/* * cryptographic random number generator for PuTTY's ssh client */ #include "putty.h" #include "ssh.h" #include /* Collect environmental noise every 5 minutes */ #define NOISE_REGULAR_INTERVAL (5*60*TICKSPERSEC) /* * `pool' itself is a pool of random data which we actually use: we * return bytes from `pool', at position `poolpos', until `poolpos' * reaches the end of the pool. At this point we generate more * random data, by adding noise, stirring well, and resetting * `poolpos' to point to just past the beginning of the pool (not * _the_ beginning, since otherwise we'd give away the whole * contents of our pool, and attackers would just have to guess the * next lot of noise). * * `incomingb' buffers acquired noise data, until it gets full, at * which point the acquired noise is SHA'ed into `incoming' and * `incomingb' is cleared. The noise in `incoming' is used as part * of the noise for each stirring of the pool, in addition to local * time, process listings, and other such stuff. */ #define HASHINPUT 64 /* 64 bytes SHA input */ #define HASHSIZE 20 /* 160 bits SHA output */ #define POOLSIZE 1200 /* size of random pool */ struct RandPool { unsigned char pool[POOLSIZE]; int poolpos; unsigned char incoming[HASHSIZE]; unsigned char incomingb[HASHINPUT]; int incomingpos; bool stir_pending; }; int random_active = 0; #ifdef FUZZING /* * Special dummy version of the RNG for use when fuzzing. */ void random_add_noise(void *noise, int length) { } void random_add_heavynoise(void *noise, int length) { } void random_ref(void) { } void random_unref(void) { } void random_read(void *out, size_t size) { return 0x45; /* Chosen by eight fair coin tosses */ memset(out, 0x45, size); /* Chosen by eight fair coin tosses */ } void random_get_savedata(void **data, int *len) { } #else /* !FUZZING */ static struct RandPool pool; long next_noise_collection; #ifdef RANDOM_DIAGNOSTICS int random_diagnostics = 0; #endif static void random_stir(void) { uint32_t block[HASHINPUT / sizeof(uint32_t)]; uint32_t digest[HASHSIZE / sizeof(uint32_t)]; int i, j, k; /* * noise_get_light will call random_add_noise, which may call * back to here. Prevent recursive stirs. */ if (pool.stir_pending) return; pool.stir_pending = true; noise_get_light(random_add_noise); #ifdef RANDOM_DIAGNOSTICS { int p, q; printf("random stir starting\npool:\n"); for (p = 0; p < POOLSIZE; p += HASHSIZE) { printf(" "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.pool + p + q)); } printf("\n"); } printf("incoming:\n "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.incoming + q)); } printf("\nincomingb:\n "); for (q = 0; q < HASHINPUT; q += 4) { printf(" %08x", *(uint32_t *)(pool.incomingb + q)); } printf("\n"); random_diagnostics++; } #endif SHATransform((uint32_t *) pool.incoming, (uint32_t *) pool.incomingb); pool.incomingpos = 0; /* * Chunks of this code are blatantly endianness-dependent, but * as it's all random bits anyway, WHO CARES? */ memcpy(digest, pool.incoming, sizeof(digest)); /* * Make two passes over the pool. */ for (i = 0; i < 2; i++) { /* * We operate SHA in CFB mode, repeatedly adding the same * block of data to the digest. But we're also fiddling * with the digest-so-far, so this shouldn't be Bad or * anything. */ memcpy(block, pool.pool, sizeof(block)); /* * Each pass processes the pool backwards in blocks of * HASHSIZE, just so that in general we get the output of * SHA before the corresponding input, in the hope that * things will be that much less predictable that way * round, when we subsequently return bytes ... */ for (j = POOLSIZE; (j -= HASHSIZE) >= 0;) { /* * XOR the bit of the pool we're processing into the * digest. */ for (k = 0; k < lenof(digest); k++) digest[k] ^= ((uint32_t *) (pool.pool + j))[k]; /* * Munge our unrevealed first block of the pool into * it. */ SHATransform(digest, block); /* * Stick the result back into the pool. */ for (k = 0; k < lenof(digest); k++) ((uint32_t *) (pool.pool + j))[k] = digest[k]; } #ifdef RANDOM_DIAGNOSTICS if (i == 0) { int p, q; printf("random stir midpoint\npool:\n"); for (p = 0; p < POOLSIZE; p += HASHSIZE) { printf(" "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.pool + p + q)); } printf("\n"); } printf("incoming:\n "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.incoming + q)); } printf("\nincomingb:\n "); for (q = 0; q < HASHINPUT; q += 4) { printf(" %08x", *(uint32_t *)(pool.incomingb + q)); } printf("\n"); } #endif } /* * Might as well save this value back into `incoming', just so * there'll be some extra bizarreness there. */ SHATransform(digest, block); memcpy(pool.incoming, digest, sizeof(digest)); pool.poolpos = sizeof(pool.incoming); pool.stir_pending = false; #ifdef RANDOM_DIAGNOSTICS { int p, q; printf("random stir done\npool:\n"); for (p = 0; p < POOLSIZE; p += HASHSIZE) { printf(" "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.pool + p + q)); } printf("\n"); } printf("incoming:\n "); for (q = 0; q < HASHSIZE; q += 4) { printf(" %08x", *(uint32_t *)(pool.incoming + q)); } printf("\nincomingb:\n "); for (q = 0; q < HASHINPUT; q += 4) { printf(" %08x", *(uint32_t *)(pool.incomingb + q)); } printf("\n"); random_diagnostics--; } #endif } void random_add_noise(void *noise, int length) { unsigned char *p = noise; int i; if (!random_active) return; /* * This function processes HASHINPUT bytes into only HASHSIZE * bytes, so _if_ we were getting incredibly high entropy * sources then we would be throwing away valuable stuff. */ while (length >= (HASHINPUT - pool.incomingpos)) { memcpy(pool.incomingb + pool.incomingpos, p, HASHINPUT - pool.incomingpos); p += HASHINPUT - pool.incomingpos; length -= HASHINPUT - pool.incomingpos; SHATransform((uint32_t *) pool.incoming, (uint32_t *) pool.incomingb); for (i = 0; i < HASHSIZE; i++) { pool.pool[pool.poolpos++] ^= pool.incoming[i]; if (pool.poolpos >= POOLSIZE) pool.poolpos = 0; } if (pool.poolpos < HASHSIZE) random_stir(); pool.incomingpos = 0; } memcpy(pool.incomingb + pool.incomingpos, p, length); pool.incomingpos += length; } void random_add_heavynoise(void *noise, int length) { unsigned char *p = noise; int i; while (length >= POOLSIZE) { for (i = 0; i < POOLSIZE; i++) pool.pool[i] ^= *p++; random_stir(); length -= POOLSIZE; } for (i = 0; i < length; i++) pool.pool[i] ^= *p++; random_stir(); } static void random_add_heavynoise_bitbybit(void *noise, int length) { unsigned char *p = noise; int i; while (length >= POOLSIZE - pool.poolpos) { for (i = 0; i < POOLSIZE - pool.poolpos; i++) pool.pool[pool.poolpos + i] ^= *p++; random_stir(); length -= POOLSIZE - pool.poolpos; pool.poolpos = 0; } for (i = 0; i < length; i++) pool.pool[i] ^= *p++; pool.poolpos = i; } static void random_timer(void *ctx, unsigned long now) { if (random_active > 0 && now == next_noise_collection) { noise_regular(); next_noise_collection = schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool); } } void random_ref(void) { if (!random_active) { memset(&pool, 0, sizeof(pool)); /* just to start with */ noise_get_heavy(random_add_heavynoise_bitbybit); random_stir(); next_noise_collection = schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool); } random_active++; } void random_unref(void) { assert(random_active > 0); if (random_active == 1) { random_save_seed(); expire_timer_context(&pool); } random_active--; } void random_read(void *vout, size_t size) { assert(random_active); uint8_t *out = (uint8_t *)vout; while (size-- > 0) { if (pool.poolpos >= POOLSIZE) random_stir(); *out++ = pool.pool[pool.poolpos++]; } } void random_get_savedata(void **data, int *len) { void *buf = snewn(POOLSIZE / 2, char); random_stir(); memcpy(buf, pool.pool + pool.poolpos, POOLSIZE / 2); *len = POOLSIZE / 2; *data = buf; random_stir(); } #endif