import numbers import itertools from numbertheory import * class AffinePoint(object): """Base class for points on an elliptic curve.""" def __init__(self, curve, *args): self.curve = curve if len(args) == 0: self.infinite = True self.x = self.y = None else: assert len(args) == 2 self.infinite = False self.x = ModP(self.curve.p, args[0]) self.y = ModP(self.curve.p, args[1]) self.check_equation() def __neg__(self): if self.infinite: return self return type(self)(self.curve, self.x, -self.y) def __mul__(self, rhs): if not isinstance(rhs, numbers.Integral): raise ValueError("Elliptic curve points can only be multiplied by integers") P = self if rhs < 0: rhs = -rhs P = -P toret = self.curve.point() n = 1 nP = P while rhs != 0: if rhs & n: rhs -= n toret += nP n += n nP += nP return toret def __rmul__(self, rhs): return self * rhs def __sub__(self, rhs): return self + (-rhs) def __rsub__(self, rhs): return (-self) + rhs def __str__(self): if self.infinite: return "inf" else: return "({},{})".format(self.x, self.y) def __repr__(self): if self.infinite: args = "" else: args = ", {}, {}".format(self.x, self.y) return "{}.Point({}{})".format(type(self.curve).__name__, self.curve, args) def __eq__(self, rhs): if self.infinite or rhs.infinite: return self.infinite and rhs.infinite return (self.x, self.y) == (rhs.x, rhs.y) def __ne__(self, rhs): return not (self == rhs) def __lt__(self, rhs): raise ValueError("Elliptic curve points have no ordering") def __le__(self, rhs): raise ValueError("Elliptic curve points have no ordering") def __gt__(self, rhs): raise ValueError("Elliptic curve points have no ordering") def __ge__(self, rhs): raise ValueError("Elliptic curve points have no ordering") def __hash__(self): if self.infinite: return hash((True,)) else: return hash((False, self.x, self.y)) class CurveBase(object): def point(self, *args): return self.Point(self, *args) class WeierstrassCurve(CurveBase): class Point(AffinePoint): def check_equation(self): assert (self.y*self.y == self.x*self.x*self.x + self.curve.a*self.x + self.curve.b) def __add__(self, rhs): if self.infinite: return rhs if rhs.infinite: return self if self.x == rhs.x and self.y != rhs.y: return self.curve.point() x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y xdiff = x2-x1 if xdiff != 0: slope = (y2-y1) / xdiff else: assert y1 == y2 slope = (3*x1*x1 + self.curve.a) / (2*y1) xp = slope*slope - x1 - x2 yp = -(y1 + slope * (xp-x1)) return self.curve.point(xp, yp) def __init__(self, p, a, b): self.p = p self.a = ModP(p, a) self.b = ModP(p, b) def cpoint(self, x, yparity=0): if not hasattr(self, 'sqrtmodp'): self.sqrtmodp = RootModP(2, self.p) rhs = x**3 + self.a.n * x + self.b.n y = self.sqrtmodp.root(rhs) if (y - yparity) % 2: y = -y return self.point(x, y) def __repr__(self): return "{}(0x{:x}, {}, {})".format( type(self).__name__, self.p, self.a, self.b) class MontgomeryCurve(CurveBase): class Point(AffinePoint): def check_equation(self): assert (self.curve.b*self.y*self.y == self.x*self.x*self.x + self.curve.a*self.x*self.x + self.x) def __add__(self, rhs): if self.infinite: return rhs if rhs.infinite: return self if self.x == rhs.x and self.y != rhs.y: return self.curve.point() x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y xdiff = x2-x1 if xdiff != 0: slope = (y2-y1) / xdiff elif y1 != 0: assert y1 == y2 slope = (3*x1*x1 + 2*self.curve.a*x1 + 1) / (2*self.curve.b*y1) else: # If y1 was 0 as well, then we must have found an # order-2 point that doubles to the identity. return self.curve.point() xp = self.curve.b*slope*slope - self.curve.a - x1 - x2 yp = -(y1 + slope * (xp-x1)) return self.curve.point(xp, yp) def __init__(self, p, a, b): self.p = p self.a = ModP(p, a) self.b = ModP(p, b) def cpoint(self, x, yparity=0): if not hasattr(self, 'sqrtmodp'): self.sqrtmodp = RootModP(2, self.p) rhs = (x**3 + self.a.n * x**2 + x) / self.b y = self.sqrtmodp.root(int(rhs)) if (y - yparity) % 2: y = -y return self.point(x, y) def __repr__(self): return "{}(0x{:x}, {}, {})".format( type(self).__name__, self.p, self.a, self.b) class TwistedEdwardsCurve(CurveBase): class Point(AffinePoint): def check_equation(self): x2, y2 = self.x*self.x, self.y*self.y assert (self.curve.a*x2 + y2 == 1 + self.curve.d*x2*y2) def __neg__(self): return type(self)(self.curve, -self.x, self.y) def __add__(self, rhs): x1, x2, y1, y2 = self.x, rhs.x, self.y, rhs.y x1y2, y1x2, y1y2, x1x2 = x1*y2, y1*x2, y1*y2, x1*x2 dxxyy = self.curve.d*x1x2*y1y2 return self.curve.point((x1y2+y1x2)/(1+dxxyy), (y1y2-self.curve.a*x1x2)/(1-dxxyy)) def __init__(self, p, d, a): self.p = p self.d = ModP(p, d) self.a = ModP(p, a) def point(self, *args): # This curve form represents the identity using finite # numbers, so it doesn't need the special infinity flag. # Detect a no-argument call to point() and substitute the pair # of integers that gives the identity. if len(args) == 0: args = [0, 1] return super(TwistedEdwardsCurve, self).point(*args) def cpoint(self, y, xparity=0): if not hasattr(self, 'sqrtmodp'): self.sqrtmodp = RootModP(self.p) y = ModP(self.p, y) y2 = y**2 radicand = (y2 - 1) / (self.d * y2 - self.a) x = self.sqrtmodp.root(radicand.n) if (x - xparity) % 2: x = -x return self.point(x, y) def __repr__(self): return "{}(0x{:x}, {}, {})".format( type(self).__name__, self.p, self.d, self.a) def find_montgomery_power2_order_x_values(p, a): # Find points on a Montgomery elliptic curve that have order a # power of 2. # # Motivation: both Curve25519 and Curve448 are abelian groups # whose overall order is a large prime times a small factor of 2. # The approved base point of each curve generates a cyclic # subgroup whose order is the large prime. Outside that cyclic # subgroup there are many other points that have large prime # order, plus just a handful that have tiny order. If one of the # latter is presented to you as a Diffie-Hellman public value, # nothing useful is going to happen, and RFC 7748 says we should # outlaw those values. And any actual attempt to outlaw them is # going to need to know what they are, either to check for each # one directly, or to use them as test cases for some other # approach. # # In a group of order p 2^k, an obvious way to search for points # with order dividing 2^k is to generate random group elements and # raise them to the power p. That guarantees that you end up with # _something_ with order dividing 2^k (even if it's boringly the # identity). And you also know from theory how many such points # you expect to exist, so you can count the distinct ones you've # found, and stop once you've got the right number. # # But that isn't actually good enough to find all the public # values that are problematic! The reason why not is that in # Montgomery key exchange we don't actually use a full elliptic # curve point: we only use its x-coordinate. And the formulae for # doubling and differential addition on x-coordinates can accept # some values that don't correspond to group elements _at all_ # without detecting any error - and some of those nonsense x # coordinates can also behave like low-order points. # # (For example, the x-coordinate -1 in Curve25519 is such a value. # The reference ECC code in this module will raise an exception if # you call curve25519.cpoint(-1): it corresponds to no valid point # at all. But if you feed it into the doubling formula _anyway_, # it doubles to the valid curve point with x-coord 0, which in # turn doubles to the curve identity. Bang.) # # So we use an alternative approach which discards the group # theory of the actual elliptic curve, and focuses purely on the # doubling formula as an algebraic transformation on Z_p. Our # question is: what values of x have the property that if you # iterate the doubling map you eventually end up dividing by zero? # To answer that, we must solve cubics and quartics mod p, via the # code in numbertheory.py for doing so. E = EquationSolverModP(p) def viableSolutions(it): for x in it: try: yield int(x) except ValueError: pass # some field-extension element that isn't a real value def valuesDoublingTo(y): # The doubling formula for a Montgomery curve point given only # by x coordinate is (x+1)^2(x-1)^2 / (4(x^3+ax^2+x)). # # If we want to find a point that doubles to some particular # value, we can set that formula equal to y and expand to get the # quartic equation x^4 + (-4y)x^3 + (-4ay-2)x^2 + (-4y)x + 1 = 0. return viableSolutions(E.solve_monic_quartic(-4*y, -4*a*y-2, -4*y, 1)) queue = [] qset = set() pos = 0 def insert(x): if x not in qset: queue.append(x) qset.add(x) # Our ultimate aim is to find points that end up going to the # curve identity / point at infinity after some number of # doublings. So our starting point is: what values of x make the # denominator of the doubling formula zero? for x in viableSolutions(E.solve_monic_cubic(a, 1, 0)): insert(x) while pos < len(queue): y = queue[pos] pos += 1 for x in valuesDoublingTo(y): insert(x) return queue p256 = WeierstrassCurve(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff, -3, 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b) p256.G = p256.point(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5) p256.G_order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 p384 = WeierstrassCurve(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff, -3, 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef) p384.G = p384.point(0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7, 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f) p384.G_order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 p521 = WeierstrassCurve(0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, -3, 0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00) p521.G = p521.point(0x00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,0x011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650) p521.G_order = 0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409 curve25519 = MontgomeryCurve(2**255-19, 0x76d06, 1) curve25519.G = curve25519.cpoint(9) ed25519 = TwistedEdwardsCurve(2**255-19, 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3, -1) ed25519.G = ed25519.point(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,0x6666666666666666666666666666666666666666666666666666666666666658) ed25519.G_order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed