u2); mp_free(u2); WeierstrassPoint *sum = ecc_weierstrass_add_general(u1G, u2P); ecc_weierstrass_point_free(u1G); ecc_weierstrass_point_free(u2P); mp_int *x; ecc_weierstrass_get_affine(sum, &x, NULL); ecc_weierstrass_point_free(sum); mp_divmod_into(x, ek->curve->w.G_order, NULL, x); invalid |= (1 ^ mp_cmp_eq(r, x)); mp_free(x); mp_free(r); mp_free(s); return !invalid; } static mp_int *eddsa_signing_exponent_from_data( struct eddsa_key *ek, const struct ecsign_extra *extra, ptrlen r_encoded, ptrlen data) { /* Hash (r || public key || message) */ unsigned char hash[MAX_HASH_LEN]; ssh_hash *h = ssh_hash_new(extra->hash); put_datapl(h, r_encoded); put_epoint(h, ek->publicKey, ek->curve, true); /* omit string header */ put_datapl(h, data); ssh_hash_final(h, hash); /* Convert to an integer */ mp_int *toret = mp_from_bytes_le(make_ptrlen(hash, extra->hash->hlen)); smemclr(hash, extra->hash->hlen); return toret; } static bool eddsa_verify(ssh_key *key, ptrlen sig, ptrlen data) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); const struct ecsign_extra *extra = (const struct ecsign_extra *)ek->sshk.vt->extra; BinarySource src[1]; BinarySource_BARE_INIT_PL(src, sig); /* Check the signature starts with the algorithm name */ if (!ptrlen_eq_string(get_string(src), ek->sshk.vt->ssh_id)) return false; /* Now expect a single string which is the concatenation of an * encoded curve point r and an integer s. */ ptrlen sigstr = get_string(src); if (get_err(src)) return false; BinarySource_BARE_INIT_PL(src, sigstr); ptrlen rstr = get_data(src, ek->curve->fieldBytes); ptrlen sstr = get_data(src, ek->curve->fieldBytes); if (get_err(src) || get_avail(src)) return false; EdwardsPoint *r = eddsa_decode(rstr, ek->curve); if (!r) return false; mp_int *s = mp_from_bytes_le(sstr); mp_int *H = eddsa_signing_exponent_from_data(ek, extra, rstr, data); /* Verify that s*G == r + H*publicKey */ EdwardsPoint *lhs = ecc_edwards_multiply(ek->curve->e.G, s); mp_free(s); EdwardsPoint *hpk = ecc_edwards_multiply(ek->publicKey, H); mp_free(H); EdwardsPoint *rhs = ecc_edwards_add(r, hpk); ecc_edwards_point_free(hpk); unsigned valid = ecc_edwards_eq(lhs, rhs); ecc_edwards_point_free(lhs); ecc_edwards_point_free(rhs); ecc_edwards_point_free(r); return valid; } static void ecdsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs) { struct ecdsa_key *ek = container_of(key, struct ecdsa_key, sshk); const struct ecsign_extra *extra = (const struct ecsign_extra *)ek->sshk.vt->extra; assert(ek->privateKey); mp_int *z = ecdsa_signing_exponent_from_data(ek->curve, extra, data); /* Generate k between 1 and curve->n, using the same deterministic * k generation system we use for conventional DSA. */ mp_int *k; { unsigned char digest[20]; hash_simple(&ssh_sha1, data, digest); k = dss_gen_k( "ECDSA deterministic k generator", ek->curve->w.G_order, ek->privateKey, digest, sizeof(digest)); } WeierstrassPoint *kG = ecc_weierstrass_multiply(ek->curve->w.G, k); mp_int *x; ecc_weierstrass_get_affine(kG, &x, NULL); ecc_weierstrass_point_free(kG); /* r = kG.x mod order(G) */ mp_int *r = mp_mod(x, ek->curve->w.G_order); mp_free(x); /* s = (z + r * priv)/k mod n */ mp_int *rPriv = mp_modmul(r, ek->privateKey, ek->curve->w.G_order); mp_int *numerator = mp_modadd(z, rPriv, ek->curve->w.G_order); mp_free(z); mp_free(rPriv); mp_int *kInv = mp_invert(k, ek->curve->w.G_order); mp_free(k); mp_int *s = mp_modmul(numerator, kInv, ek->curve->w.G_order); mp_free(numerator); mp_free(kInv); /* Format the output */ put_stringz(bs, ek->sshk.vt->ssh_id); strbuf *substr = strbuf_new(); put_mp_ssh2(substr, r); put_mp_ssh2(substr, s); put_stringsb(bs, substr); mp_free(r); mp_free(s); } static void eddsa_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs) { struct eddsa_key *ek = container_of(key, struct eddsa_key, sshk); const struct ecsign_extra *extra = (const struct ecsign_extra *)ek->sshk.vt->extra; assert(ek->privateKey); /* * EdDSA prescribes a specific method of generating the random * nonce integer for the signature. (A verifier can't tell * whether you followed that method, but it's important to * follow it anyway, because test vectors will want a specific * signature for a given message, and because this preserves * determinism of signatures even if the same signature were * made twice by different software.) */ /* * First, we hash the private key integer (bare, little-endian) * into a hash generating 2*fieldBytes of output. */ unsigned char hash[MAX_HASH_LEN]; ssh_hash *h = ssh_hash_new(extra->hash); for (size_t i = 0; i < ek->curve->fieldBytes; ++i) put_byte(h, mp_get_byte(ek->privateKey, i)); ssh_hash_final(h, hash); /* * The first half of the output hash is converted into an * integer a, by the standard EdDSA transformation. */ mp_int *a = eddsa_exponent_from_hash( make_ptrlen(hash, ek->curve->fieldBytes), ek->curve); /* * The second half of the hash of the private key is hashed again * with the message to be signed, and used as an exponent to * generate the signature point r. */ h = ssh_hash_new(extra->hash); put_data(h, hash + ek->curve->fieldBytes, extra->hash->hlen - ek->curve->fieldBytes); put_datapl(h, data); ssh_hash_final(h, hash); mp_int *log_r_unreduced = mp_from_bytes_le( make_ptrlen(hash, extra->hash->hlen)); mp_int *log_r = mp_mod(log_r_unreduced, ek->curve->e.G_order); mp_free(log_r_unreduced); EdwardsPoint *r = ecc_edwards_multiply(ek->curve->e.G, log_r); /* * Encode r now, because we'll need its encoding for the next * hashing step as well as to write into the actual signature. */ strbuf *r_enc = strbuf_new(); put_epoint(r_enc, r, ek->curve, true); /* omit string header */ ecc_edwards_point_free(r); /* * Compute the hash of (r || public key || message) just as * eddsa_verify does. */ mp_int *H = eddsa_signing_exponent_from_data( ek, extra, ptrlen_from_strbuf(r_enc), data); /* And then s = (log(r) + H*a) mod order(G). */ mp_int *Ha = mp_modmul(H, a, ek->curve->e.G_order); mp_int *s = mp_modadd(log_r, Ha, ek->curve->e.G_order); mp_free(H); mp_free(a); mp_free(Ha); mp_free(log_r); /* Format the output */ put_stringz(bs, ek->sshk.vt->ssh_id); put_uint32(bs, r_enc->len + ek->curve->fieldBytes); put_data(bs, r_enc->u, r_enc->len); strbuf_free(r_enc); for (size_t i = 0; i < ek->curve->fieldBytes; ++i) put_byte(bs, mp_get_byte(s, i)); mp_free(s); } static const struct ecsign_extra sign_extra_ed25519 = { ec_ed25519, &ssh_sha512, NULL, 0, }; const ssh_keyalg ssh_ecdsa_ed25519 = { eddsa_new_pub, eddsa_new_priv, eddsa_new_priv_openssh, eddsa_freekey, ec_signkey_invalid, eddsa_sign, eddsa_verify, eddsa_public_blob, eddsa_private_blob, eddsa_openssh_blob, eddsa_cache_str, eddsa_components, ec_shared_pubkey_bits, "ssh-ed25519", "ssh-ed25519", &sign_extra_ed25519, 0, /* no supported flags */ }; /* OID: 1.2.840.10045.3.1.7 (ansiX9p256r1) */ static const unsigned char nistp256_oid[] = { 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07 }; static const struct ecsign_extra sign_extra_nistp256 = { ec_p256, &ssh_sha256, nistp256_oid, lenof(nistp256_oid), }; const ssh_keyalg ssh_ecdsa_nistp256 = { ecdsa_new_pub, ecdsa_new_priv, ecdsa_new_priv_openssh, ecdsa_freekey, ec_signkey_invalid, ecdsa_sign, ecdsa_verify, ecdsa_public_blob, ecdsa_private_blob, ecdsa_openssh_blob, ecdsa_cache_str, ecdsa_components, ec_shared_pubkey_bits, "ecdsa-sha2-nistp256", "ecdsa-sha2-nistp256", &sign_extra_nistp256, 0, /* no supported flags */ }; /* OID: 1.3.132.0.34 (secp384r1) */ static const unsigned char nistp384_oid[] = { 0x2b, 0x81, 0x04, 0x00, 0x22 }; static const struct ecsign_extra sign_extra_nistp384 = { ec_p384, &ssh_sha384, nistp384_oid, lenof(nistp384_oid), }; const ssh_keyalg ssh_ecdsa_nistp384 = { ecdsa_new_pub, ecdsa_new_priv, ecdsa_new_priv_openssh, ecdsa_freekey, ec_signkey_invalid, ecdsa_sign, ecdsa_verify, ecdsa_public_blob, ecdsa_private_blob, ecdsa_openssh_blob, ecdsa_cache_str, ecdsa_components, ec_shared_pubkey_bits, "ecdsa-sha2-nistp384", "ecdsa-sha2-nistp384", &sign_extra_nistp384, 0, /* no supported flags */ }; /* OID: 1.3.132.0.35 (secp521r1) */ static const unsigned char nistp521_oid[] = { 0x2b, 0x81, 0x04, 0x00, 0x23 }; static const struct ecsign_extra sign_extra_nistp521 = { ec_p521, &ssh_sha512, nistp521_oid, lenof(nistp521_oid), }; const ssh_keyalg ssh_ecdsa_nistp521 = { ecdsa_new_pub, ecdsa_new_priv, ecdsa_new_priv_openssh, ecdsa_freekey, ec_signkey_invalid, ecdsa_sign, ecdsa_verify, ecdsa_public_blob, ecdsa_private_blob, ecdsa_openssh_blob, ecdsa_cache_str, ecdsa_components, ec_shared_pubkey_bits, "ecdsa-sha2-nistp521", "ecdsa-sha2-nistp521", &sign_extra_nistp521, 0, /* no supported flags */ }; /* ---------------------------------------------------------------------- * Exposed ECDH interface */ struct eckex_extra { struct ec_curve *(*curve)(void); void (*setup)(ecdh_key *dh); void (*cleanup)(ecdh_key *dh); void (*getpublic)(ecdh_key *dh, BinarySink *bs); mp_int *(*getkey)(ecdh_key *dh, ptrlen remoteKey); }; struct ecdh_key { const struct eckex_extra *extra; const struct ec_curve *curve; mp_int *private; union { WeierstrassPoint *w_public; MontgomeryPoint *m_public; }; }; const char *ssh_ecdhkex_curve_textname(const ssh_kex *kex) { const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra; struct ec_curve *curve = extra->curve(); return curve->textname; } static void ssh_ecdhkex_w_setup(ecdh_key *dh) { mp_int *one = mp_from_integer(1); dh->private = mp_random_in_range(one, dh->curve->w.G_order); mp_free(one); dh->w_public = ecc_weierstrass_multiply(dh->curve->w.G, dh->private); } static void ssh_ecdhkex_m_setup(ecdh_key *dh) { strbuf *bytes = strbuf_new_nm(); random_read(strbuf_append(bytes, dh->curve->fieldBytes), dh->curve->fieldBytes); dh->private = mp_from_bytes_le(ptrlen_from_strbuf(bytes)); /* Ensure the private key has the highest valid bit set, and no * bits _above_ the highest valid one */ mp_reduce_mod_2to(dh->private, dh->curve->fieldBits); mp_set_bit(dh->private, dh->curve->fieldBits - 1, 1); /* Clear a curve-specific number of low bits */ for (unsigned bit = 0; bit < dh->curve->m.log2_cofactor; bit++) mp_set_bit(dh->private, bit, 0); strbuf_free(bytes); dh->m_public = ecc_montgomery_multiply(dh->curve->m.G, dh->private); } ecdh_key *ssh_ecdhkex_newkey(const ssh_kex *kex) { const struct eckex_extra *extra = (const struct eckex_extra *)kex->extra; const struct ec_curve *curve = extra->curve(); ecdh_key *dh = snew(ecdh_key); dh->extra = extra; dh->curve = curve; dh->extra->setup(dh); return dh; } static void ssh_ecdhkex_w_getpublic(ecdh_key *dh, BinarySink *bs) { put_wpoint(bs, dh->w_public, dh->curve, true); } static void ssh_ecdhkex_m_getpublic(ecdh_key *dh, BinarySink *bs) { mp_int *x; ecc_montgomery_get_affine(dh->m_public, &x); for (size_t i = 0; i < dh->curve->fieldBytes; ++i) put_byte(bs, mp_get_byte(x, i)); mp_free(x); } void ssh_ecdhkex_getpublic(ecdh_key *dh, BinarySink *bs) { dh->extra->getpublic(dh, bs); } static mp_int *ssh_ecdhkex_w_getkey(ecdh_key *dh, ptrlen remoteKey) { WeierstrassPoint *remote_p = ecdsa_decode(remoteKey, dh->curve); if (!remote_p) return NULL; if (ecc_weierstrass_is_identity(remote_p)) { /* Not a sensible Diffie-Hellman input value */ ecc_weierstrass_point_free(remote_p); return NULL; } WeierstrassPoint *p = ecc_weierstrass_multiply(remote_p, dh->private); mp_int *x; ecc_weierstrass_get_affine(p, &x, NULL); ecc_weierstrass_point_free(remote_p); ecc_weierstrass_point_free(p); return x; } static mp_int *ssh_ecdhkex_m_getkey(ecdh_key *dh, ptrlen remoteKey) { mp_int *remote_x = mp_from_bytes_le(remoteKey); /* Per RFC 7748 section 5, discard any set bits of the other * side's public value beyond the minimum number of bits required * to represent all valid values. However, an overlarge value that * still fits into the remaining number of bits is accepted, and * will be reduced mod p. */ mp_reduce_mod_2to(remote_x, dh->curve->fieldBits); MontgomeryPoint *remote_p = ecc_montgomery_point_new( dh->curve->m.mc, remote_x); mp_free(remote_x); MontgomeryPoint *p = ecc_montgomery_multiply(remote_p, dh->private); if (ecc_montgomery_is_identity(p)) { ecc_montgomery_point_free(remote_p); ecc_montgomery_point_free(p); return NULL; } mp_int *x; ecc_montgomery_get_affine(p, &x); ecc_montgomery_point_free(remote_p); ecc_montgomery_point_free(p); /* * Endianness-swap. The Curve25519 algorithm definition assumes * you were doing your computation in arrays of 32 little-endian * bytes, and now specifies that you take your final one of those * and convert it into a bignum in _network_ byte order, i.e. * big-endian. * * In particular, the spec says, you convert the _whole_ 32 bytes * into a bignum. That is, on the rare occasions that x has come * out with the most significant 8 bits zero, we have to imagine * that being represented by a 32-byte string with the last byte * being zero, so that has to be converted into an SSH-2 bignum * with the _low_ byte zero, i.e. a multiple of 256. */ strbuf *sb = strbuf_new(); for (size_t i = 0; i < dh->curve->fieldBytes; ++i) put_byte(sb, mp_get_byte(x, i)); mp_free(x); x = mp_from_bytes_be(ptrlen_from_strbuf(sb)); strbuf_free(sb); return x; } mp_int *ssh_ecdhkex_getkey(ecdh_key *dh, ptrlen remoteKey) { return dh->extra->getkey(dh, remoteKey); } static void ssh_ecdhkex_w_cleanup(ecdh_key *dh) { ecc_weierstrass_point_free(dh->w_public); } static void ssh_ecdhkex_m_cleanup(ecdh_key *dh) { ecc_montgomery_point_free(dh->m_public); } void ssh_ecdhkex_freekey(ecdh_key *dh) { mp_free(dh->private); dh->extra->cleanup(dh); sfree(dh); } static const struct eckex_extra kex_extra_curve25519 = { ec_curve25519, ssh_ecdhkex_m_setup, ssh_ecdhkex_m_cleanup, ssh_ecdhkex_m_getpublic, ssh_ecdhkex_m_getkey, }; const ssh_kex ssh_ec_kex_curve25519 = { "curve25519-sha256", NULL, KEXTYPE_ECDH, &ssh_sha256, &kex_extra_curve25519, }; /* Pre-RFC alias */ const ssh_kex ssh_ec_kex_curve25519_libssh = { "curve25519-sha256@libssh.org", NULL, KEXTYPE_ECDH, &ssh_sha256, &kex_extra_curve25519, }; static const struct eckex_extra kex_extra_curve448 = { ec_curve448, ssh_ecdhkex_m_setup, ssh_ecdhkex_m_cleanup, ssh_ecdhkex_m_getpublic, ssh_ecdhkex_m_getkey, }; const ssh_kex ssh_ec_kex_curve448 = { "curve448-sha512", NULL, KEXTYPE_ECDH, &ssh_sha512, &kex_extra_curve448, }; static const struct eckex_extra kex_extra_nistp256 = { ec_p256, ssh_ecdhkex_w_setup, ssh_ecdhkex_w_cleanup, ssh_ecdhkex_w_getpublic, ssh_ecdhkex_w_getkey, }; const ssh_kex ssh_ec_kex_nistp256 = { "ecdh-sha2-nistp256", NULL, KEXTYPE_ECDH, &ssh_sha256, &kex_extra_nistp256, }; static const struct eckex_extra kex_extra_nistp384 = { ec_p384, ssh_ecdhkex_w_setup, ssh_ecdhkex_w_cleanup, ssh_ecdhkex_w_getpublic, ssh_ecdhkex_w_getkey, }; const ssh_kex ssh_ec_kex_nistp384 = { "ecdh-sha2-nistp384", NULL, KEXTYPE_ECDH, &ssh_sha384, &kex_extra_nistp384, }; static const struct eckex_extra kex_extra_nistp521 = { ec_p521, ssh_ecdhkex_w_setup, ssh_ecdhkex_w_cleanup, ssh_ecdhkex_w_getpublic, ssh_ecdhkex_w_getkey, }; const ssh_kex ssh_ec_kex_nistp521 = { "ecdh-sha2-nistp521", NULL, KEXTYPE_ECDH, &ssh_sha512, &kex_extra_nistp521, }; static const ssh_kex *const ec_kex_list[] = { &ssh_ec_kex_curve448, &ssh_ec_kex_curve25519, &ssh_ec_kex_curve25519_libssh, &ssh_ec_kex_nistp256, &ssh_ec_kex_nistp384, &ssh_ec_kex_nistp521, }; const ssh_kexes ssh_ecdh_kex = { lenof(ec_kex_list), ec_kex_list }; /* ---------------------------------------------------------------------- * Helper functions for finding key algorithms and returning auxiliary * data. */ const ssh_keyalg *ec_alg_by_oid(int len, const void *oid, const struct ec_curve **curve) { static const ssh_keyalg *algs_with_oid[] = { &ssh_ecdsa_nistp256, &ssh_ecdsa_nistp384, &ssh_ecdsa_nistp521, }; int i; for (i = 0; i < lenof(algs_with_oid); i++) { const ssh_keyalg *alg = algs_with_oid[i]; const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; if (len == extra->oidlen && !memcmp(oid, extra->oid, len)) { *curve = extra->curve(); return alg; } } return NULL; } const unsigned char *ec_alg_oid(const ssh_keyalg *alg, int *oidlen) { const struct ecsign_extra *extra = (const struct ecsign_extra *)alg->extra; *oidlen = extra->oidlen; return extra->oid; } const int ec_nist_curve_lengths[] = { 256, 384, 521 }; const int n_ec_nist_curve_lengths = lenof(ec_nist_curve_lengths); bool ec_nist_alg_and_curve_by_bits( int bits, const struct ec_curve **curve, const ssh_keyalg **alg) { switch (bits) { case 256: *alg = &ssh_ecdsa_nistp256; break; case 384: *alg = &ssh_ecdsa_nistp384; break; case 521: *alg = &ssh_ecdsa_nistp521; break; default: return false; } *curve = ((struct ecsign_extra *)(*alg)->extra)->curve(); return true; } bool ec_ed_alg_and_curve_by_bits( int bits, const struct ec_curve **curve, const ssh_keyalg **alg) { switch (bits) { case 255: case 256: *alg = &ssh_ecdsa_ed25519; break; default: return false; } *curve = ((struct ecsign_extra *)(*alg)->extra)->curve(); return true; }