#!/usr/bin/env python3 import unittest import struct import itertools import functools import contextlib import hashlib import binascii import base64 try: from math import gcd except ImportError: from fractions import gcd from eccref import * from testcrypt import * from ssh import * try: base64decode = base64.decodebytes except AttributeError: base64decode = base64.decodestring def unhex(s): return binascii.unhexlify(s.replace(" ", "").replace("\n", "")) def rsa_bare(e, n): rsa = rsa_new() get_rsa_ssh1_pub(ssh_uint32(nbits(n)) + ssh1_mpint(e) + ssh1_mpint(n), rsa, 'exponent_first') return rsa def find_non_square_mod(p): # Find a non-square mod p, using the Jacobi symbol # calculation function from eccref.py. return next(z for z in itertools.count(2) if jacobi(z, p) == -1) def fibonacci_scattered(n=10): # Generate a list of Fibonacci numbers with power-of-2 indices # (F_1, F_2, F_4, ...), to be used as test inputs of varying # sizes. Also put F_0 = 0 into the list as a bonus. yield 0 a, b, c = 0, 1, 1 while True: yield b n -= 1 if n <= 0: break a, b, c = (a**2+b**2, b*(a+c), b**2+c**2) def fibonacci(n=10): # Generate the full Fibonacci sequence starting from F_0 = 0. a, b = 0, 1 while True: yield a n -= 1 if n <= 0: break a, b = b, a+b def mp_mask(mp): # Return the value that mp would represent if all its bits # were set. Useful for masking a true mathematical output # value (e.g. from an operation that can over/underflow, like # mp_sub or mp_anything_into) to check it's right within the # ability of that particular mp_int to represent. return ((1 << mp_max_bits(mp))-1) def adjtuples(iterable, n): # Return all the contiguous n-tuples of an iterable, including # overlapping ones. E.g. if called on [0,1,2,3,4] with n=3 it # would return (0,1,2), (1,2,3), (2,3,4) and then stop. it = iter(iterable) toret = [next(it) for _ in range(n-1)] for element in it: toret.append(element) yield tuple(toret) toret[:1] = [] def last(iterable): # Return the last element of an iterable, or None if it is empty. it = iter(iterable) toret = None for toret in it: pass return toret @contextlib.contextmanager def queued_random_data(nbytes, seed): hashsize = 512 // 8 data = b''.join( hashlib.sha512(unicode_to_bytes("preimage:{:d}:{}".format(i, seed))) .digest() for i in range((nbytes + hashsize - 1) // hashsize)) data = data[:nbytes] random_queue(data) yield None random_clear() @contextlib.contextmanager def queued_specific_random_data(data): random_queue(data) yield None random_clear() @contextlib.contextmanager def random_prng(seed): random_make_prng('sha256', seed) yield None random_clear() def hash_str(alg, message): h = ssh_hash_new(alg) ssh_hash_update(h, message) return ssh_hash_final(h) def hash_str_iter(alg, message_iter): h = ssh_hash_new(alg) for string in message_iter: ssh_hash_update(h, string) return ssh_hash_final(h) def mac_str(alg, key, message, cipher=None): m = ssh2_mac_new(alg, cipher) ssh2_mac_setkey(m, key) ssh2_mac_start(m) ssh2_mac_update(m, "dummy") # Make sure ssh_mac_start erases previous state ssh2_mac_start(m) ssh2_mac_update(m, message) return ssh2_mac_genresult(m) def lcm(a, b): return a * b // gcd(a, b) class MyTestBase(unittest.TestCase): "Intermediate class that adds useful helper methods." def assertEqualBin(self, x, y): # Like assertEqual, but produces more legible error reports # for random-looking binary data. self.assertEqual(binascii.hexlify(x), binascii.hexlify(y)) class mpint(MyTestBase): def testCreation(self): self.assertEqual(int(mp_new(128)), 0) self.assertEqual(int(mp_from_bytes_be(b'ABCDEFGHIJKLMNOP')), 0x4142434445464748494a4b4c4d4e4f50) self.assertEqual(int(mp_from_bytes_le(b'ABCDEFGHIJKLMNOP')), 0x504f4e4d4c4b4a494847464544434241) self.assertEqual(int(mp_from_integer(12345)), 12345) decstr = '91596559417721901505460351493238411077414937428167' self.assertEqual(int(mp_from_decimal_pl(decstr)), int(decstr, 10)) self.assertEqual(int(mp_from_decimal(decstr)), int(decstr, 10)) self.assertEqual(int(mp_from_decimal("")), 0) # For hex, test both upper and lower case digits hexstr = 'ea7cb89f409ae845215822e37D32D0C63EC43E1381C2FF8094' self.assertEqual(int(mp_from_hex_pl(hexstr)), int(hexstr, 16)) self.assertEqual(int(mp_from_hex(hexstr)), int(hexstr, 16)) self.assertEqual(int(mp_from_hex("")), 0) p2 = mp_power_2(123) self.assertEqual(int(p2), 1 << 123) p2c = mp_copy(p2) self.assertEqual(int(p2c), 1 << 123) # Check mp_copy really makes a copy, not an alias (ok, that's # testing the testcrypt system more than it's testing the # underlying C functions) mp_set_bit(p2c, 120, 1) self.assertEqual(int(p2c), (1 << 123) + (1 << 120)) self.assertEqual(int(p2), 1 << 123) def testBytesAndBits(self): x = mp_new(128) self.assertEqual(mp_get_byte(x, 2), 0) mp_set_bit(x, 2*8+3, 1) self.assertEqual(mp_get_byte(x, 2), 1<<3) self.assertEqual(mp_get_bit(x, 2*8+3), 1) mp_set_bit(x, 2*8+3, 0) self.assertEqual(mp_get_byte(x, 2), 0) self.assertEqual(mp_get_bit(x, 2*8+3), 0) # Currently I expect 128 to be a multiple of any # BIGNUM_INT_BITS value we might be running with, so these # should be exact equality self.assertEqual(mp_max_bytes(x), 128/8) self.assertEqual(mp_max_bits(x), 128) nb = lambda hexstr: mp_get_nbits(mp_from_hex(hexstr)) self.assertEqual(nb('00000000000000000000000000000000'), 0) self.assertEqual(nb('00000000000000000000000000000001'), 1) self.assertEqual(nb('00000000000000000000000000000002'), 2) self.assertEqual(nb('00000000000000000000000000000003'), 2) self.assertEqual(nb('00000000000000000000000000000004'), 3) self.assertEqual(nb('000003ffffffffffffffffffffffffff'), 106) self.assertEqual(nb('000003ffffffffff0000000000000000'), 106) self.assertEqual(nb('80000000000000000000000000000000'), 128) self.assertEqual(nb('ffffffffffffffffffffffffffffffff'), 128) def testDecAndHex(self): def checkHex(hexstr): n = mp_from_hex(hexstr) i = int(hexstr, 16) self.assertEqual(mp_get_hex(n), unicode_to_bytes("{:x}".format(i))) self.assertEqual(mp_get_hex_uppercase(n), unicode_to_bytes("{:X}".format(i))) checkHex("0") checkHex("f") checkHex("00000000000000000000000000000000000000000000000000") checkHex("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2") checkHex("ffffffffffffffffffffffffffffffffffffffffffffffffff") def checkDec(hexstr): n = mp_from_hex(hexstr) i = int(hexstr, 16) self.assertEqual(mp_get_decimal(n), unicode_to_bytes("{:d}".format(i))) checkDec("0") checkDec("f") checkDec("00000000000000000000000000000000000000000000000000") checkDec("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2") checkDec("ffffffffffffffffffffffffffffffffffffffffffffffffff") checkDec("f" * 512) def testComparison(self): inputs = [ "0", "1", "2", "10", "314159265358979", "FFFFFFFFFFFFFFFF", # Test over-long versions of some of the same numbers we # had short forms of above "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000", "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000001", "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000002", "0000000000000000000000000000000000000000000000000000000000000000" "000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", ] values = [(mp_from_hex(s), int(s, 16)) for s in inputs] for am, ai in values: for bm, bi in values: self.assertEqual(mp_cmp_eq(am, bm) == 1, ai == bi) self.assertEqual(mp_cmp_hs(am, bm) == 1, ai >= bi) if (bi >> 64) == 0: self.assertEqual(mp_eq_integer(am, bi) == 1, ai == bi) self.assertEqual(mp_hs_integer(am, bi) == 1, ai >= bi) # mp_{min,max}{,_into} is a reasonable thing to test # here as well self.assertEqual(int(mp_min(am, bm)), min(ai, bi)) self.assertEqual(int(mp_max(am, bm)), max(ai, bi)) am_small = mp_copy(am if aibi else bm) mp_max_into(am_big, am, bm) self.assertEqual(int(am_big), max(ai, bi)) def testConditionals(self): testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()] for am, ai in testnumbers: for bm, bi in testnumbers: cm = mp_copy(am) mp_select_into(cm, am, bm, 0) self.assertEqual(int(cm), ai & mp_mask(am)) mp_select_into(cm, am, bm, 1) self.assertEqual(int(cm), bi & mp_mask(am)) mp_cond_add_into(cm, am, bm, 0) self.assertEqual(int(cm), ai & mp_mask(am)) mp_cond_add_into(cm, am, bm, 1) self.assertEqual(int(cm), (ai+bi) & mp_mask(am)) mp_cond_sub_into(cm, am, bm, 0) self.assertEqual(int(cm), ai & mp_mask(am)) mp_cond_sub_into(cm, am, bm, 1) self.assertEqual(int(cm), (ai-bi) & mp_mask(am)) maxbits = max(mp_max_bits(am), mp_max_bits(bm)) cm = mp_new(maxbits) dm = mp_new(maxbits) mp_copy_into(cm, am) mp_copy_into(dm, bm) self.assertEqual(int(cm), ai) self.assertEqual(int(dm), bi) mp_cond_swap(cm, dm, 0) self.assertEqual(int(cm), ai) self.assertEqual(int(dm), bi) mp_cond_swap(cm, dm, 1) self.assertEqual(int(cm), bi) self.assertEqual(int(dm), ai) if bi != 0: mp_cond_clear(cm, 0) self.assertEqual(int(cm), bi) mp_cond_clear(cm, 1) self.assertEqual(int(cm), 0) def testBasicArithmetic(self): testnumbers = list(fibonacci_scattered(5)) testnumbers.extend([1 << (1 << i) for i in range(3,10)]) testnumbers.extend([(1 << (1 << i)) - 1 for i in range(3,10)]) testnumbers = [(mp_copy(n),n) for n in testnumbers] for am, ai in testnumbers: for bm, bi in testnumbers: self.assertEqual(int(mp_add(am, bm)), ai + bi) self.assertEqual(int(mp_mul(am, bm)), ai * bi) # Cope with underflow in subtraction diff = mp_sub(am, bm) self.assertEqual(int(diff), (ai - bi) & mp_mask(diff)) for bits in range(64, 512, 64): cm = mp_new(bits) mp_add_into(cm, am, bm) self.assertEqual(int(cm), (ai + bi) & mp_mask(cm)) mp_mul_into(cm, am, bm) self.assertEqual(int(cm), (ai * bi) & mp_mask(cm)) mp_sub_into(cm, am, bm) self.assertEqual(int(cm), (ai - bi) & mp_mask(cm)) # A test cherry-picked from the old bignum test script, # involving two numbers whose product has a single 1 bit miles # in the air and then all 0s until a bunch of cruft at the # bottom, the aim being to test that carry propagation works # all the way up. ai, bi = 0xb4ff6ed2c633847562087ed9354c5c17be212ac83b59c10c316250f50b7889e5b058bf6bfafd12825225ba225ede0cba583ffbd0882de88c9e62677385a6dbdedaf81959a273eb7909ebde21ae5d12e2a584501a6756fe50ccb93b93f0d6ee721b6052a0d88431e62f410d608532868cdf3a6de26886559e94cc2677eea9bd797918b70e2717e95b45918bd1f86530cb9989e68b632c496becff848aa1956cd57ed46676a65ce6dd9783f230c8796909eef5583fcfe4acbf9c8b4ea33a08ec3fd417cf7175f434025d032567a00fc329aee154ca20f799b961fbab8f841cb7351f561a44aea45746ceaf56874dad99b63a7d7af2769d2f185e2d1c656cc6630b5aba98399fa57, 0xb50a77c03ac195225021dc18d930a352f27c0404742f961ca828c972737bad3ada74b1144657ab1d15fe1b8aefde8784ad61783f3c8d4584aa5f22a4eeca619f90563ae351b5da46770df182cf348d8e23b25fda07670c6609118e916a57ce4043608752c91515708327e36f5bb5ebd92cd4cfb39424167a679870202b23593aa524bac541a3ad322c38102a01e9659b06a4335c78d50739a51027954ac2bf03e500f975c2fa4d0ab5dd84cc9334f219d2ae933946583e384ed5dbf6498f214480ca66987b867df0f69d92e4e14071e4b8545212dd5e29ff0248ed751e168d78934da7930bcbe10e9a212128a68de5d749c61f5e424cf8cf6aa329674de0cf49c6f9b4c8b8cc3 am = mp_copy(ai) bm = mp_copy(bi) self.assertEqual(int(mp_mul(am, bm)), ai * bi) # A regression test for a bug that came up during development # of mpint.c, relating to an intermediate value overflowing # its container. ai, bi = (2**8512 * 2 // 3), (2**4224 * 11 // 15) am = mp_copy(ai) bm = mp_copy(bi) self.assertEqual(int(mp_mul(am, bm)), ai * bi) def testAddInteger(self): initial = mp_copy(4444444444444444444444444) x = mp_new(mp_max_bits(initial) + 64) # mp_{add,sub,copy}_integer_into should be able to cope with # any uintmax_t. Test a number that requires more than 32 bits. mp_add_integer_into(x, initial, 123123123123123) self.assertEqual(int(x), 4444444444567567567567567) mp_sub_integer_into(x, initial, 123123123123123) self.assertEqual(int(x), 4444444444321321321321321) mp_copy_integer_into(x, 123123123123123) self.assertEqual(int(x), 123123123123123) # mp_mul_integer_into only takes a uint16_t integer input mp_mul_integer_into(x, initial, 10001) self.assertEqual(int(x), 44448888888888888888888884444) def testDivision(self): divisors = [1, 2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159, 141421356237309504880168872420969807856967187537694807] quotients = [0, 1, 2, 2**64-1, 2**64, 2**64+1, 17320508075688772935] for d in divisors: for q in quotients: remainders = {0, 1, d-1, 2*d//3} for r in sorted(remainders): if r >= d: continue # silly cases with tiny divisors n = q*d + r mq = mp_new(max(nbits(q), 1)) mr = mp_new(max(nbits(r), 1)) mp_divmod_into(n, d, mq, mr) self.assertEqual(int(mq), q) self.assertEqual(int(mr), r) self.assertEqual(int(mp_div(n, d)), q) self.assertEqual(int(mp_mod(n, d)), r) # Make sure divmod_into can handle not getting one # of its output pointers (or even both). mp_clear(mq) mp_divmod_into(n, d, mq, None) self.assertEqual(int(mq), q) mp_clear(mr) mp_divmod_into(n, d, None, mr) self.assertEqual(int(mr), r) mp_divmod_into(n, d, None, None) # No tests we can do after that last one - we just # insist that it isn't allowed to have crashed! def testNthRoot(self): roots = [1, 13, 1234567654321, 57721566490153286060651209008240243104215933593992] tests = [] tests.append((0, 2, 0, 0)) tests.append((0, 3, 0, 0)) for r in roots: for n in 2, 3, 5: tests.append((r**n, n, r, 0)) tests.append((r**n+1, n, r, 1)) tests.append((r**n-1, n, r-1, r**n - (r-1)**n - 1)) for x, n, eroot, eremainder in tests: with self.subTest(x=x): mx = mp_copy(x) remainder = mp_copy(mx) root = mp_nthroot(x, n, remainder) self.assertEqual(int(root), eroot) self.assertEqual(int(remainder), eremainder) self.assertEqual(int(mp_nthroot(2*10**100, 2, None)), 141421356237309504880168872420969807856967187537694) self.assertEqual(int(mp_nthroot(3*10**150, 3, None)), 144224957030740838232163831078010958839186925349935) def testBitwise(self): p = 0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e e = 0x2b7e151628aed2a6abf7158809cf4f3c762e7160f38b4da56a784d9045190 x = mp_new(nbits(p)) mp_and_into(x, p, e) self.assertEqual(int(x), p & e) mp_or_into(x, p, e) self.assertEqual(int(x), p | e) mp_xor_into(x, p, e) self.assertEqual(int(x), p ^ e) mp_bic_into(x, p, e) self.assertEqual(int(x), p & ~e) def testInversion(self): # Test mp_invert_mod_2to. testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered() if n & 1] for power2 in [1, 2, 3, 5, 13, 32, 64, 127, 128, 129]: for am, ai in testnumbers: bm = mp_invert_mod_2to(am, power2) bi = int(bm) self.assertEqual(((ai * bi) & ((1 << power2) - 1)), 1) # mp_reduce_mod_2to is a much simpler function, but # this is as good a place as any to test it. rm = mp_copy(am) mp_reduce_mod_2to(rm, power2) self.assertEqual(int(rm), ai & ((1 << power2) - 1)) # Test mp_invert proper. moduli = [2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159, 141421356237309504880168872420969807856967187537694807, 2**128-1] for m in moduli: # Prepare a MontyContext for the monty_invert test below # (unless m is even, in which case we can't) mc = monty_new(m) if m & 1 else None to_invert = {1, 2, 3, 7, 19, m-1, 5*m//17, (m-1)//2, (m+1)//2} for x in sorted(to_invert): if gcd(x, m) != 1: continue # filter out non-invertible cases inv = int(mp_invert(x, m)) assert x * inv % m == 1 # Test monty_invert too, while we're here if mc is not None: self.assertEqual( int(monty_invert(mc, monty_import(mc, x))), int(monty_import(mc, inv))) def testGCD(self): powerpairs = [(0,0), (1,0), (1,1), (2,1), (2,2), (75,3), (17,23)] for a2, b2 in powerpairs: for a3, b3 in powerpairs: for a5, b5 in powerpairs: a = 2**a2 * 3**a3 * 5**a5 * 17 * 19 * 23 b = 2**b2 * 3**b3 * 5**b5 * 65423 d = 2**min(a2, b2) * 3**min(a3, b3) * 5**min(a5, b5) ma = mp_copy(a) mb = mp_copy(b) self.assertEqual(int(mp_gcd(ma, mb)), d) md = mp_new(nbits(d)) mA = mp_new(nbits(b)) mB = mp_new(nbits(a)) mp_gcd_into(ma, mb, md, mA, mB) self.assertEqual(int(md), d) A = int(mA) B = int(mB) self.assertEqual(a*A - b*B, d) self.assertTrue(0 <= A < b//d) self.assertTrue(0 <= B < a//d) self.assertEqual(mp_coprime(ma, mb), 1 if d==1 else 0) # Make sure gcd_into can handle not getting some # of its output pointers. mp_clear(md) mp_gcd_into(ma, mb, md, None, None) self.assertEqual(int(md), d) mp_clear(mA) mp_gcd_into(ma, mb, None, mA, None) self.assertEqual(int(mA), A) mp_clear(mB) mp_gcd_into(ma, mb, None, None, mB) self.assertEqual(int(mB), B) mp_gcd_into(ma, mb, None, None, None) # No tests we can do after that last one - we just # insist that it isn't allowed to have crashed! def testMonty(self): moduli = [5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19, 293828847201107461142630006802421204703, 113064788724832491560079164581712332614996441637880086878209969852674997069759] for m in moduli: mc = monty_new(m) # Import some numbers inputs = [(monty_import(mc, n), n) for n in sorted({0, 1, 2, 3, 2*m//3, m-1})] # Check modulus and identity self.assertEqual(int(monty_modulus(mc)), m) self.assertEqual(int(monty_identity(mc)), int(inputs[1][0])) # Check that all those numbers export OK for mn, n in inputs: self.assertEqual(int(monty_export(mc, mn)), n) for ma, a in inputs: for mb, b in inputs: xprod = int(monty_export(mc, monty_mul(mc, ma, mb))) self.assertEqual(xprod, a*b % m) xsum = int(monty_export(mc, monty_add(mc, ma, mb))) self.assertEqual(xsum, (a+b) % m) xdiff = int(monty_export(mc, monty_sub(mc, ma, mb))) self.assertEqual(xdiff, (a-b) % m) # Test the ordinary mp_mod{add,sub,mul} at the # same time, even though those don't do any # montying at all xprod = int(mp_modmul(a, b, m)) self.assertEqual(xprod, a*b % m) xsum = int(mp_modadd(a, b, m)) self.assertEqual(xsum, (a+b) % m) xdiff = int(mp_modsub(a, b, m)) self.assertEqual(xdiff, (a-b) % m) for ma, a in inputs: # Compute a^0, a^1, a^1, a^2, a^3, a^5, ... indices = list(fibonacci()) powers = [int(monty_export(mc, monty_pow(mc, ma, power))) for power in indices] # Check the first two make sense self.assertEqual(powers[0], 1) self.assertEqual(powers[1], a) # Check the others using the Fibonacci identity: # F_n + F_{n+1} = F_{n+2}, so a^{F_n} a^{F_{n+1}} = a^{F_{n+2}} for p0, p1, p2 in adjtuples(powers, 3): self.assertEqual(p2, p0 * p1 % m) # Test the ordinary mp_modpow here as well, while # we've got the machinery available for index, power in zip(indices, powers): self.assertEqual(int(mp_modpow(a, index, m)), power) # A regression test for a bug I encountered during initial # development of mpint.c, in which an incomplete reduction # happened somewhere in an intermediate value. b, e, m = 0x2B5B93812F253FF91F56B3B4DAD01CA2884B6A80719B0DA4E2159A230C6009EDA97C5C8FD4636B324F9594706EE3AD444831571BA5E17B1B2DFA92DEA8B7E, 0x25, 0xC8FCFD0FD7371F4FE8D0150EFC124E220581569587CCD8E50423FA8D41E0B2A0127E100E92501E5EE3228D12EA422A568C17E0AD2E5C5FCC2AE9159D2B7FB8CB assert(int(mp_modpow(b, e, m)) == pow(b, e, m)) # Make sure mp_modpow can handle a base larger than the # modulus, by pre-reducing it assert(int(mp_modpow(1<<877, 907, 999979)) == pow(2, 877*907, 999979)) def testModsqrt(self): moduli = [ 5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19, 293828847201107461142630006802421204703, 113064788724832491560079164581712332614996441637880086878209969852674997069759, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6FFFFFFFF00000001] for p in moduli: # Count the factors of 2 in the group. (That is, we want # p-1 to be an odd multiple of 2^{factors_of_2}.) factors_of_2 = nbits((p-1) & (1-p)) - 1 assert (p & ((2 << factors_of_2)-1)) == ((1 << factors_of_2)+1) z = find_non_square_mod(p) sc = modsqrt_new(p, z) def ptest(x): root, success = mp_modsqrt(sc, x) r = int(root) self.assertTrue(success) self.assertEqual((r * r - x) % p, 0) def ntest(x): root, success = mp_modsqrt(sc, x) self.assertFalse(success) # Make up some more or less random values mod p to square v1 = pow(3, nbits(p), p) v2 = pow(5, v1, p) test_roots = [0, 1, 2, 3, 4, 3*p//4, v1, v2, v1+1, 12873*v1, v1*v2] known_squares = {r*r % p for r in test_roots} for s in known_squares: ptest(s) if s != 0: ntest(z*s % p) # Make sure we've tested a value that is in each of the # subgroups of order (p-1)/2^k but not in the next one # (with the exception of k=0, which just means 'have we # tested a non-square?', which we have in the above loop). # # We do this by starting with a known non-square; then # squaring it (factors_of_2) times will return values # nested deeper and deeper in those subgroups. vbase = z for k in range(factors_of_2): # Adjust vbase by an arbitrary odd power of # z, so that it won't look too much like the previous # value. vbase = vbase * pow(z, (vbase + v1 + v2) | 1, p) % p # Move vbase into the next smaller group by squaring # it. vbase = pow(vbase, 2, p) ptest(vbase) def testShifts(self): x = ((1<<900) // 9949) | 1 for i in range(2049): mp = mp_copy(x) mp_lshift_fixed_into(mp, mp, i) self.assertEqual(int(mp), (x << i) & mp_mask(mp)) mp_copy_into(mp, x) mp_lshift_safe_into(mp, mp, i) self.assertEqual(int(mp), (x << i) & mp_mask(mp)) mp_copy_into(mp, x) mp_rshift_fixed_into(mp, mp, i) self.assertEqual(int(mp), x >> i) mp_copy_into(mp, x) mp_rshift_safe_into(mp, mp, i) self.assertEqual(int(mp), x >> i) self.assertEqual(int(mp_rshift_fixed(x, i)), x >> i) self.assertEqual(int(mp_rshift_safe(x, i)), x >> i) def testRandom(self): # Test random_bits to ensure it correctly masks the return # value, and uses exactly as many random bytes as we expect it # to. for bits in range(512): bytes_needed = (bits + 7) // 8 with queued_random_data(bytes_needed, "random_bits test"): mp = mp_random_bits(bits) self.assertTrue(int(mp) < (1 << bits)) self.assertEqual(random_queue_len(), 0) # Test mp_random_in_range to ensure it returns things in the # right range. for rangesize in [2, 3, 19, 35]: for lo in [0, 1, 0x10001, 1<<512]: hi = lo + rangesize bytes_needed = mp_max_bytes(hi) + 16 for trial in range(rangesize*3): with queued_random_data( bytes_needed, "random_in_range {:d}".format(trial)): v = int(mp_random_in_range(lo, hi)) self.assertTrue(lo <= v < hi) class ecc(MyTestBase): def testWeierstrassSimple(self): # Simple tests using a Weierstrass curve I made up myself, # which (unlike the ones used for serious crypto) is small # enough that you can fit all the coordinates for a curve on # to your retina in one go. p = 3141592661 a, b = -3 % p, 12345 rc = WeierstrassCurve(p, a, b) wc = ecc_weierstrass_curve(p, a, b, None) def check_point(wp, rp): self.assertTrue(ecc_weierstrass_point_valid(wp)) is_id = ecc_weierstrass_is_identity(wp) x, y = ecc_weierstrass_get_affine(wp) if rp.infinite: self.assertEqual(is_id, 1) else: self.assertEqual(is_id, 0) self.assertEqual(int(x), int(rp.x)) self.assertEqual(int(y), int(rp.y)) def make_point(x, y): wp = ecc_weierstrass_point_new(wc, x, y) rp = rc.point(x, y) check_point(wp, rp) return wp, rp # Some sample points, including the identity and also a pair # of mutual inverses. wI, rI = ecc_weierstrass_point_new_identity(wc), rc.point() wP, rP = make_point(102, 387427089) wQ, rQ = make_point(1000, 546126574) wmP, rmP = make_point(102, p - 387427089) # Check the simple arithmetic functions. check_point(ecc_weierstrass_add(wP, wQ), rP + rQ) check_point(ecc_weierstrass_add(wQ, wP), rP + rQ) check_point(ecc_weierstrass_double(wP), rP + rP) check_point(ecc_weierstrass_double(wQ), rQ + rQ) # Check all the special cases with add_general: # Adding two finite unequal non-mutually-inverse points check_point(ecc_weierstrass_add_general(wP, wQ), rP + rQ) # Doubling a finite point check_point(ecc_weierstrass_add_general(wP, wP), rP + rP) check_point(ecc_weierstrass_add_general(wQ, wQ), rQ + rQ) # Adding the identity to a point (both ways round) check_point(ecc_weierstrass_add_general(wI, wP), rP) check_point(ecc_weierstrass_add_general(wI, wQ), rQ) check_point(ecc_weierstrass_add_general(wP, wI), rP) check_point(ecc_weierstrass_add_general(wQ, wI), rQ) # Doubling the identity check_point(ecc_weierstrass_add_general(wI, wI), rI) # Adding a point to its own inverse, giving the identity. check_point(ecc_weierstrass_add_general(wmP, wP), rI) check_point(ecc_weierstrass_add_general(wP, wmP), rI) # Verify that point_valid fails if we pass it nonsense. bogus = ecc_weierstrass_point_new(wc, int(rP.x), int(rP.y * 3)) self.assertFalse(ecc_weierstrass_point_valid(bogus)) # Re-instantiate the curve with the ability to take square # roots, and check that we can reconstruct P and Q from their # x coordinate and y parity only. wc = ecc_weierstrass_curve(p, a, b, find_non_square_mod(p)) x, yp = int(rP.x), (int(rP.y) & 1) check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rP) check_point(ecc_weierstrass_point_new_from_x(wc, x, yp ^ 1), rmP) x, yp = int(rQ.x), (int(rQ.y) & 1) check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rQ) def testMontgomerySimple(self): p, a, b = 3141592661, 0xabc, 0xde rc = MontgomeryCurve(p, a, b) mc = ecc_montgomery_curve(p, a, b) rP = rc.cpoint(0x1001) rQ = rc.cpoint(0x20001) rdiff = rP - rQ rsum = rP + rQ def make_mpoint(rp): return ecc_montgomery_point_new(mc, int(rp.x)) mP = make_mpoint(rP) mQ = make_mpoint(rQ) mdiff = make_mpoint(rdiff) msum = make_mpoint(rsum) def check_point(mp, rp): x = ecc_montgomery_get_affine(mp) self.assertEqual(int(x), int(rp.x)) check_point(ecc_montgomery_diff_add(mP, mQ, mdiff), rsum) check_point(ecc_montgomery_diff_add(mQ, mP, mdiff), rsum) check_point(ecc_montgomery_diff_add(mP, mQ, msum), rdiff) check_point(ecc_montgomery_diff_add(mQ, mP, msum), rdiff) check_point(ecc_montgomery_double(mP), rP + rP) check_point(ecc_montgomery_double(mQ), rQ + rQ) zero = ecc_montgomery_point_new(mc, 0) self.assertEqual(ecc_montgomery_is_identity(zero), False) identity = ecc_montgomery_double(zero) ecc_montgomery_get_affine(identity) self.assertEqual(ecc_montgomery_is_identity(identity), True) def testEdwardsSimple(self): p, d, a = 3141592661, 2688750488, 367934288 rc = TwistedEdwardsCurve(p, d, a) ec = ecc_edwards_curve(p, d, a, None) def check_point(ep, rp): x, y = ecc_edwards_get_affine(ep) self.assertEqual(int(x), int(rp.x)) self.assertEqual(int(y), int(rp.y)) def make_point(x, y): ep = ecc_edwards_point_new(ec, x, y) rp = rc.point(x, y) check_point(ep, rp) return ep, rp # Some sample points, including the identity and also a pair # of mutual inverses. eI, rI = make_point(0, 1) eP, rP = make_point(196270812, 1576162644) eQ, rQ = make_point(1777630975, 2717453445) emP, rmP = make_point(p - 196270812, 1576162644) # Check that the ordinary add function handles all the special # cases. # Adding two finite unequal non-mutually-inverse points check_point(ecc_edwards_add(eP, eQ), rP + rQ) check_point(ecc_edwards_add(eQ, eP), rP + rQ) # Doubling a finite point check_point(ecc_edwards_add(eP, eP), rP + rP) check_point(ecc_edwards_add(eQ, eQ), rQ + rQ) # Adding the identity to a point (both ways round) check_point(ecc_edwards_add(eI, eP), rP) check_point(ecc_edwards_add(eI, eQ), rQ) check_point(ecc_edwards_add(eP, eI), rP) check_point(ecc_edwards_add(eQ, eI), rQ) # Doubling the identity check_point(ecc_edwards_add(eI, eI), rI) # Adding a point to its own inverse, giving the identity. check_point(ecc_edwards_add(emP, eP), rI) check_point(ecc_edwards_add(eP, emP), rI) # Re-instantiate the curve with the ability to take square # roots, and check that we can reconstruct P and Q from their # y coordinate and x parity only. ec = ecc_edwards_curve(p, d, a, find_non_square_mod(p)) y, xp = int(rP.y), (int(rP.x) & 1) check_point(ecc_edwards_point_new_from_y(ec, y, xp), rP) check_point(ecc_edwards_point_new_from_y(ec, y, xp ^ 1), rmP) y, xp = int(rQ.y), (int(rQ.x) & 1) check_point(ecc_edwards_point_new_from_y(ec, y, xp), rQ) # For testing point multiplication, let's switch to the full-sized # standard curves, because I want to have tested those a bit too. def testWeierstrassMultiply(self): wc = ecc_weierstrass_curve(p256.p, int(p256.a), int(p256.b), None) wG = ecc_weierstrass_point_new(wc, int(p256.G.x), int(p256.G.y)) self.assertTrue(ecc_weierstrass_point_valid(wG)) ints = set(i % p256.p for i in fibonacci_scattered(10)) ints.remove(0) # the zero multiple isn't expected to work for i in sorted(ints): wGi = ecc_weierstrass_multiply(wG, i) x, y = ecc_weierstrass_get_affine(wGi) rGi = p256.G * i self.assertEqual(int(x), int(rGi.x)) self.assertEqual(int(y), int(rGi.y)) def testMontgomeryMultiply(self): mc = ecc_montgomery_curve( curve25519.p, int(curve25519.a), int(curve25519.b)) mG = ecc_montgomery_point_new(mc, int(curve25519.G.x)) ints = set(i % p256.p for i in fibonacci_scattered(10)) ints.remove(0) # the zero multiple isn't expected to work for i in sorted(ints): mGi = ecc_montgomery_multiply(mG, i) x = ecc_montgomery_get_affine(mGi) rGi = curve25519.G * i self.assertEqual(int(x), int(rGi.x)) def testEdwardsMultiply(self): ec = ecc_edwards_curve(ed25519.p, int(ed25519.d), int(ed25519.a), None) eG = ecc_edwards_point_new(ec, int(ed25519.G.x), int(ed25519.G.y)) ints = set(i % ed25519.p for i in fibonacci_scattered(10)) ints.remove(0) # the zero multiple isn't expected to work for i in sorted(ints): eGi = ecc_edwards_multiply(eG, i) x, y = ecc_edwards_get_affine(eGi) rGi = ed25519.G * i self.assertEqual(int(x), int(rGi.x)) self.assertEqual(int(y), int(rGi.y)) class keygen(MyTestBase): def testPrimeCandidateSource(self): def inspect(pcs): # Returns (pcs->limit, pcs->factor, pcs->addend) as Python integers return tuple(map(int, pcs_inspect(pcs))) # Test accumulating modular congruence requirements, by # inspecting the internal values computed during # require_residue. We ensure that the addend satisfies all our # congruences and the factor is the lcm of all the moduli # (hence, the arithmetic progression defined by those # parameters is precisely the set of integers satisfying the # requirements); we also ensure that the limiting values # (addend itself at the low end, and addend + (limit-1) * # factor at the high end) are the maximal subsequence of that # progression that are within the originally specified range. def check(pcs, lo, hi, mod_res_pairs): limit, factor, addend = inspect(pcs) for mod, res in mod_res_pairs: self.assertEqual(addend % mod, res % mod) self.assertEqual(factor, functools.reduce( lcm, [mod for mod, res in mod_res_pairs])) self.assertFalse(lo <= addend + (-1) * factor < hi) self.assertTrue (lo <= addend < hi) self.assertTrue (lo <= addend + (limit-1) * factor < hi) self.assertFalse(lo <= addend + limit * factor < hi) pcs = pcs_new(64) check(pcs, 2**63, 2**64, [(2, 1)]) pcs_require_residue(pcs, 3, 2) check(pcs, 2**63, 2**64, [(2, 1), (3, 2)]) pcs_require_residue_1(pcs, 7) check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1)]) pcs_require_residue(pcs, 16, 7) check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7)]) pcs_require_residue(pcs, 49, 8) check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7), (49, 8)]) # Now test-generate some actual values, and ensure they # satisfy all the congruences, and also avoid one residue mod # 5 that we told them to. Also, give a nontrivial range. pcs = pcs_new_with_firstbits(64, 0xAB, 8) pcs_require_residue(pcs, 0x100, 0xCD) pcs_require_residue_1(pcs, 65537) pcs_avoid_residue_small(pcs, 5, 3) pcs_ready(pcs) with random_prng("test seed"): for i in range(100): n = int(pcs_generate(pcs)) self.assertTrue((0xAB<<56) < n < (0xAC<<56)) self.assertEqual(n % 0x100, 0xCD) self.assertEqual(n % 65537, 1) self.assertNotEqual(n % 5, 3) # I'm not actually testing here that the outputs of # pcs_generate are non-multiples of _all_ primes up to # 2^16. But checking this many for 100 turns is enough # to be pretty sure. (If you take the product of # (1-1/p) over all p in the list below, you find that # a given random number has about a 13% chance of # avoiding being a multiple of any of them. So 100 # trials without a mistake gives you 0.13^100 < 10^-88 # as the probability of it happening by chance. More # likely the code is actually working :-) for p in [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]: self.assertNotEqual(n % p, 0) def testPocklePositive(self): def add_small(po, *ps): for p in ps: self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK') def add(po, *args): self.assertEqual(pockle_add_prime(po, *args), 'POCKLE_OK') # Transcription of the proof that 2^130-5 is prime from # Theorem 3.1 from http://cr.yp.to/mac/poly1305-20050329.pdf po = pockle_new() p1 = (2**130 - 6) // 1517314646 p2 = (p1 - 1) // 222890620702 add_small(po, 37003, 221101) add(po, p2, [37003, 221101], 2) add(po, p1, [p2], 2) add(po, 2**130 - 5, [p1], 2) # My own proof that 2^255-19 is prime po = pockle_new() p1 = 8574133 p2 = 1919519569386763 p3 = 75445702479781427272750846543864801 p4 = (2**255 - 20) // (65147*12) p = 2**255 - 19 add_small(po, p1) add(po, p2, [p1], 2) add(po, p3, [p2], 2) add(po, p4, [p3], 2) add(po, p, [p4], 2) # And the prime used in Ed448, while I'm here po = pockle_new() p1 = 379979 p2 = 1764234391 p3 = 97859369123353 p4 = 34741861125639557 p5 = 36131535570665139281 p6 = 167773885276849215533569 p7 = 596242599987116128415063 p = 2**448 - 2**224 - 1 add_small(po, p1, p2) add(po, p3, [p1], 2) add(po, p4, [p2], 2) add(po, p5, [p4], 2) add(po, p6, [p3], 3) add(po, p7, [p5], 3) add(po, p, [p6, p7], 2) p = 4095744004479977 factors = [2, 79999] # just enough factors to exceed cbrt(p) po = pockle_new() for q in factors: add_small(po, q) add(po, p, factors, 3) # The order of the generator in Ed25519 po = pockle_new() p1a, p1b = 132667, 137849 p2 = 3044861653679985063343 p3 = 198211423230930754013084525763697 p = 2**252 + 0x14def9dea2f79cd65812631a5cf5d3ed add_small(po, p1a, p1b) add(po, p2, [p1a, p1b], 2) add(po, p3, [p2], 2) add(po, p, [p3], 2) # And the one in Ed448 po = pockle_new() p1 = 766223 p2 = 3009341 p3 = 7156907 p4 = 671065561 p5 = 342682509629 p6 = 6730519843040614479184435237013 p = 2**446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d add_small(po, p1, p2, p3, p4) add(po, p5, [p1], 2) add(po, p6, [p3,p4], 2) add(po, p, [p2,p5,p6], 2) def testPockleNegative(self): def add_small(po, p): self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK') po = pockle_new() self.assertEqual(pockle_add_small_prime(po, 0), 'POCKLE_PRIME_SMALLER_THAN_2') self.assertEqual(pockle_add_small_prime(po, 1), 'POCKLE_PRIME_SMALLER_THAN_2') self.assertEqual(pockle_add_small_prime(po, 2**61 - 1), 'POCKLE_SMALL_PRIME_NOT_SMALL') self.assertEqual(pockle_add_small_prime(po, 4), 'POCKLE_SMALL_PRIME_NOT_PRIME') po = pockle_new() self.assertEqual(pockle_add_prime(po, 1919519569386763, [8574133], 2), 'POCKLE_FACTOR_NOT_KNOWN_PRIME') po = pockle_new() add_small(po, 8574133) self.assertEqual(pockle_add_prime(po, 1919519569386765, [8574133], 2), 'POCKLE_FACTOR_NOT_A_FACTOR') p = 4095744004479977 factors = [2, 79997] # not quite enough factors to reach cbrt(p) po = pockle_new() for q in factors: add_small(po, q) self.assertEqual(pockle_add_prime(po, p, factors, 3), 'POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL') p = 1999527 * 3999053 factors = [999763] po = pockle_new() for q in factors: add_small(po, q) self.assertEqual(pockle_add_prime(po, p, factors, 3), 'POCKLE_DISCRIMINANT_IS_SQUARE') p = 9999929 * 9999931 factors = [257, 2593] po = pockle_new() for q in factors: add_small(po, q) self.assertEqual(pockle_add_prime(po, p, factors, 3), 'POCKLE_FERMAT_TEST_FAILED') p = 1713000920401 # a Carmichael number po = pockle_new() add_small(po, 561787) self.assertEqual(pockle_add_prime(po, p, [561787], 2), 'POCKLE_WITNESS_POWER_IS_1') p = 4294971121 factors = [3, 5, 11, 17] po = pockle_new() for q in factors: add_small(po, q) self.assertEqual(pockle_add_prime(po, p, factors, 17), 'POCKLE_WITNESS_POWER_NOT_COPRIME') po = pockle_new() add_small(po, 2) self.assertEqual(pockle_add_prime(po, 1, [2], 1), 'POCKLE_PRIME_SMALLER_THAN_2') class crypt(MyTestBase): def testSSH1Fingerprint(self): # Example key and reference fingerprint value generated by # OpenSSH 6.7 ssh-keygen rsa = rsa_bare(65537, 984185866443261798625575612408956568591522723900235822424492423996716524817102482330189709310179009158443944785704183009867662230534501187034891091310377917105259938712348098594526746211645472854839799025154390701673823298369051411) fp = rsa_ssh1_fingerprint(rsa) self.assertEqual( fp, b"768 96:12:c8:bc:e6:03:75:86:e8:c7:b9:af:d8:0c:15:75") def testAES(self): # My own test cases, generated by a mostly independent # reference implementation of AES in Python. ('Mostly' # independent in that it was written by me.) def vector(cipher, key, iv, plaintext, ciphertext): for suffix in "hw", "sw": c = ssh_cipher_new("{}_{}".format(cipher, suffix)) if c is None: return # skip test if HW AES not available ssh_cipher_setkey(c, key) ssh_cipher_setiv(c, iv) self.assertEqualBin( ssh_cipher_encrypt(c, plaintext), ciphertext) ssh_cipher_setiv(c, iv) self.assertEqualBin( ssh_cipher_decrypt(c, ciphertext), plaintext) # Tests of CBC mode. key = unhex( '98483c6eb40b6c31a448c22a66ded3b5e5e8d5119cac8327b655c8b5c4836489') iv = unhex('38f87b0b9b736160bfc0cbd8447af6ee') plaintext = unhex(''' ee16271827b12d828f61d56fddccc38ccaa69601da2b36d3af1a34c51947b71a 362f05e07bf5e7766c24599799b252ad2d5954353c0c6ca668c46779c2659c94 8df04e4179666e335470ff042e213c8bcff57f54842237fbf9f3c7e6111620ac 1c007180edd25f0e337c2a49d890a7173f6b52d61e3d2a21ddc8e41513a0e825 afd5932172270940b01014b5b7fb8495946151520a126518946b44ea32f9b2a9 ''') vector('aes128_cbc', key[:16], iv, plaintext, unhex(''' 547ee90514cb6406d5bb00855c8092892c58299646edda0b4e7c044247795c8d 3c3eb3d91332e401215d4d528b94a691969d27b7890d1ae42fe3421b91c989d5 113fefa908921a573526259c6b4f8e4d90ea888e1d8b7747457ba3a43b5b79b9 34873ebf21102d14b51836709ee85ed590b7ca618a1e884f5c57c8ea73fe3d0d 6bf8c082dd602732bde28131159ed0b6e9cf67c353ffdd010a5a634815aaa963''')) vector('aes192_cbc', key[:24], iv, plaintext, unhex(''' e3dee5122edd3fec5fab95e7db8c784c0cb617103e2a406fba4ae3b4508dd608 4ff5723a670316cc91ed86e413c11b35557c56a6f5a7a2c660fc6ee603d73814 73a287645be0f297cdda97aef6c51faeb2392fec9d33adb65138d60f954babd9 8ee0daab0d1decaa8d1e07007c4a3c7b726948025f9fb72dd7de41f74f2f36b4 23ac6a5b4b6b39682ec74f57d9d300e547f3c3e467b77f5e4009923b2f94c903''')) vector('aes256_cbc', key[:32], iv, plaintext, unhex(''' 088c6d4d41997bea79c408925255266f6c32c03ea465a5f607c2f076ec98e725 7e0beed79609b3577c16ebdf17d7a63f8865278e72e859e2367de81b3b1fe9ab 8f045e1d008388a3cfc4ff87daffedbb47807260489ad48566dbe73256ce9dd4 ae1689770a883b29695928f5983f33e8d7aec4668f64722e943b0b671c365709 dfa86c648d5fb00544ff11bd29121baf822d867e32da942ba3a0d26299bcee13''')) # Tests of SDCTR mode, one with a random IV and one with an IV # about to wrap round. More vigorous tests of IV carry and # wraparound behaviour are in the testAESSDCTR method. sdctrIVs = [ unhex('38f87b0b9b736160bfc0cbd8447af6ee'), unhex('fffffffffffffffffffffffffffffffe'), ] vector('aes128_ctr', key[:16], sdctrIVs[0], plaintext[:64], unhex(''' d0061d7b6e8c4ef4fe5614b95683383f46cdd2766e66b6fb0b0f0b3a24520b2d 15d869b06cbf685ede064bcf8fb5fb6726cfd68de7016696a126e9e84420af38''')) vector('aes128_ctr', key[:16], sdctrIVs[1], plaintext[:64], unhex(''' 49ac67164fd9ce8701caddbbc9a2b06ac6524d4aa0fdac95253971974b8f3bc2 bb8d7c970f6bcd79b25218cc95582edf7711aae2384f6cf91d8d07c9d9b370bc''')) vector('aes192_ctr', key[:24], sdctrIVs[0], plaintext[:64], unhex(''' 0baa86acbe8580845f0671b7ebad4856ca11b74e5108f515e34e54fa90f87a9a c6eee26686253c19156f9be64957f0dbc4f8ecd7cabb1f4e0afefe33888faeec''')) vector('aes192_ctr', key[:24], sdctrIVs[1], plaintext[:64], unhex(''' 2da1791250100dc0d1461afe1bbfad8fa0320253ba5d7905d837386ba0a3a41f 01965c770fcfe01cf307b5316afb3981e0e4aa59a6e755f0a5784d9accdc52be''')) vector('aes256_ctr', key[:32], sdctrIVs[0], plaintext[:64], unhex(''' 49c7b284222d408544c770137b6ef17ef770c47e24f61fa66e7e46cae4888882 f980a0f2446956bf47d2aed55ebd2e0694bfc46527ed1fd33efe708fec2f8b1f''')) vector('aes256_ctr', key[:32], sdctrIVs[1], plaintext[:64], unhex(''' f1d013c3913ccb4fc0091e25d165804480fb0a1d5c741bf012bba144afda6db2 c512f3942018574bd7a8fdd88285a73d25ef81e621aebffb6e9b8ecc8e2549d4''')) def testAESSDCTR(self): # A thorough test of the IV-incrementing component of SDCTR # mode. We set up an AES-SDCTR cipher object with the given # input IV; we encrypt two all-zero blocks, expecting the # return values to be the AES-ECB encryptions of the input IV # and the incremented version. Then we decrypt each of them by # feeding them to an AES-CBC cipher object with its IV set to # zero. def increment(keylen, suffix, iv): key = b'\xab' * (keylen//8) sdctr = ssh_cipher_new("aes{}_ctr_{}".format(keylen, suffix)) if sdctr is None: return # skip test if HW AES not available ssh_cipher_setkey(sdctr, key) cbc = ssh_cipher_new("aes{}_cbc_{}".format(keylen, suffix)) ssh_cipher_setkey(cbc, key) ssh_cipher_setiv(sdctr, iv) ec0 = ssh_cipher_encrypt(sdctr, b'\x00' * 16) ec1 = ssh_cipher_encrypt(sdctr, b'\x00' * 16) ssh_cipher_setiv(cbc, b'\x00' * 16) dc0 = ssh_cipher_decrypt(cbc, ec0) ssh_cipher_setiv(cbc, b'\x00' * 16) dc1 = ssh_cipher_decrypt(cbc, ec1) self.assertEqualBin(iv, dc0) return dc1 def test(keylen, suffix, ivInteger): mask = (1 << 128) - 1 ivInteger &= mask ivBinary = unhex("{:032x}".format(ivInteger)) ivIntegerInc = (ivInteger + 1) & mask ivBinaryInc = unhex("{:032x}".format((ivIntegerInc))) actualResult = increment(keylen, suffix, ivBinary) if actualResult is not None: self.assertEqualBin(actualResult, ivBinaryInc) # Check every input IV you can make by gluing together 32-bit # pieces of the form 0, 1 or -1. This should test all the # places where carry propagation within the 128-bit integer # can go wrong. # # We also test this at all three AES key lengths, in case the # core cipher routines are written separately for each one. for suffix in "hw", "sw": for keylen in [128, 192, 256]: hexTestValues = ["00000000", "00000001", "ffffffff"] for ivHexBytes in itertools.product(*([hexTestValues] * 4)): ivInteger = int("".join(ivHexBytes), 16) test(keylen, suffix, ivInteger) def testAESParallelism(self): # Since at least one of our implementations of AES works in # parallel, here's a test that CBC decryption works the same # way no matter how the input data is divided up. # A pile of conveniently available random-looking test data. test_ciphertext = ssh2_mpint(last(fibonacci_scattered(14))) test_ciphertext += b"x" * (15 & -len(test_ciphertext)) # pad to a block # Test key and IV. test_key = b"foobarbazquxquuxFooBarBazQuxQuux" test_iv = b"FOOBARBAZQUXQUUX" for keylen in [128, 192, 256]: decryptions = [] for suffix in "hw", "sw": c = ssh_cipher_new("aes{:d}_cbc_{}".format(keylen, suffix)) if c is None: continue ssh_cipher_setkey(c, test_key[:keylen//8]) for chunklen in range(16, 16*12, 16): ssh_cipher_setiv(c, test_iv) decryption = b"" for pos in range(0, len(test_ciphertext), chunklen): chunk = test_ciphertext[pos:pos+chunklen] decryption += ssh_cipher_decrypt(c, chunk) decryptions.append(decryption) for d in decryptions: self.assertEqualBin(d, decryptions[0]) def testCRC32(self): # Check the effect of every possible single-byte input to # crc32_update. In the traditional implementation with a # 256-word lookup table, this exercises every table entry; in # _any_ implementation which iterates over the input one byte # at a time, it should be a similarly exhaustive test. (But if # a more optimised implementation absorbed _more_ than 8 bits # at a time, then perhaps this test wouldn't be enough...) # It would be nice if there was a functools.iterate() which # would apply a function n times. Failing that, making shift1 # accept and ignore a second argument allows me to iterate it # 8 times using functools.reduce. shift1 = lambda x, dummy=None: (x >> 1) ^ (0xEDB88320 * (x & 1)) shift8 = lambda x: functools.reduce(shift1, [None]*8, x) # A small selection of choices for the other input to # crc32_update, just to check linearity. test_prior_values = [0, 0xFFFFFFFF, 0x45CC1F6A, 0xA0C4ADCF, 0xD482CDF1] for prior in test_prior_values: prior_shifted = shift8(prior) for i in range(256): exp = shift8(i) ^ prior_shifted self.assertEqual(crc32_update(prior, struct.pack("B", i)), exp) # Check linearity of the _reference_ implementation, while # we're at it! self.assertEqual(shift8(i ^ prior), exp) def testCRCDA(self): def pattern(badblk, otherblks, pat): # Arrange copies of the bad block in a pattern # corresponding to the given bit string. retstr = b"" while pat != 0: retstr += (badblk if pat & 1 else next(otherblks)) pat >>= 1 return retstr def testCases(pat): badblock = b'muhahaha' # the block we'll maliciously repeat # Various choices of the other blocks, including all the # same, all different, and all different but only in the # byte at one end. for otherblocks in [ itertools.repeat(b'GoodData'), (struct.pack('>Q', i) for i in itertools.count()), (struct.pack('= maxlen buf = b''.join(hash_str(hashname, text[:i]) for i in range(maxlen)) self.assertEqualBin(hash_str(hashname, buf), unhex(expected)) test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15') test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259') test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232' '35d4eed3368d876fdf10c9df27396640') test('sha512', 256, 'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578' 'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055' ) def testDSA(self): p = 0xe93618c54716992ffd54e79df6e1b0edd517f7bbe4a49d64631eb3efe8105f676e8146248cfb4f05720862533210f0c2ab0f9dd61dbc0e5195200c4ebd95364b q = 0xf3533bcece2e164ca7c5ce64bc1e395e9a15bbdd g = 0x5ac9d0401c27d7abfbc5c17cdc1dc43323cd0ef18b79e1909bdace6d17af675a10d37dde8bd8b70e72a8666592216ccb00614629c27e870e4fbf393b812a9f05 y = 0xac3ddeb22d65a5a2ded4a28418b2a748d8e5e544ba5e818c137d7b042ef356b0ef6d66cfca0b3ab5affa2969522e7b07bee60562fa4869829a5afce0ad0c4cd0 x = 0x664f8250b7f1a5093047fe0c7fe4b58e46b73295 pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y])) privblob = ssh2_mpint(x) pubkey = ssh_key_new_pub('dsa', pubblob) privkey = ssh_key_new_priv('dsa', pubblob, privblob) sig = ssh_key_sign(privkey, b"hello, world", 0) self.assertTrue(ssh_key_verify(pubkey, sig, b"hello, world")) self.assertFalse(ssh_key_verify(pubkey, sig, b"hello, again")) badsig0 = unhex('{:040x}{:040x}'.format(1, 0)) badsigq = unhex('{:040x}{:040x}'.format(1, q)) self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, world")) self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, world")) self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again")) self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again")) def testRSAVerify(self): def blobs(n, e, d, p, q, iqmp): pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n) privblob = (ssh2_mpint(d) + ssh2_mpint(p) + ssh2_mpint(q) + ssh2_mpint(iqmp)) return pubblob, privblob def failure_test(*args): pubblob, privblob = blobs(*args) key = ssh_key_new_priv('rsa', pubblob, privblob) self.assertEqual(key, None) def success_test(*args): pubblob, privblob = blobs(*args) key = ssh_key_new_priv('rsa', pubblob, privblob) self.assertNotEqual(key, None) # Parameters for a (trivially small) test key. n = 0xb5d545a2f6423eabd55ffede53e21628d5d4491541482e10676d9d6f2783b9a5 e = 0x25 d = 0x6733db6a546ac99fcc21ba2b28b0c077156e8a705976205a955c6d9cef98f419 p = 0xe30ebd7348bf10dca72b36f2724dafa7 q = 0xcd02c87a7f7c08c4e9dc80c9b9bad5d3 iqmp = 0x60a129b30db9227910efe1608976c513 # Check the test key makes sense unmodified. success_test(n, e, d, p, q, iqmp) # Try modifying the values one by one to ensure they are # rejected, except iqmp, which sshrsa.c regenerates anyway so # it won't matter at all. failure_test(n+1, e, d, p, q, iqmp) failure_test(n, e+1, d, p, q, iqmp) failure_test(n, e, d+1, p, q, iqmp) failure_test(n, e, d, p+1, q, iqmp) failure_test(n, e, d, p, q+1, iqmp) success_test(n, e, d, p, q, iqmp+1) # The key should also be accepted with p,q reversed. (Again, # iqmp gets regenerated, so it won't matter if that's wrong.) success_test(n, e, d, q, p, iqmp) # Replace each of p and q with 0, and with 1. These should # still fail validation (obviously), but the point is that the # validator should also avoid trying to divide by zero in the # process. failure_test(n, e, d, 0, q, iqmp) failure_test(n, e, d, p, 0, iqmp) failure_test(n, e, d, 1, q, iqmp) failure_test(n, e, d, p, 1, iqmp) def testKeyMethods(self): # Exercise all the methods of the ssh_key trait on all key # types, and ensure that they're consistent with each other. # No particular test is done on the rightness of the # signatures by any objective standard, only that the output # from our signing method can be verified by the corresponding # verification method. # # However, we do include the expected signature text in each # case, which checks determinism in the sense of being # independent of any random numbers, and also in the sense of # tomorrow's change to the code not having accidentally # changed the behaviour. test_message = b"Message to be signed by crypt.testKeyMethods\n" test_keys = [ ('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]), ('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]), ('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]), ('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]), ('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]), ('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]), ] for alg, pubb64, privb64, bits, cachestr, siglist in test_keys: # Decode the blobs in the above test data. pubblob = base64decode(pubb64.encode('ASCII')) privblob = base64decode(privb64.encode('ASCII')) # Check the method that examines a public blob directly # and returns an integer showing the key size. self.assertEqual(ssh_key_public_bits(alg, pubblob), bits) # Make a public-only and a full ssh_key object. pubkey = ssh_key_new_pub(alg, pubblob) privkey = ssh_key_new_priv(alg, pubblob, privblob) # Test that they re-export the public and private key # blobs unchanged. self.assertEqual(ssh_key_public_blob(pubkey), pubblob) self.assertEqual(ssh_key_public_blob(privkey), pubblob) self.assertEqual(ssh_key_private_blob(privkey), privblob) # Round-trip through the OpenSSH wire encoding used by the # agent protocol (and the newer OpenSSH key file format), # and check the result still exports all the same blobs. osshblob = ssh_key_openssh_blob(privkey) privkey2 = ssh_key_new_priv_openssh(alg, osshblob) self.assertEqual(ssh_key_public_blob(privkey2), pubblob) self.assertEqual(ssh_key_private_blob(privkey2), privblob) self.assertEqual(ssh_key_openssh_blob(privkey2), osshblob) # Test that the string description used in the host key # cache is as expected. for key in [pubkey, privkey, privkey2]: self.assertEqual(ssh_key_cache_str(key), cachestr) # Now test signatures, separately for each provided flags # value. for flags, sigb64 in siglist: # Decode the signature blob from the test data. sigblob = base64decode(sigb64.encode('ASCII')) # Sign our test message, and check it produces exactly # the expected signature blob. # # We do this with both the original private key and # the one we round-tripped through OpenSSH wire # format, just in case that round trip made some kind # of a mess that didn't show up in the re-extraction # of the blobs. for key in [privkey, privkey2]: self.assertEqual(ssh_key_sign( key, test_message, flags), sigblob) if flags != 0: # Currently we only support _generating_ # signatures with flags != 0, not verifying them. continue # Check the signature verifies successfully, with all # three of the key objects we have. for key in [pubkey, privkey, privkey2]: self.assertTrue(ssh_key_verify(key, sigblob, test_message)) # A crude check that at least _something_ doesn't # verify successfully: flip a bit of the signature # and expect it to fail. # # We do this twice, at the 1/3 and 2/3 points along # the signature's length, so that in the case of # signatures in two parts (DSA-like) we try perturbing # both parts. Other than that, we don't do much to # make this a rigorous cryptographic test. for n, d in [(1,3),(2,3)]: sigbytes = list(bytevals(sigblob)) bit = 8 * len(sigbytes) * n // d sigbytes[bit // 8] ^= 1 << (bit % 8) badsig = valbytes(sigbytes) for key in [pubkey, privkey, privkey2]: self.assertFalse(ssh_key_verify( key, badsig, test_message)) def testPPKLoadSave(self): # Stability test of PPK load/save functions. input_clear_key = b"""\ PuTTY-User-Key-File-2: ssh-ed25519 Encryption: none Comment: ed25519-key-20200105 Public-Lines: 2 AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F JH1W Private-Lines: 1 AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY Private-MAC: 2a629acfcfbe28488a1ba9b6948c36406bc28422 """ input_encrypted_key = b"""\ PuTTY-User-Key-File-2: ssh-ed25519 Encryption: aes256-cbc Comment: ed25519-key-20200105 Public-Lines: 2 AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F JH1W Private-Lines: 1 4/jKlTgC652oa9HLVGrMjHZw7tj0sKRuZaJPOuLhGTvb25Jzpcqpbi+Uf+y+uo+Z Private-MAC: 5b1f6f4cc43eb0060d2c3e181bc0129343adba2b """ algorithm = b'ssh-ed25519' comment = b'ed25519-key-20200105' pp = b'test-passphrase' public_blob = unhex( '0000000b7373682d65643235353139000000207242b33387688f57ff218bb639' 'f6d9fd213ba54f3100d5b5cb64ca6e85247d56') self.assertEqual(ppk_encrypted_s(input_clear_key), (False, comment)) self.assertEqual(ppk_encrypted_s(input_encrypted_key), (True, comment)) self.assertEqual(ppk_encrypted_s("not a key file"), (False, None)) self.assertEqual(ppk_loadpub_s(input_clear_key), (True, algorithm, public_blob, comment, None)) self.assertEqual(ppk_loadpub_s(input_encrypted_key), (True, algorithm, public_blob, comment, None)) self.assertEqual(ppk_loadpub_s("not a key file"), (False, None, b'', None, b'not a PuTTY SSH-2 private key')) k1, c, e = ppk_load_s(input_clear_key, None) self.assertEqual((c, e), (comment, None)) k2, c, e = ppk_load_s(input_encrypted_key, pp) self.assertEqual((c, e), (comment, None)) self.assertEqual(ppk_save_sb(k1, comment, None), input_clear_key) self.assertEqual(ppk_save_sb(k2, comment, None), input_clear_key) self.assertEqual(ppk_save_sb(k1, comment, pp), input_encrypted_key) self.assertEqual(ppk_save_sb(k2, comment, pp), input_encrypted_key) def testRSA1LoadSave(self): # Stability test of SSH-1 RSA key-file load/save functions. input_clear_key = unhex( "5353482050524956415445204B45592046494C4520464F524D415420312E310A" "000000000000000002000200BB115A85B741E84E3D940E690DF96A0CBFDC07CA" "70E51DA8234D211DE77341CEF40C214CAA5DCF68BE2127447FD6C84CCB17D057" "A74F2365B9D84A78906AEB51000625000000107273612D6B65792D3230323030" "313036208E208E0200929EE615C6FC4E4B29585E52570F984F2E97B3144AA5BD" "4C6EB2130999BB339305A21FFFA79442462A8397AF8CAC395A3A3827DE10457A" "1F1B277ABFB8C069C100FF55B1CAD69B3BD9E42456CF28B1A4B98130AFCE08B2" "8BCFFF5FFFED76C5D51E9F0100C5DE76889C62B1090A770AE68F087A19AB5126" "E60DF87710093A2AD57B3380FB0100F2068AC47ECB33BF8F13DF402BABF35EE7" "26BD32F7564E51502DF5C8F4888B2300000000") input_encrypted_key = unhex( "5353482050524956415445204b45592046494c4520464f524d415420312e310a" "000300000000000002000200bb115a85b741e84e3d940e690df96a0cbfdc07ca" "70e51da8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057" "a74f2365b9d84a78906aeb51000625000000107273612d6b65792d3230323030" "3130363377f926e811a5f044c52714801ecdcf9dd572ee0a193c4f67e87ab2ce" "4569d0c5776fd6028909ed8b6d663bef15d207d3ef6307e7e21dbec56e8d8b4e" "894ded34df891bb29bae6b2b74805ac80f7304926abf01ae314dd69c64240761" "34f15d50c99f7573252993530ec9c4d5016dd1f5191730cda31a5d95d362628b" "2a26f4bb21840d01c8360e4a6ce216c4686d25b8699d45cf361663bb185e2c5e" "652012a1e0f9d6d19afbb28506f7775bfd8129") comment = b'rsa-key-20200106' pp = b'test-passphrase' public_blob = unhex( "000002000006250200bb115a85b741e84e3d940e690df96a0cbfdc07ca70e51d" "a8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057a74f23" "65b9d84a78906aeb51") self.assertEqual(rsa1_encrypted_s(input_clear_key), (False, comment)) self.assertEqual(rsa1_encrypted_s(input_encrypted_key), (True, comment)) self.assertEqual(rsa1_encrypted_s("not a key file"), (False, None)) self.assertEqual(rsa1_loadpub_s(input_clear_key), (1, public_blob, comment, None)) self.assertEqual(rsa1_loadpub_s(input_encrypted_key), (1, public_blob, comment, None)) k1 = rsa_new() status, c, e = rsa1_load_s(input_clear_key, k1, None) self.assertEqual((status, c, e), (1, comment, None)) k2 = rsa_new() status, c, e = rsa1_load_s(input_clear_key, k2, None) self.assertEqual((status, c, e), (1, comment, None)) with queued_specific_random_data(unhex("208e")): self.assertEqual(rsa1_save_sb(k1, comment, None), input_clear_key) with queued_specific_random_data(unhex("208e")): self.assertEqual(rsa1_save_sb(k2, comment, None), input_clear_key) with queued_specific_random_data(unhex("99f3")): self.assertEqual(rsa1_save_sb(k1, comment, pp), input_encrypted_key) with queued_specific_random_data(unhex("99f3")): self.assertEqual(rsa1_save_sb(k2, comment, pp), input_encrypted_key) class standard_test_vectors(MyTestBase): def testAES(self): def vector(cipher, key, plaintext, ciphertext): for suffix in "hw", "sw": c = ssh_cipher_new("{}_{}".format(cipher, suffix)) if c is None: return # skip test if HW AES not available ssh_cipher_setkey(c, key) # The AES test vectors are implicitly in ECB mode, # because they're testing the cipher primitive rather # than any mode layered on top of it. We fake this by # using PuTTY's CBC setting, and clearing the IV to # all zeroes before each operation. ssh_cipher_setiv(c, b'\x00' * 16) self.assertEqualBin( ssh_cipher_encrypt(c, plaintext), ciphertext) ssh_cipher_setiv(c, b'\x00' * 16) self.assertEqualBin( ssh_cipher_decrypt(c, ciphertext), plaintext) # The test vector from FIPS 197 appendix B. (This is also the # same key whose key setup phase is shown in detail in # appendix A.) vector('aes128_cbc', unhex('2b7e151628aed2a6abf7158809cf4f3c'), unhex('3243f6a8885a308d313198a2e0370734'), unhex('3925841d02dc09fbdc118597196a0b32')) # The test vectors from FIPS 197 appendix C: the key bytes go # 00 01 02 03 ... for as long as needed, and the plaintext # bytes go 00 11 22 33 ... FF. fullkey = struct.pack("B"*32, *range(32)) plaintext = struct.pack("B"*16, *[0x11*i for i in range(16)]) vector('aes128_cbc', fullkey[:16], plaintext, unhex('69c4e0d86a7b0430d8cdb78070b4c55a')) vector('aes192_cbc', fullkey[:24], plaintext, unhex('dda97ca4864cdfe06eaf70a0ec0d7191')) vector('aes256_cbc', fullkey[:32], plaintext, unhex('8ea2b7ca516745bfeafc49904b496089')) def testDES(self): c = ssh_cipher_new("des_cbc") def vector(key, plaintext, ciphertext): key = unhex(key) plaintext = unhex(plaintext) ciphertext = unhex(ciphertext) # Similarly to above, we fake DES ECB by using DES CBC and # resetting the IV to zero all the time ssh_cipher_setkey(c, key) ssh_cipher_setiv(c, b'\x00' * 8) self.assertEqualBin(ssh_cipher_encrypt(c, plaintext), ciphertext) ssh_cipher_setiv(c, b'\x00' * 8) self.assertEqualBin(ssh_cipher_decrypt(c, ciphertext), plaintext) # Source: FIPS SP PUB 500-20 # 'Initial permutation and expansion tests': key fixed at 8 # copies of the byte 01, but ciphertext and plaintext in turn # run through all possible values with exactly 1 bit set. # Expected plaintexts and ciphertexts (respectively) listed in # the arrays below. ipe_key = '01' * 8 ipe_plaintexts = [ '166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6', '5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4', 'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942', 'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0', '8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8', '866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621', '4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502', 'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C', 'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7', '9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363', 'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97', '329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9', 'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1', 'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A', '0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456', '4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900', ] ipe_ciphertexts = [ '166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6', '5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4', 'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942', 'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0', '8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8', '866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621', '4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502', 'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C', 'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7', '9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363', 'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97', '329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9', 'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1', 'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A', '0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456', '4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900', ] ipe_single_bits = ["{:016x}".format(1 << bit) for bit in range(64)] for plaintext, ciphertext in zip(ipe_plaintexts, ipe_single_bits): vector(ipe_key, plaintext, ciphertext) for plaintext, ciphertext in zip(ipe_single_bits, ipe_ciphertexts): vector(ipe_key, plaintext, ciphertext) # 'Key permutation tests': plaintext fixed at all zeroes, key # is a succession of tweaks of the previous key made by # replacing each 01 byte in turn with one containing a # different single set bit (e.g. 01 20 01 01 01 01 01 01). # Expected ciphertexts listed. kp_ciphertexts = [ '95A8D72813DAA94D', '0EEC1487DD8C26D5', '7AD16FFB79C45926', 'D3746294CA6A6CF3', '809F5F873C1FD761', 'C02FAFFEC989D1FC', '4615AA1D33E72F10', '2055123350C00858', 'DF3B99D6577397C8', '31FE17369B5288C9', 'DFDD3CC64DAE1642', '178C83CE2B399D94', '50F636324A9B7F80', 'A8468EE3BC18F06D', 'A2DC9E92FD3CDE92', 'CAC09F797D031287', '90BA680B22AEB525', 'CE7A24F350E280B6', '882BFF0AA01A0B87', '25610288924511C2', 'C71516C29C75D170', '5199C29A52C9F059', 'C22F0A294A71F29F', 'EE371483714C02EA', 'A81FBD448F9E522F', '4F644C92E192DFED', '1AFA9A66A6DF92AE', 'B3C1CC715CB879D8', '19D032E64AB0BD8B', '3CFAA7A7DC8720DC', 'B7265F7F447AC6F3', '9DB73B3C0D163F54', '8181B65BABF4A975', '93C9B64042EAA240', '5570530829705592', '8638809E878787A0', '41B9A79AF79AC208', '7A9BE42F2009A892', '29038D56BA6D2745', '5495C6ABF1E5DF51', 'AE13DBD561488933', '024D1FFA8904E389', 'D1399712F99BF02E', '14C1D7C1CFFEC79E', '1DE5279DAE3BED6F', 'E941A33F85501303', 'DA99DBBC9A03F379', 'B7FC92F91D8E92E9', 'AE8E5CAA3CA04E85', '9CC62DF43B6EED74', 'D863DBB5C59A91A0', 'A1AB2190545B91D7', '0875041E64C570F7', '5A594528BEBEF1CC', 'FCDB3291DE21F0C0', '869EFD7F9F265A09', ] kp_key_repl_bytes = ["{:02x}".format(0x80>>i) for i in range(7)] kp_keys = ['01'*j + b + '01'*(7-j) for j in range(8) for b in kp_key_repl_bytes] kp_plaintext = '0' * 16 for key, ciphertext in zip(kp_keys, kp_ciphertexts): vector(key, kp_plaintext, ciphertext) # 'Data permutation test': plaintext fixed at all zeroes, # pairs of key and expected ciphertext listed below. dp_keys_and_ciphertexts = [ '1046913489980131:88D55E54F54C97B4', '1007103489988020:0C0CC00C83EA48FD', '10071034C8980120:83BC8EF3A6570183', '1046103489988020:DF725DCAD94EA2E9', '1086911519190101:E652B53B550BE8B0', '1086911519580101:AF527120C485CBB0', '5107B01519580101:0F04CE393DB926D5', '1007B01519190101:C9F00FFC74079067', '3107915498080101:7CFD82A593252B4E', '3107919498080101:CB49A2F9E91363E3', '10079115B9080140:00B588BE70D23F56', '3107911598080140:406A9A6AB43399AE', '1007D01589980101:6CB773611DCA9ADA', '9107911589980101:67FD21C17DBB5D70', '9107D01589190101:9592CB4110430787', '1007D01598980120:A6B7FF68A318DDD3', '1007940498190101:4D102196C914CA16', '0107910491190401:2DFA9F4573594965', '0107910491190101:B46604816C0E0774', '0107940491190401:6E7E6221A4F34E87', '19079210981A0101:AA85E74643233199', '1007911998190801:2E5A19DB4D1962D6', '10079119981A0801:23A866A809D30894', '1007921098190101:D812D961F017D320', '100791159819010B:055605816E58608F', '1004801598190101:ABD88E8B1B7716F1', '1004801598190102:537AC95BE69DA1E1', '1004801598190108:AED0F6AE3C25CDD8', '1002911498100104:B3E35A5EE53E7B8D', '1002911598190104:61C79C71921A2EF8', '1002911598100201:E2F5728F0995013C', '1002911698100101:1AEAC39A61F0A464', ] dp_plaintext = '0' * 16 for key_and_ciphertext in dp_keys_and_ciphertexts: key, ciphertext = key_and_ciphertext.split(":") vector(key, dp_plaintext, ciphertext) # Tests intended to select every entry in every S-box. Full # arbitrary triples (key, plaintext, ciphertext). sb_complete_tests = [ '7CA110454A1A6E57:01A1D6D039776742:690F5B0D9A26939B', '0131D9619DC1376E:5CD54CA83DEF57DA:7A389D10354BD271', '07A1133E4A0B2686:0248D43806F67172:868EBB51CAB4599A', '3849674C2602319E:51454B582DDF440A:7178876E01F19B2A', '04B915BA43FEB5B6:42FD443059577FA2:AF37FB421F8C4095', '0113B970FD34F2CE:059B5E0851CF143A:86A560F10EC6D85B', '0170F175468FB5E6:0756D8E0774761D2:0CD3DA020021DC09', '43297FAD38E373FE:762514B829BF486A:EA676B2CB7DB2B7A', '07A7137045DA2A16:3BDD119049372802:DFD64A815CAF1A0F', '04689104C2FD3B2F:26955F6835AF609A:5C513C9C4886C088', '37D06BB516CB7546:164D5E404F275232:0A2AEEAE3FF4AB77', '1F08260D1AC2465E:6B056E18759F5CCA:EF1BF03E5DFA575A', '584023641ABA6176:004BD6EF09176062:88BF0DB6D70DEE56', '025816164629B007:480D39006EE762F2:A1F9915541020B56', '49793EBC79B3258F:437540C8698F3CFA:6FBF1CAFCFFD0556', '4FB05E1515AB73A7:072D43A077075292:2F22E49BAB7CA1AC', '49E95D6D4CA229BF:02FE55778117F12A:5A6B612CC26CCE4A', '018310DC409B26D6:1D9D5C5018F728C2:5F4C038ED12B2E41', '1C587F1C13924FEF:305532286D6F295A:63FAC0D034D9F793', ] for test in sb_complete_tests: key, plaintext, ciphertext = test.split(":") vector(key, plaintext, ciphertext) def testMD5(self): MD5 = lambda s: hash_str('md5', s) # The test vectors from RFC 1321 section A.5. self.assertEqualBin(MD5(""), unhex('d41d8cd98f00b204e9800998ecf8427e')) self.assertEqualBin(MD5("a"), unhex('0cc175b9c0f1b6a831c399e269772661')) self.assertEqualBin(MD5("abc"), unhex('900150983cd24fb0d6963f7d28e17f72')) self.assertEqualBin(MD5("message digest"), unhex('f96b697d7cb7938d525a2f31aaf161d0')) self.assertEqualBin(MD5("abcdefghijklmnopqrstuvwxyz"), unhex('c3fcd3d76192e4007dfb496cca67e13b')) self.assertEqualBin(MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz0123456789"), unhex('d174ab98d277d9f5a5611c2c9f419d9f')) self.assertEqualBin(MD5("1234567890123456789012345678901234567890" "1234567890123456789012345678901234567890"), unhex('57edf4a22be3c955ac49da2e2107b67a')) def testHmacMD5(self): # The test vectors from the RFC 2104 Appendix. self.assertEqualBin(mac_str('hmac_md5', unhex('0b'*16), "Hi There"), unhex('9294727a3638bb1c13f48ef8158bfc9d')) self.assertEqualBin(mac_str('hmac_md5', "Jefe", "what do ya want for nothing?"), unhex('750c783e6ab0b503eaa86e310a5db738')) self.assertEqualBin(mac_str('hmac_md5', unhex('aa'*16), unhex('dd'*50)), unhex('56be34521d144c88dbb8c733f0e8b3f6')) def testSHA1(self): for hashname in ['sha1_sw', 'sha1_hw']: if ssh_hash_new(hashname) is None: continue # skip testing of unavailable HW implementation # Test cases from RFC 6234 section 8.5, omitting the ones # whose input is not a multiple of 8 bits self.assertEqualBin(hash_str(hashname, "abc"), unhex( "a9993e364706816aba3e25717850c26c9cd0d89d")) self.assertEqualBin(hash_str(hashname, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"), unhex("84983e441c3bd26ebaae4aa1f95129e5e54670f1")) self.assertEqualBin(hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))), unhex( "34aa973cd4c4daa4f61eeb2bdbad27316534016f")) self.assertEqualBin(hash_str(hashname, "01234567012345670123456701234567" * 20), unhex( "dea356a2cddd90c7a7ecedc5ebb563934f460452")) self.assertEqualBin(hash_str(hashname, b"\x5e"), unhex( "5e6f80a34a9798cafc6a5db96cc57ba4c4db59c2")) self.assertEqualBin(hash_str(hashname, unhex("9a7dfdf1ecead06ed646aa55fe757146")), unhex( "82abff6605dbe1c17def12a394fa22a82b544a35")) self.assertEqualBin(hash_str(hashname, unhex( "f78f92141bcd170ae89b4fba15a1d59f" "3fd84d223c9251bdacbbae61d05ed115" "a06a7ce117b7beead24421ded9c32592" "bd57edeae39c39fa1fe8946a84d0cf1f" "7beead1713e2e0959897347f67c80b04" "00c209815d6b10a683836fd5562a56ca" "b1a28e81b6576654631cf16566b86e3b" "33a108b05307c00aff14a768ed735060" "6a0f85e6a91d396f5b5cbe577f9b3880" "7c7d523d6d792f6ebc24a4ecf2b3a427" "cdbbfb")), unhex( "cb0082c8f197d260991ba6a460e76e202bad27b3")) def testSHA256(self): for hashname in ['sha256_sw', 'sha256_hw']: if ssh_hash_new(hashname) is None: continue # skip testing of unavailable HW implementation # Test cases from RFC 6234 section 8.5, omitting the ones # whose input is not a multiple of 8 bits self.assertEqualBin(hash_str(hashname, "abc"), unhex("ba7816bf8f01cfea414140de5dae2223" "b00361a396177a9cb410ff61f20015ad")) self.assertEqualBin(hash_str(hashname, "abcdbcdecdefdefgefghfghighijhijk""ijkljklmklmnlmnomnopnopq"), unhex("248d6a61d20638b8e5c026930c3e6039" "a33ce45964ff2167f6ecedd419db06c1")) self.assertEqualBin( hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))), unhex("cdc76e5c9914fb9281a1c7e284d73e67" "f1809a48a497200e046d39ccc7112cd0")) self.assertEqualBin( hash_str(hashname, "01234567012345670123456701234567" * 20), unhex("594847328451bdfa85056225462cc1d8" "67d877fb388df0ce35f25ab5562bfbb5")) self.assertEqualBin(hash_str(hashname, b"\x19"), unhex("68aa2e2ee5dff96e3355e6c7ee373e3d" "6a4e17f75f9518d843709c0c9bc3e3d4")) self.assertEqualBin( hash_str(hashname, unhex("e3d72570dcdd787ce3887ab2cd684652")), unhex("175ee69b02ba9b58e2b0a5fd13819cea" "573f3940a94f825128cf4209beabb4e8")) self.assertEqualBin(hash_str(hashname, unhex( "8326754e2277372f4fc12b20527afef0" "4d8a056971b11ad57123a7c137760000" "d7bef6f3c1f7a9083aa39d810db31077" "7dab8b1e7f02b84a26c773325f8b2374" "de7a4b5a58cb5c5cf35bcee6fb946e5b" "d694fa593a8beb3f9d6592ecedaa66ca" "82a29d0c51bcf9336230e5d784e4c0a4" "3f8d79a30a165cbabe452b774b9c7109" "a97d138f129228966f6c0adc106aad5a" "9fdd30825769b2c671af6759df28eb39" "3d54d6")), unhex( "97dbca7df46d62c8a422c941dd7e835b" "8ad3361763f7e9b2d95f4f0da6e1ccbc")) def testSHA384(self): # Test cases from RFC 6234 section 8.5, omitting the ones # whose input is not a multiple of 8 bits self.assertEqualBin(hash_str('sha384', "abc"), unhex( 'cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163' '1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7')) self.assertEqualBin(hash_str('sha384', "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex( '09330c33f71147e83d192fc782cd1b4753111b173b3b05d2' '2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039')) self.assertEqualBin(hash_str_iter('sha384', ("a" * 1000 for _ in range(1000))), unhex( '9d0e1809716474cb086e834e310a4a1ced149e9c00f24852' '7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985')) self.assertEqualBin(hash_str('sha384', "01234567012345670123456701234567" * 20), unhex( '2fc64a4f500ddb6828f6a3430b8dd72a368eb7f3a8322a70' 'bc84275b9c0b3ab00d27a5cc3c2d224aa6b61a0d79fb4596')) self.assertEqualBin(hash_str('sha384', b"\xB9"), unhex( 'bc8089a19007c0b14195f4ecc74094fec64f01f90929282c' '2fb392881578208ad466828b1c6c283d2722cf0ad1ab6938')) self.assertEqualBin(hash_str('sha384', unhex("a41c497779c0375ff10a7f4e08591739")), unhex( 'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591' '3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7')) self.assertEqualBin(hash_str('sha384', unhex( "399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621db0f" "3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202fc3f5042" "e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d52865f25cc22b5e8" "7784a12fc961d66cb6e89573199a2ce6565cbdf13dca403832cfcb0e8b7211e8" "3af32a11ac17929ff1c073a51cc027aaedeff85aad7c2b7c5a803e2404d96d2a" "77357bda1a6daeed17151cb9bc5125a422e941de0ca0fc5011c23ecffefdd096" "76711cf3db0a3440720e1615c1f22fbc3c721de521e1b99ba1bd557740864214" "7ed096")), unhex( '4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf' '38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0')) def testSHA512(self): # Test cases from RFC 6234 section 8.5, omitting the ones # whose input is not a multiple of 8 bits self.assertEqualBin(hash_str('sha512', "abc"), unhex( 'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a' '2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f')) self.assertEqualBin(hash_str('sha512', "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex( '8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018' '501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909')) self.assertEqualBin(hash_str_iter('sha512', ("a" * 1000 for _ in range(1000))), unhex( 'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb' 'de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b')) self.assertEqualBin(hash_str('sha512', "01234567012345670123456701234567" * 20), unhex( '89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2ba814' '1a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f3fb7bae9')) self.assertEqualBin(hash_str('sha512', b"\xD0"), unhex( '9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4aceee' 'e50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4ab3fbba15')) self.assertEqualBin(hash_str('sha512', unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex( 'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c9828924c3' 'ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0c95c90f8')) self.assertEqualBin(hash_str('sha512', unhex( "a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0de1de" "6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d03e56ff2" "f868002bc3e431edc44df2f0223d4bb3b243586e1a7d924936694fcbbaf88d95" "19e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab4981164bbb6dc32f" "969087a145b0d9cc9c67c22b763299419cc4128be9a077b3ace634064e6d9928" "3513dc06e7515d0d73132e9a0dc6d3b1f8b246f1a98a3fc72941b1e3bb2098e8" "bf16f268d64f0b0f4707fe1ea1a1791ba2f3c0c758e5f551863a96c949ad47d7" "fb40d2")), unhex( 'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d487193' '77966b957a878e720584779a62825c18da26415e49a7176a894e7510fd1451f5')) def testSHA3(self): # Source: all the SHA-3 test strings from # https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values#aHashing # which are a multiple of 8 bits long. self.assertEqualBin(hash_str('sha3_224', ''), unhex("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7")) self.assertEqualBin(hash_str('sha3_224', unhex('a3')*200), unhex("9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0")) self.assertEqualBin(hash_str('sha3_256', ''), unhex("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a")) self.assertEqualBin(hash_str('sha3_256', unhex('a3')*200), unhex("79f38adec5c20307a98ef76e8324afbfd46cfd81b22e3973c65fa1bd9de31787")) self.assertEqualBin(hash_str('sha3_384', ''), unhex("0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004")) self.assertEqualBin(hash_str('sha3_384', unhex('a3')*200), unhex("1881de2ca7e41ef95dc4732b8f5f002b189cc1e42b74168ed1732649ce1dbcdd76197a31fd55ee989f2d7050dd473e8f")) self.assertEqualBin(hash_str('sha3_512', ''), unhex("a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26")) self.assertEqualBin(hash_str('sha3_512', unhex('a3')*200), unhex("e76dfad22084a8b1467fcf2ffa58361bec7628edf5f3fdc0e4805dc48caeeca81b7c13c30adf52a3659584739a2df46be589c51ca1a4a8416df6545a1ce8ba00")) self.assertEqualBin(hash_str('shake256_114bytes', ''), unhex("46b9dd2b0ba88d13233b3feb743eeb243fcd52ea62b81b82b50c27646ed5762fd75dc4ddd8c0f200cb05019d67b592f6fc821c49479ab48640292eacb3b7c4be141e96616fb13957692cc7edd0b45ae3dc07223c8e92937bef84bc0eab862853349ec75546f58fb7c2775c38462c5010d846")) self.assertEqualBin(hash_str('shake256_114bytes', unhex('a3')*200), unhex("cd8a920ed141aa0407a22d59288652e9d9f1a7ee0c1e7c1ca699424da84a904d2d700caae7396ece96604440577da4f3aa22aeb8857f961c4cd8e06f0ae6610b1048a7f64e1074cd629e85ad7566048efc4fb500b486a3309a8f26724c0ed628001a1099422468de726f1061d99eb9e93604")) def testHmacSHA(self): # Test cases from RFC 6234 section 8.5. def vector(key, message, s1=None, s256=None): if s1 is not None: self.assertEqualBin( mac_str('hmac_sha1', key, message), unhex(s1)) if s256 is not None: self.assertEqualBin( mac_str('hmac_sha256', key, message), unhex(s256)) vector( unhex("0b"*20), "Hi There", "b617318655057264e28bc0b6fb378c8ef146be00", "b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7") vector( "Jefe", "what do ya want for nothing?", "effcdf6ae5eb2fa2d27416d5f184df9c259a7c79", "5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843") vector( unhex("aa"*20), unhex('dd'*50), "125d7342b9ac11cd91a39af48aa17b4f63f175d3", "773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565FE") vector( unhex("0102030405060708090a0b0c0d0e0f10111213141516171819"), unhex("cd"*50), "4c9007f4026250c6bc8414f9bf50c86c2d7235da", "82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b") vector( unhex("aa"*80), "Test Using Larger Than Block-Size Key - Hash Key First", s1="aa4ae5e15272d00e95705637ce8a3b55ed402112") vector( unhex("aa"*131), "Test Using Larger Than Block-Size Key - Hash Key First", s256="60e431591ee0b67f0d8a26aacbf5b77f" "8e0bc6213728c5140546040f0ee37f54") vector( unhex("aa"*80), "Test Using Larger Than Block-Size Key and " "Larger Than One Block-Size Data", s1="e8e99d0f45237d786d6bbaa7965c7808bbff1a91") vector( unhex("aa"*131), "This is a test using a larger than block-size key and a " "larger than block-size data. The key needs to be hashed " "before being used by the HMAC algorithm.", s256="9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A35E2") def testEd25519(self): def vector(privkey, pubkey, message, signature): x, y = ecc_edwards_get_affine(eddsa_public( mp_from_bytes_le(privkey), 'ed25519')) self.assertEqual(int(y) | ((int(x) & 1) << 255), int(mp_from_bytes_le(pubkey))) pubblob = ssh_string(b"ssh-ed25519") + ssh_string(pubkey) privblob = ssh_string(privkey) sigblob = ssh_string(b"ssh-ed25519") + ssh_string(signature) pubkey = ssh_key_new_pub('ed25519', pubblob) self.assertTrue(ssh_key_verify(pubkey, sigblob, message)) privkey = ssh_key_new_priv('ed25519', pubblob, privblob) # By testing that the signature is exactly the one expected in # the test vector and not some equivalent one generated with a # different nonce, we're verifying in particular that we do # our deterministic nonce generation in the manner specified # by Ed25519. Getting that wrong would lead to no obvious # failure, but would surely turn out to be a bad idea sooner # or later... self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob) # A cherry-picked example from DJB's test vector data at # https://ed25519.cr.yp.to/python/sign.input, which is too # large to copy into here in full. privkey = unhex( 'c89955e0f7741d905df0730b3dc2b0ce1a13134e44fef3d40d60c020ef19df77') pubkey = unhex( 'fdb30673402faf1c8033714f3517e47cc0f91fe70cf3836d6c23636e3fd2287c') message = unhex( '507c94c8820d2a5793cbf3442b3d71936f35fe3afef316') signature = unhex( '7ef66e5e86f2360848e0014e94880ae2920ad8a3185a46b35d1e07dea8fa8ae4' 'f6b843ba174d99fa7986654a0891c12a794455669375bf92af4cc2770b579e0c') vector(privkey, pubkey, message, signature) # You can get this test program to run the full version of # DJB's test vectors by modifying the source temporarily to # set this variable to a pathname where you downloaded the # file. ed25519_test_vector_path = None if ed25519_test_vector_path is not None: with open(ed25519_test_vector_path) as f: for line in iter(f.readline, ""): words = line.split(":") # DJB's test vector input format concatenates a # spare copy of the public key to the end of the # private key, and a spare copy of the message to # the end of the signature. Strip those off. privkey = unhex(words[0])[:32] pubkey = unhex(words[1]) message = unhex(words[2]) signature = unhex(words[3])[:64] vector(privkey, pubkey, message, signature) def testMontgomeryKex(self): # Unidirectional tests, consisting of an input random number # string and peer public value, giving the expected output # shared key. Source: RFC 7748 section 5.2. rfc7748s5_2 = [ ('curve25519', 'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4', 'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c', 0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552), ('curve25519', '4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d', 'e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493', 0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957), ('curve448', '3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3', '06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086', 0xce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239fe14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f), ('curve448', '203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c538345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f', '0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db', 0x884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d), ] for method, priv, pub, expected in rfc7748s5_2: with queued_specific_random_data(unhex(priv)): ecdh = ssh_ecdhkex_newkey(method) key = ssh_ecdhkex_getkey(ecdh, unhex(pub)) self.assertEqual(int(key), expected) # Bidirectional tests, consisting of the input random number # strings for both parties, and the expected public values and # shared key. Source: RFC 7748 section 6. rfc7748s6 = [ ('curve25519', # section 6.1 '77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a', '8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a', '5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb', 'de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f', 0x4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742), ('curve448', # section 6.2 '9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28dd9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b', '9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0', '1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d', '3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b43027d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609', 0x07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282bb60c0b56fd2464c335543936521c24403085d59a449a5037514a879d), ] for method, apriv, apub, bpriv, bpub, expected in rfc7748s6: with queued_specific_random_data(unhex(apriv)): alice = ssh_ecdhkex_newkey(method) with queued_specific_random_data(unhex(bpriv)): bob = ssh_ecdhkex_newkey(method) self.assertEqualBin(ssh_ecdhkex_getpublic(alice), unhex(apub)) self.assertEqualBin(ssh_ecdhkex_getpublic(bob), unhex(bpub)) akey = ssh_ecdhkex_getkey(alice, unhex(bpub)) bkey = ssh_ecdhkex_getkey(bob, unhex(apub)) self.assertEqual(int(akey), expected) self.assertEqual(int(bkey), expected) def testCRC32(self): self.assertEqual(crc32_rfc1662("123456789"), 0xCBF43926) self.assertEqual(crc32_ssh1("123456789"), 0x2DFD2D88) # Source: # http://reveng.sourceforge.net/crc-catalogue/17plus.htm#crc.cat.crc-32-iso-hdlc # which collected these from various sources. reveng_tests = [ '000000001CDF4421', 'F20183779DAB24', '0FAA005587B2C9B6', '00FF55111262A032', '332255AABBCCDDEEFF3D86AEB0', '926B559BA2DE9C', 'FFFFFFFFFFFFFFFF', 'C008300028CFE9521D3B08EA449900E808EA449900E8300102007E649416', '6173640ACEDE2D15', ] for vec in map(unhex, reveng_tests): # Each of these test vectors can be read two ways. One # interpretation is that the last four bytes are the # little-endian encoding of the CRC of the rest. (Because # that's how the CRC is attached to a string at the # sending end.) # # The other interpretation is that if you CRC the whole # string, _including_ the final four bytes, you expect to # get the same value for any correct string (because the # little-endian encoding matches the way the rest of the # string was interpreted as a polynomial in the first # place). That's how a receiver is intended to check # things. # # The expected output value is listed in RFC 1662, and in # the reveng.sourceforge.net catalogue, as 0xDEBB20E3. But # that's because their checking procedure omits the final # complement step that the construction procedure # includes. Our crc32_rfc1662 function does do the final # complement, so we expect the bitwise NOT of that value, # namely 0x2144DF1C. expected = struct.unpack("