import numbers import itertools import unittest def invert(a, b): "Multiplicative inverse of a mod b. a,b must be coprime." A = (a, 1, 0) B = (b, 0, 1) while B[0]: q = A[0] // B[0] A, B = B, tuple(Ai - q*Bi for Ai, Bi in zip(A, B)) assert abs(A[0]) == 1 return A[1]*A[0] % b def jacobi(n,m): """Compute the Jacobi symbol. The special case of this when m is prime is the Legendre symbol, which is 0 if n is congruent to 0 mod m; 1 if n is congruent to a non-zero square number mod m; -1 if n is not congruent to any square mod m. """ assert m & 1 acc = 1 while True: n %= m if n == 0: return 0 while not (n & 1): n >>= 1 if (m & 7) not in {1,7}: acc *= -1 if n == 1: return acc if (n & 3) == 3 and (m & 3) == 3: acc *= -1 n, m = m, n class CyclicGroupRootFinder(object): """Class for finding rth roots in a cyclic group. r must be prime.""" # Basic strategy: # # We write |G| = r^k u, with u coprime to r. This gives us a # nested sequence of subgroups G = G_0 > G_1 > ... > G_k, each # with index 3 in its predecessor. G_0 is the whole group, and the # innermost G_k has order u. # # Within G_k, you can take an rth root by raising an element to # the power of (r^{-1} mod u). If k=0 (so G = G_0 = G_k) then # that's all that's needed: every element has a unique rth root. # But if k>0, then things go differently. # # Define the 'rank' of an element g as the highest i such that # g \in G_i. Elements of rank 0 are the non-rth-powers: they don't # even _have_ an rth root. Elements of rank k are the easy ones to # take rth roots of, as above. # # In between, you can follow an inductive process, as long as you # know one element z of index 0. Suppose we're trying to take the # rth root of some g with index i. Repeatedly multiply g by # z^{r^i} until its index increases; then take the root of that # (recursively), and divide off z^{r^{i-1}} once you're done. def __init__(self, r, order): self.order = order # order of G self.r = r self.k = next(k for k in itertools.count() if self.order % (r**(k+1)) != 0) self.u = self.order // (r**self.k) self.z = next(z for z in self.iter_elements() if self.index(z) == 0) self.zinv = self.inverse(self.z) self.root_power = invert(self.r, self.u) if self.u > 1 else 0 self.roots_of_unity = {self.identity()} if self.k > 0: exponent = self.order // self.r for z in self.iter_elements(): root_of_unity = self.pow(z, exponent) if root_of_unity not in self.roots_of_unity: self.roots_of_unity.add(root_of_unity) if len(self.roots_of_unity) == r: break def index(self, g): h = self.pow(g, self.u) for i in range(self.k+1): if h == self.identity(): return self.k - i h = self.pow(h, self.r) assert False, ("Not a cyclic group! Raising {} to u r^k should give e." .format(g)) def all_roots(self, g): try: r = self.root(g) except ValueError: return [] return {r * rou for rou in self.roots_of_unity} def root(self, g): i = self.index(g) if i == 0 and self.k > 0: raise ValueError("{} has no {}th root".format(g, self.r)) out = self.root_recurse(g, i) assert self.pow(out, self.r) == g return out def root_recurse(self, g, i): if i == self.k: return self.pow(g, self.root_power) z_in = self.pow(self.z, self.r**i) z_out = self.pow(self.zinv, self.r**(i-1)) adjust = self.identity() while True: g = self.mul(g, z_in) adjust = self.mul(adjust, z_out) i2 = self.index(g) if i2 > i: return self.mul(self.root_recurse(g, i2), adjust) class AdditiveGroupRootFinder(CyclicGroupRootFinder): """Trivial test subclass for CyclicGroupRootFinder. Represents a cyclic group of any order additively, as the integers mod n under addition. This makes root-finding trivial without having to use the complicated algorithm above, and therefore it's a good way to test the complicated algorithm under conditions where the right answers are obvious.""" def __init__(self, r, order): super().__init__(r, order) def mul(self, x, y): return (x + y) % self.order def pow(self, x, n): return (x * n) % self.order def inverse(self, x): return (-x) % self.order def identity(self): return 0 def iter_elements(self): return range(self.order) class TestCyclicGroupRootFinder(unittest.TestCase): def testRootFinding(self): for order in 10, 11, 12, 18: grf = AdditiveGroupRootFinder(3, order) for i in range(order): try: r = grf.root(i) except ValueError: r = None if order % 3 == 0 and i % 3 != 0: self.assertEqual(r, None) else: self.assertEqual(r*3 % order, i) class RootModP(CyclicGroupRootFinder): """The live class that can take rth roots mod a prime.""" def __init__(self, r, p): self.modulus = p super().__init__(r, p-1) def mul(self, x, y): return (x * y) % self.modulus def pow(self, x, n): return pow(x, n, self.modulus) def inverse(self, x): return invert(x, self.modulus) def identity(self): return 1 def iter_elements(self): return range(1, self.modulus) def root(self, g): return 0 if g == 0 else super().root(g) class ModP(object): """Class that represents integers mod p as a field. All the usual arithmetic operations are supported directly, including division, so you can write formulas in a natural way without having to keep saying '% p' everywhere or call a cumbersome modular_inverse() function. """ def __init__(self, p, n=0): self.p = p if isinstance(n, type(self)): self.check(n) n = n.n self.n = n % p def check(self, other): assert isinstance(other, type(self)) assert isinstance(self, type(other)) assert self.p == other.p def coerce_to(self, other): if not isinstance(other, type(self)): other = type(self)(self.p, other) else: self.check(other) return other def __int__(self): return self.n def __add__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n + rhs.n) % self.p) def __neg__(self): return type(self)(self.p, -self.n % self.p) def __radd__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n + rhs.n) % self.p) def __sub__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n - rhs.n) % self.p) def __rsub__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (rhs.n - self.n) % self.p) def __mul__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n * rhs.n) % self.p) def __rmul__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n * rhs.n) % self.p) def __div__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (self.n * invert(rhs.n, self.p)) % self.p) def __rdiv__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, (rhs.n * invert(self.n, self.p)) % self.p) def __truediv__(self, rhs): return self.__div__(rhs) def __rtruediv__(self, rhs): return self.__rdiv__(rhs) def __pow__(self, exponent): assert exponent >= 0 n, b_to_n = 1, self total = type(self)(self.p, 1) while True: if exponent & n: exponent -= n total *= b_to_n n *= 2 if n > exponent: break b_to_n *= b_to_n return total def __cmp__(self, rhs): rhs = self.coerce_to(rhs) return cmp(self.n, rhs.n) def __eq__(self, rhs): rhs = self.coerce_to(rhs) return self.n == rhs.n def __ne__(self, rhs): rhs = self.coerce_to(rhs) return self.n != rhs.n def __lt__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __le__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __gt__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __ge__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __str__(self): return "0x{:x}".format(self.n) def __repr__(self): return "{}(0x{:x},0x{:x})".format(type(self).__name__, self.p, self.n) def __hash__(self): return hash((type(self).__name__, self.p, self.n)) class QuadraticFieldExtensionModP(object): """Class representing Z_p[sqrt(d)] for a given non-square d. """ def __init__(self, p, d, n=0, m=0): self.p = p self.d = d if isinstance(n, ModP): assert self.p == n.p n = n.n if isinstance(m, ModP): assert self.p == m.p m = m.n if isinstance(n, type(self)): self.check(n) m += n.m n = n.n self.n = n % p self.m = m % p @classmethod def constructor(cls, p, d): return lambda *args: cls(p, d, *args) def check(self, other): assert isinstance(other, type(self)) assert isinstance(self, type(other)) assert self.p == other.p assert self.d == other.d def coerce_to(self, other): if not isinstance(other, type(self)): other = type(self)(self.p, self.d, other) else: self.check(other) return other def __int__(self): if self.m != 0: raise ValueError("Can't coerce a non-element of Z_{} to integer" .format(self.p)) return int(self.n) def __add__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, self.d, (self.n + rhs.n) % self.p, (self.m + rhs.m) % self.p) def __neg__(self): return type(self)(self.p, self.d, -self.n % self.p, -self.m % self.p) def __radd__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, self.d, (self.n + rhs.n) % self.p, (self.m + rhs.m) % self.p) def __sub__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, self.d, (self.n - rhs.n) % self.p, (self.m - rhs.m) % self.p) def __rsub__(self, rhs): rhs = self.coerce_to(rhs) return type(self)(self.p, self.d, (rhs.n - self.n) % self.p, (rhs.m - self.m) % self.p) def __mul__(self, rhs): rhs = self.coerce_to(rhs) n, m, N, M = self.n, self.m, rhs.n, rhs.m return type(self)(self.p, self.d, (n*N + self.d*m*M) % self.p, (n*M + m*N) % self.p) def __rmul__(self, rhs): return self.__mul__(rhs) def __div__(self, rhs): rhs = self.coerce_to(rhs) n, m, N, M = self.n, self.m, rhs.n, rhs.m # (n+m sqrt d)/(N+M sqrt d) = (n+m sqrt d)(N-M sqrt d)/(N^2-dM^2) denom = (N*N - self.d*M*M) % self.p if denom == 0: raise ValueError("division by zero") recipdenom = invert(denom, self.p) return type(self)(self.p, self.d, (n*N - self.d*m*M) * recipdenom % self.p, (m*N - n*M) * recipdenom % self.p) def __rdiv__(self, rhs): rhs = self.coerce_to(rhs) return rhs.__div__(self) def __truediv__(self, rhs): return self.__div__(rhs) def __rtruediv__(self, rhs): return self.__rdiv__(rhs) def __pow__(self, exponent): assert exponent >= 0 n, b_to_n = 1, self total = type(self)(self.p, self.d, 1) while True: if exponent & n: exponent -= n total *= b_to_n n *= 2 if n > exponent: break b_to_n *= b_to_n return total def __cmp__(self, rhs): rhs = self.coerce_to(rhs) return cmp((self.n, self.m), (rhs.n, rhs.m)) def __eq__(self, rhs): rhs = self.coerce_to(rhs) return self.n == rhs.n and self.m == rhs.m def __ne__(self, rhs): rhs = self.coerce_to(rhs) return self.n != rhs.n or self.m != rhs.m def __lt__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __le__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __gt__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __ge__(self, rhs): raise ValueError("Elements of a modular ring have no ordering") def __str__(self): if self.m == 0: return "0x{:x}".format(self.n) else: return "0x{:x}+0x{:x}*sqrt({:d})".format(self.n, self.m, self.d) def __repr__(self): return "{}(0x{:x},0x{:x},0x{:x},0x{:x})".format( type(self).__name__, self.p, self.d, self.n, self.m) def __hash__(self): return hash((type(self).__name__, self.p, self.d, self.n, self.m)) class RootInQuadraticExtension(CyclicGroupRootFinder): """Take rth roots in the quadratic extension of Z_p.""" def __init__(self, r, p, d): self.modulus = p self.constructor = QuadraticFieldExtensionModP.constructor(p, d) super().__init__(r, p*p-1) def mul(self, x, y): return x * y def pow(self, x, n): return x ** n def inverse(self, x): return 1/x def identity(self): return self.constructor(1, 0) def iter_elements(self): p = self.modulus for n_plus_m in range(1, 2*p-1): n_min = max(0, n_plus_m-(p-1)) n_max = min(p-1, n_plus_m) for n in range(n_min, n_max + 1): m = n_plus_m - n assert(0 <= n < p) assert(0 <= m < p) assert(n != 0 or m != 0) yield self.constructor(n, m) def root(self, g): return 0 if g == 0 else super().root(g) class EquationSolverModP(object): """Class that can solve quadratics, cubics and quartics over Z_p. p must be a nontrivial prime (bigger than 3). """ # This is a port to Z_p of reasonably standard algorithms for # solving quadratics, cubics and quartics over the reals. # # When you solve a cubic in R, you sometimes have to deal with # intermediate results that are complex numbers. In particular, # you have to solve a quadratic whose coefficients are in R but # its roots may be complex, and then having solved that quadratic, # you need to iterate over all three cube roots of the solution in # order to recover all the roots of your cubic. (Even if the cubic # ends up having three real roots, you can't calculate them # without going through those complex intermediate values.) # # So over Z_p, the same thing applies: we're going to need to be # able to solve any quadratic with coefficients in Z_p, even if # its discriminant turns out not to be a quadratic residue mod p, # and then we'll need to find _three_ cube roots of the result, # even if p == 2 (mod 3) so that numbers only have one cube root # each. # # Both of these problems can be solved at once if we work in the # finite field GF(p^2), i.e. make a quadratic field extension of # Z_p by adjoining a square root of some non-square d. The # multiplicative group of GF(p^2) is cyclic and has order p^2-1 = # (p-1)(p+1), with the mult group of Z_p forming the unique # subgroup of order (p-1) within it. So we've multiplied the group # order by p+1, which is even (since by assumption p > 3), and # therefore a square root is now guaranteed to exist for every # number in the Z_p subgroup. Moreover, no matter whether p itself # was congruent to 1 or 2 mod 3, p^2 is always congruent to 1, # which means that the mult group of GF(p^2) has order divisible # by 3. So there are guaranteed to be three distinct cube roots of # unity, and hence, three cube roots of any number that's a cube # at all. # # Quartics don't introduce any additional problems. To solve a # quartic, you factorise it into two quadratic factors, by solving # a cubic to find one of the coefficients. So if you can already # solve cubics, then you're more or less done. The only wrinkle is # that the two quadratic factors will have coefficients in GF(p^2) # but not necessarily in Z_p. But that doesn't stop us at least # _trying_ to solve them by taking square roots in GF(p^2) - and # if the discriminant of one of those quadratics has is not a # square even in GF(p^2), then its solutions will only exist if # you escalate further to GF(p^4), in which case the answer is # simply that there aren't any solutions in Z_p to that quadratic. def __init__(self, p): self.p = p self.nonsquare_mod_p = d = RootModP(2, p).z self.constructor = QuadraticFieldExtensionModP.constructor(p, d) self.sqrt = RootInQuadraticExtension(2, p, d) self.cbrt = RootInQuadraticExtension(3, p, d) def solve_quadratic(self, a, b, c): "Solve ax^2 + bx + c = 0." a, b, c = map(self.constructor, (a, b, c)) assert a != 0 return self.solve_monic_quadratic(b/a, c/a) def solve_monic_quadratic(self, b, c): "Solve x^2 + bx + c = 0." b, c = map(self.constructor, (b, c)) s = b/2 return [y - s for y in self.solve_depressed_quadratic(c - s*s)] def solve_depressed_quadratic(self, c): "Solve x^2 + c = 0." return self.sqrt.all_roots(-c) def solve_cubic(self, a, b, c, d): "Solve ax^3 + bx^2 + cx + d = 0." a, b, c, d = map(self.constructor, (a, b, c, d)) assert a != 0 return self.solve_monic_cubic(b/a, c/a, d/a) def solve_monic_cubic(self, b, c, d): "Solve x^3 + bx^2 + cx + d = 0." b, c, d = map(self.constructor, (b, c, d)) s = b/3 return [y - s for y in self.solve_depressed_cubic( c - 3*s*s, 2*s*s*s - c*s + d)] def solve_depressed_cubic(self, c, d): "Solve x^3 + cx + d = 0." c, d = map(self.constructor, (c, d)) solutions = set() # To solve x^3 + cx + d = 0, set p = -c/3, then # substitute x = z + p/z to get z^6 + d z^3 + p^3 = 0. # Solve that quadratic for z^3, then take cube roots. p = -c/3 for z3 in self.solve_monic_quadratic(d, p**3): # As I understand the theory, we _should_ only need to # take cube roots of one root of that quadratic: the other # one should give the same set of answers after you map # each one through z |-> z+p/z. But speed isn't at a # premium here, so I'll do this the way that must work. for z in self.cbrt.all_roots(z3): solutions.add(z + p/z) return solutions def solve_quartic(self, a, b, c, d, e): "Solve ax^4 + bx^3 + cx^2 + dx + e = 0." a, b, c, d, e = map(self.constructor, (a, b, c, d, e)) assert a != 0 return self.solve_monic_quartic(b/a, c/a, d/a, e/a) def solve_monic_quartic(self, b, c, d, e): "Solve x^4 + bx^3 + cx^2 + dx + e = 0." b, c, d, e = map(self.constructor, (b, c, d, e)) s = b/4 return [y - s for y in self.solve_depressed_quartic( c - 6*s*s, d - 2*c*s + 8*s*s*s, e - d*s + c*s*s - 3*s*s*s*s)] def solve_depressed_quartic(self, c, d, e): "Solve x^4 + cx^2 + dx + e = 0." c, d, e = map(self.constructor, (c, d, e)) solutions = set() # To solve an equation of this form, we search for a value y # such that subtracting the original polynomial from (x^2+y)^2 # yields a quadratic of the special form (ux+v)^2. # # Then our equation is rewritten as (x^2+y)^2 - (ux+v)^2 = 0 # i.e. ((x^2+y) + (ux+v)) ((x^2+y) - (ux+v)) = 0 # i.e. the product of two quadratics, each of which we then solve. # # To find y, we write down the discriminant of the quadratic # (x^2+y)^2 - (x^4 + cx^2 + dx + e) and set it to 0, which # gives a cubic in y. Maxima gives the coefficients as # (-8)y^3 + (4c)y^2 + (8e)y + (d^2-4ce). # # As above, we _should_ only need one value of y. But I go # through them all just in case, because I don't care about # speed, and because checking the assertions inside this loop # for every value is extra reassurance that I've done all of # this right. for y in self.solve_cubic(-8, 4*c, 8*e, d*d-4*c*e): # Subtract the original equation from (x^2+y)^2 to get the # coefficients of our quadratic residual. A, B, C = 2*y-c, -d, y*y-e # Expect that to have zero discriminant, i.e. a repeated root. assert B*B - 4*A*C == 0 # If (Ax^2+Bx+C) == (ux+v)^2 then we have u^2=A, 2uv=B, v^2=C. # So we can either recover u as sqrt(A) or v as sqrt(C), and # whichever we did, find the other from B by division. But # either of the end coefficients might be zero, so we have # to be prepared to try either option. try: if A != 0: u = self.sqrt.root(A) v = B/(2*u) elif C != 0: v = self.sqrt.root(C) u = B/(2*v) else: # One last possibility is that all three coefficients # of our residual quadratic are 0, in which case, # obviously, u=v=0 as well. u = v = 0 except ValueError: # If Ax^2+Bx+C looked like a perfect square going by # its discriminant, but actually taking the square # root of A or C threw an exception, that means that # it's the square of a polynomial whose coefficients # live in a yet-higher field extension of Z_p. In that # case we're not going to end up with roots of the # original quartic in Z_p if we start from here! continue # So now our quartic is factorised into the form # (x^2 - ux - v + y) (x^2 + ux + v + y). for x in self.solve_monic_quadratic(-u, y-v): solutions.add(x) for x in self.solve_monic_quadratic(u, y+v): solutions.add(x) return solutions class EquationSolverTest(unittest.TestCase): def testQuadratic(self): E = EquationSolverModP(11) solns = E.solve_quadratic(3, 2, 6) self.assertEqual(sorted(map(str, solns)), ["0x1", "0x2"]) def testCubic(self): E = EquationSolverModP(11) solns = E.solve_cubic(7, 2, 0, 2) self.assertEqual(sorted(map(str, solns)), ["0x1", "0x2", "0x3"]) def testQuartic(self): E = EquationSolverModP(11) solns = E.solve_quartic(9, 9, 7, 1, 7) self.assertEqual(sorted(map(str, solns)), ["0x1", "0x2", "0x3", "0x4"]) if __name__ == "__main__": import sys if sys.argv[1:] == ["--test"]: sys.argv[1:2] = [] unittest.main()