/* * SHA-1 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html */ #include "ssh.h" #include /* * Start by deciding whether we can support hardware SHA at all. */ #define HW_SHA1_NONE 0 #define HW_SHA1_NI 1 #define HW_SHA1_NEON 2 #ifdef _FORCE_SHA_NI # define HW_SHA1 HW_SHA1_NI #elif defined(__clang__) # if __has_attribute(target) && __has_include() && \ (defined(__x86_64__) || defined(__i386)) # define HW_SHA1 HW_SHA1_NI # endif #elif defined(__GNUC__) # if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \ (defined(__x86_64__) || defined(__i386)) # define HW_SHA1 HW_SHA1_NI # endif #elif defined (_MSC_VER) # if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729 # define HW_SHA1 HW_SHA1_NI # endif #endif #ifdef _FORCE_SHA_NEON # define HW_SHA1 HW_SHA1_NEON #elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ /* Arm can potentially support both endiannesses, but this code * hasn't been tested on anything but little. If anyone wants to * run big-endian, they'll need to fix it first. */ #elif defined __ARM_FEATURE_CRYPTO /* If the Arm crypto extension is available already, we can * support NEON SHA without having to enable anything by hand */ # define HW_SHA1 HW_SHA1_NEON #elif defined(__clang__) # if __has_attribute(target) && __has_include() && \ (defined(__aarch64__)) /* clang can enable the crypto extension in AArch64 using * __attribute__((target)) */ # define HW_SHA1 HW_SHA1_NEON # define USE_CLANG_ATTR_TARGET_AARCH64 # endif #elif defined _MSC_VER /* Visual Studio supports the crypto extension when targeting * AArch64, but as of VS2017, the AArch32 header doesn't quite * manage it (declaring the shae/shad intrinsics without a round * key operand). */ # if defined _M_ARM64 # define HW_SHA1 HW_SHA1_NEON # if defined _M_ARM64 # define USE_ARM64_NEON_H /* unusual header name in this case */ # endif # endif #endif #if defined _FORCE_SOFTWARE_SHA || !defined HW_SHA1 # undef HW_SHA1 # define HW_SHA1 HW_SHA1_NONE #endif /* * The actual query function that asks if hardware acceleration is * available. */ static bool sha1_hw_available(void); /* * The top-level selection function, caching the results of * sha1_hw_available() so it only has to run once. */ static bool sha1_hw_available_cached(void) { static bool initialised = false; static bool hw_available; if (!initialised) { hw_available = sha1_hw_available(); initialised = true; } return hw_available; } static ssh_hash *sha1_select(const ssh_hashalg *alg) { const ssh_hashalg *real_alg = sha1_hw_available_cached() ? &ssh_sha1_hw : &ssh_sha1_sw; return ssh_hash_new(real_alg); } const ssh_hashalg ssh_sha1 = { sha1_select, NULL, NULL, NULL, 20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "dummy selector vtable"), }; /* ---------------------------------------------------------------------- * Definitions likely to be helpful to multiple implementations. */ static const uint32_t sha1_initial_state[] = { 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0, }; #define SHA1_ROUNDS_PER_STAGE 20 #define SHA1_STAGE0_CONSTANT 0x5a827999 #define SHA1_STAGE1_CONSTANT 0x6ed9eba1 #define SHA1_STAGE2_CONSTANT 0x8f1bbcdc #define SHA1_STAGE3_CONSTANT 0xca62c1d6 #define SHA1_ROUNDS (4 * SHA1_ROUNDS_PER_STAGE) typedef struct sha1_block sha1_block; struct sha1_block { uint8_t block[64]; size_t used; uint64_t len; }; static inline void sha1_block_setup(sha1_block *blk) { blk->used = 0; blk->len = 0; } static inline bool sha1_block_write( sha1_block *blk, const void **vdata, size_t *len) { size_t blkleft = sizeof(blk->block) - blk->used; size_t chunk = *len < blkleft ? *len : blkleft; const uint8_t *p = *vdata; memcpy(blk->block + blk->used, p, chunk); *vdata = p + chunk; *len -= chunk; blk->used += chunk; blk->len += chunk; if (blk->used == sizeof(blk->block)) { blk->used = 0; return true; } return false; } static inline void sha1_block_pad(sha1_block *blk, BinarySink *bs) { uint64_t final_len = blk->len << 3; size_t pad = 1 + (63 & (55 - blk->used)); put_byte(bs, 0x80); for (size_t i = 1; i < pad; i++) put_byte(bs, 0); put_uint64(bs, final_len); assert(blk->used == 0 && "Should have exactly hit a block boundary"); } /* ---------------------------------------------------------------------- * Software implementation of SHA-1. */ static inline uint32_t rol(uint32_t x, unsigned y) { return (x << (31 & y)) | (x >> (31 & -y)); } static inline uint32_t Ch(uint32_t ctrl, uint32_t if1, uint32_t if0) { return if0 ^ (ctrl & (if1 ^ if0)); } static inline uint32_t Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); } static inline uint32_t Par(uint32_t x, uint32_t y, uint32_t z) { return (x ^ y ^ z); } static inline void sha1_sw_round( unsigned round_index, const uint32_t *schedule, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d, uint32_t *e, uint32_t f, uint32_t constant) { *e = rol(*a, 5) + f + *e + schedule[round_index] + constant; *b = rol(*b, 30); } static void sha1_sw_block(uint32_t *core, const uint8_t *block) { uint32_t w[SHA1_ROUNDS]; uint32_t a,b,c,d,e; for (size_t t = 0; t < 16; t++) w[t] = GET_32BIT_MSB_FIRST(block + 4*t); for (size_t t = 16; t < SHA1_ROUNDS; t++) w[t] = rol(w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16], 1); a = core[0]; b = core[1]; c = core[2]; d = core[3]; e = core[4]; size_t t = 0; for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) { sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Ch(b,c,d), SHA1_STAGE0_CONSTANT); sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Ch(a,b,c), SHA1_STAGE0_CONSTANT); sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Ch(e,a,b), SHA1_STAGE0_CONSTANT); sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Ch(d,e,a), SHA1_STAGE0_CONSTANT); sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Ch(c,d,e), SHA1_STAGE0_CONSTANT); } for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) { sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE1_CONSTANT); sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE1_CONSTANT); sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE1_CONSTANT); sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE1_CONSTANT); sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE1_CONSTANT); } for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) { sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Maj(b,c,d), SHA1_STAGE2_CONSTANT); sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Maj(a,b,c), SHA1_STAGE2_CONSTANT); sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Maj(e,a,b), SHA1_STAGE2_CONSTANT); sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Maj(d,e,a), SHA1_STAGE2_CONSTANT); sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Maj(c,d,e), SHA1_STAGE2_CONSTANT); } for (size_t u = 0; u < SHA1_ROUNDS_PER_STAGE/5; u++) { sha1_sw_round(t++,w, &a,&b,&c,&d,&e, Par(b,c,d), SHA1_STAGE3_CONSTANT); sha1_sw_round(t++,w, &e,&a,&b,&c,&d, Par(a,b,c), SHA1_STAGE3_CONSTANT); sha1_sw_round(t++,w, &d,&e,&a,&b,&c, Par(e,a,b), SHA1_STAGE3_CONSTANT); sha1_sw_round(t++,w, &c,&d,&e,&a,&b, Par(d,e,a), SHA1_STAGE3_CONSTANT); sha1_sw_round(t++,w, &b,&c,&d,&e,&a, Par(c,d,e), SHA1_STAGE3_CONSTANT); } core[0] += a; core[1] += b; core[2] += c; core[3] += d; core[4] += e; smemclr(w, sizeof(w)); } typedef struct sha1_sw { uint32_t core[5]; sha1_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha1_sw; static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha1_sw_new(const ssh_hashalg *alg) { sha1_sw *s = snew(sha1_sw); memcpy(s->core, sha1_initial_state, sizeof(s->core)); sha1_block_setup(&s->blk); s->hash.vt = alg; BinarySink_INIT(s, sha1_sw_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static ssh_hash *sha1_sw_copy(ssh_hash *hash) { sha1_sw *s = container_of(hash, sha1_sw, hash); sha1_sw *copy = snew(sha1_sw); memcpy(copy, s, sizeof(*copy)); BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); return ©->hash; } static void sha1_sw_free(ssh_hash *hash) { sha1_sw *s = container_of(hash, sha1_sw, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha1_sw_write(BinarySink *bs, const void *vp, size_t len) { sha1_sw *s = BinarySink_DOWNCAST(bs, sha1_sw); while (len > 0) if (sha1_block_write(&s->blk, &vp, &len)) sha1_sw_block(s->core, s->blk.block); } static void sha1_sw_final(ssh_hash *hash, uint8_t *digest) { sha1_sw *s = container_of(hash, sha1_sw, hash); sha1_block_pad(&s->blk, BinarySink_UPCAST(s)); for (size_t i = 0; i < 5; i++) PUT_32BIT_MSB_FIRST(digest + 4*i, s->core[i]); sha1_sw_free(hash); } const ssh_hashalg ssh_sha1_sw = { sha1_sw_new, sha1_sw_copy, sha1_sw_final, sha1_sw_free, 20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "unaccelerated"), }; /* ---------------------------------------------------------------------- * Hardware-accelerated implementation of SHA-1 using x86 SHA-NI. */ #if HW_SHA1 == HW_SHA1_NI /* * Set target architecture for Clang and GCC */ #if !defined(__clang__) && defined(__GNUC__) # pragma GCC target("sha") # pragma GCC target("sse4.1") #endif #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) # define FUNC_ISA __attribute__ ((target("sse4.1,sha"))) #else # define FUNC_ISA #endif #include #include #include #if defined(__clang__) || defined(__GNUC__) #include #endif #if defined(__clang__) || defined(__GNUC__) #include #define GET_CPU_ID_0(out) \ __cpuid(0, (out)[0], (out)[1], (out)[2], (out)[3]) #define GET_CPU_ID_7(out) \ __cpuid_count(7, 0, (out)[0], (out)[1], (out)[2], (out)[3]) #else #define GET_CPU_ID_0(out) __cpuid(out, 0) #define GET_CPU_ID_7(out) __cpuidex(out, 7, 0) #endif static bool sha1_hw_available(void) { unsigned int CPUInfo[4]; GET_CPU_ID_0(CPUInfo); if (CPUInfo[0] < 7) return false; GET_CPU_ID_7(CPUInfo); return CPUInfo[1] & (1 << 29); /* Check SHA */ } /* SHA1 implementation using new instructions The code is based on Jeffrey Walton's SHA1 implementation: https://github.com/noloader/SHA-Intrinsics */ FUNC_ISA static inline void sha1_ni_block(__m128i *core, const uint8_t *p) { __m128i ABCD, E0, E1, MSG0, MSG1, MSG2, MSG3; const __m128i MASK = _mm_set_epi64x( 0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL); const __m128i *block = (const __m128i *)p; /* Load initial values */ ABCD = core[0]; E0 = core[1]; /* Rounds 0-3 */ MSG0 = _mm_loadu_si128(block); MSG0 = _mm_shuffle_epi8(MSG0, MASK); E0 = _mm_add_epi32(E0, MSG0); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); /* Rounds 4-7 */ MSG1 = _mm_loadu_si128(block + 1); MSG1 = _mm_shuffle_epi8(MSG1, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); /* Rounds 8-11 */ MSG2 = _mm_loadu_si128(block + 2); MSG2 = _mm_shuffle_epi8(MSG2, MASK); E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 12-15 */ MSG3 = _mm_loadu_si128(block + 3); MSG3 = _mm_shuffle_epi8(MSG3, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 16-19 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 20-23 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 24-27 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 28-31 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 32-35 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 36-39 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 40-43 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 44-47 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 48-51 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 52-55 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 56-59 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); /* Rounds 60-63 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); /* Rounds 64-67 */ E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); /* Rounds 68-71 */ E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG3 = _mm_xor_si128(MSG3, MSG1); /* Rounds 72-75 */ E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); /* Rounds 76-79 */ E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); /* Combine state */ core[0] = _mm_add_epi32(ABCD, core[0]); core[1] = _mm_sha1nexte_epu32(E0, core[1]); } typedef struct sha1_ni { /* * core[0] stores the first four words of the SHA-1 state. core[1] * stores just the fifth word, in the vector lane at the highest * address. */ __m128i core[2]; sha1_block blk; void *pointer_to_free; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha1_ni; static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len); static sha1_ni *sha1_ni_alloc(void) { /* * The __m128i variables in the context structure need to be * 16-byte aligned, but not all malloc implementations that this * code has to work with will guarantee to return a 16-byte * aligned pointer. So we over-allocate, manually realign the * pointer ourselves, and store the original one inside the * context so we know how to free it later. */ void *allocation = smalloc(sizeof(sha1_ni) + 15); uintptr_t alloc_address = (uintptr_t)allocation; uintptr_t aligned_address = (alloc_address + 15) & ~15; sha1_ni *s = (sha1_ni *)aligned_address; s->pointer_to_free = allocation; return s; } FUNC_ISA static ssh_hash *sha1_ni_new(const ssh_hashalg *alg) { if (!sha1_hw_available_cached()) return NULL; sha1_ni *s = sha1_ni_alloc(); /* Initialise the core vectors in their storage order */ s->core[0] = _mm_set_epi64x( 0x67452301efcdab89ULL, 0x98badcfe10325476ULL); s->core[1] = _mm_set_epi32(0xc3d2e1f0, 0, 0, 0); sha1_block_setup(&s->blk); s->hash.vt = alg; BinarySink_INIT(s, sha1_ni_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static ssh_hash *sha1_ni_copy(ssh_hash *hash) { sha1_ni *s = container_of(hash, sha1_ni, hash); sha1_ni *copy = sha1_ni_alloc(); void *ptf_save = copy->pointer_to_free; *copy = *s; /* structure copy */ copy->pointer_to_free = ptf_save; BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); return ©->hash; } static void sha1_ni_free(ssh_hash *hash) { sha1_ni *s = container_of(hash, sha1_ni, hash); void *ptf = s->pointer_to_free; smemclr(s, sizeof(*s)); sfree(ptf); } static void sha1_ni_write(BinarySink *bs, const void *vp, size_t len) { sha1_ni *s = BinarySink_DOWNCAST(bs, sha1_ni); while (len > 0) if (sha1_block_write(&s->blk, &vp, &len)) sha1_ni_block(s->core, s->blk.block); } FUNC_ISA static void sha1_ni_final(ssh_hash *hash, uint8_t *digest) { sha1_ni *s = container_of(hash, sha1_ni, hash); sha1_block_pad(&s->blk, BinarySink_UPCAST(s)); /* Rearrange the first vector into its output order */ __m128i abcd = _mm_shuffle_epi32(s->core[0], 0x1B); /* Byte-swap it into the output endianness */ const __m128i mask = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12); abcd = _mm_shuffle_epi8(abcd, mask); /* And store it */ _mm_storeu_si128((__m128i *)digest, abcd); /* Finally, store the leftover word */ uint32_t e = _mm_extract_epi32(s->core[1], 3); PUT_32BIT_MSB_FIRST(digest + 16, e); sha1_ni_free(hash); } const ssh_hashalg ssh_sha1_hw = { sha1_ni_new, sha1_ni_copy, sha1_ni_final, sha1_ni_free, 20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "SHA-NI accelerated"), }; /* ---------------------------------------------------------------------- * Hardware-accelerated implementation of SHA-1 using Arm NEON. */ #elif HW_SHA1 == HW_SHA1_NEON /* * Manually set the target architecture, if we decided above that we * need to. */ #ifdef USE_CLANG_ATTR_TARGET_AARCH64 /* * A spot of cheating: redefine some ACLE feature macros before * including arm_neon.h. Otherwise we won't get the SHA intrinsics * defined by that header, because it will be looking at the settings * for the whole translation unit rather than the ones we're going to * put on some particular functions using __attribute__((target)). */ #define __ARM_NEON 1 #define __ARM_FEATURE_CRYPTO 1 #define FUNC_ISA __attribute__ ((target("neon,crypto"))) #endif /* USE_CLANG_ATTR_TARGET_AARCH64 */ #ifndef FUNC_ISA #define FUNC_ISA #endif #ifdef USE_ARM64_NEON_H #include #else #include #endif static bool sha1_hw_available(void) { /* * For Arm, we delegate to a per-platform detection function (see * explanation in sshaes.c). */ return platform_sha1_hw_available(); } typedef struct sha1_neon_core sha1_neon_core; struct sha1_neon_core { uint32x4_t abcd; uint32_t e; }; /* ------------- got up to here ----------------------------------------- */ FUNC_ISA static inline uint32x4_t sha1_neon_load_input(const uint8_t *p) { return vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(p))); } FUNC_ISA static inline uint32x4_t sha1_neon_schedule_update( uint32x4_t m4, uint32x4_t m3, uint32x4_t m2, uint32x4_t m1) { return vsha1su1q_u32(vsha1su0q_u32(m4, m3, m2), m1); } /* * SHA-1 has three different kinds of round, differing in whether they * use the Ch, Maj or Par functions defined above. Each one uses a * separate NEON instruction, so we define three inline functions for * the different round types using this macro. * * The two batches of Par-type rounds also use a different constant, * but that's passed in as an operand, so we don't need a fourth * inline function just for that. */ #define SHA1_NEON_ROUND_FN(type) \ FUNC_ISA static inline sha1_neon_core sha1_neon_round4_##type( \ sha1_neon_core old, uint32x4_t sched, uint32x4_t constant) \ { \ sha1_neon_core new; \ uint32x4_t round_input = vaddq_u32(sched, constant); \ new.abcd = vsha1##type##q_u32(old.abcd, old.e, round_input); \ new.e = vsha1h_u32(vget_lane_u32(vget_low_u32(old.abcd), 0)); \ return new; \ } SHA1_NEON_ROUND_FN(c) SHA1_NEON_ROUND_FN(p) SHA1_NEON_ROUND_FN(m) FUNC_ISA static inline void sha1_neon_block(sha1_neon_core *core, const uint8_t *p) { uint32x4_t constant, s0, s1, s2, s3; sha1_neon_core cr = *core; constant = vdupq_n_u32(SHA1_STAGE0_CONSTANT); s0 = sha1_neon_load_input(p); cr = sha1_neon_round4_c(cr, s0, constant); s1 = sha1_neon_load_input(p + 16); cr = sha1_neon_round4_c(cr, s1, constant); s2 = sha1_neon_load_input(p + 32); cr = sha1_neon_round4_c(cr, s2, constant); s3 = sha1_neon_load_input(p + 48); cr = sha1_neon_round4_c(cr, s3, constant); s0 = sha1_neon_schedule_update(s0, s1, s2, s3); cr = sha1_neon_round4_c(cr, s0, constant); constant = vdupq_n_u32(SHA1_STAGE1_CONSTANT); s1 = sha1_neon_schedule_update(s1, s2, s3, s0); cr = sha1_neon_round4_p(cr, s1, constant); s2 = sha1_neon_schedule_update(s2, s3, s0, s1); cr = sha1_neon_round4_p(cr, s2, constant); s3 = sha1_neon_schedule_update(s3, s0, s1, s2); cr = sha1_neon_round4_p(cr, s3, constant); s0 = sha1_neon_schedule_update(s0, s1, s2, s3); cr = sha1_neon_round4_p(cr, s0, constant); s1 = sha1_neon_schedule_update(s1, s2, s3, s0); cr = sha1_neon_round4_p(cr, s1, constant); constant = vdupq_n_u32(SHA1_STAGE2_CONSTANT); s2 = sha1_neon_schedule_update(s2, s3, s0, s1); cr = sha1_neon_round4_m(cr, s2, constant); s3 = sha1_neon_schedule_update(s3, s0, s1, s2); cr = sha1_neon_round4_m(cr, s3, constant); s0 = sha1_neon_schedule_update(s0, s1, s2, s3); cr = sha1_neon_round4_m(cr, s0, constant); s1 = sha1_neon_schedule_update(s1, s2, s3, s0); cr = sha1_neon_round4_m(cr, s1, constant); s2 = sha1_neon_schedule_update(s2, s3, s0, s1); cr = sha1_neon_round4_m(cr, s2, constant); constant = vdupq_n_u32(SHA1_STAGE3_CONSTANT); s3 = sha1_neon_schedule_update(s3, s0, s1, s2); cr = sha1_neon_round4_p(cr, s3, constant); s0 = sha1_neon_schedule_update(s0, s1, s2, s3); cr = sha1_neon_round4_p(cr, s0, constant); s1 = sha1_neon_schedule_update(s1, s2, s3, s0); cr = sha1_neon_round4_p(cr, s1, constant); s2 = sha1_neon_schedule_update(s2, s3, s0, s1); cr = sha1_neon_round4_p(cr, s2, constant); s3 = sha1_neon_schedule_update(s3, s0, s1, s2); cr = sha1_neon_round4_p(cr, s3, constant); core->abcd = vaddq_u32(core->abcd, cr.abcd); core->e += cr.e; } typedef struct sha1_neon { sha1_neon_core core; sha1_block blk; BinarySink_IMPLEMENTATION; ssh_hash hash; } sha1_neon; static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len); static ssh_hash *sha1_neon_new(const ssh_hashalg *alg) { if (!sha1_hw_available_cached()) return NULL; sha1_neon *s = snew(sha1_neon); s->core.abcd = vld1q_u32(sha1_initial_state); s->core.e = sha1_initial_state[4]; sha1_block_setup(&s->blk); s->hash.vt = alg; BinarySink_INIT(s, sha1_neon_write); BinarySink_DELEGATE_INIT(&s->hash, s); return &s->hash; } static ssh_hash *sha1_neon_copy(ssh_hash *hash) { sha1_neon *s = container_of(hash, sha1_neon, hash); sha1_neon *copy = snew(sha1_neon); *copy = *s; /* structure copy */ BinarySink_COPIED(copy); BinarySink_DELEGATE_INIT(©->hash, copy); return ©->hash; } static void sha1_neon_free(ssh_hash *hash) { sha1_neon *s = container_of(hash, sha1_neon, hash); smemclr(s, sizeof(*s)); sfree(s); } static void sha1_neon_write(BinarySink *bs, const void *vp, size_t len) { sha1_neon *s = BinarySink_DOWNCAST(bs, sha1_neon); while (len > 0) if (sha1_block_write(&s->blk, &vp, &len)) sha1_neon_block(&s->core, s->blk.block); } static void sha1_neon_final(ssh_hash *hash, uint8_t *digest) { sha1_neon *s = container_of(hash, sha1_neon, hash); sha1_block_pad(&s->blk, BinarySink_UPCAST(s)); vst1q_u8(digest, vrev32q_u8(vreinterpretq_u8_u32(s->core.abcd))); PUT_32BIT_MSB_FIRST(digest + 16, s->core.e); sha1_neon_free(hash); } const ssh_hashalg ssh_sha1_hw = { sha1_neon_new, sha1_neon_copy, sha1_neon_final, sha1_neon_free, 20, 64, HASHALG_NAMES_ANNOTATED("SHA-1", "NEON accelerated"), }; /* ---------------------------------------------------------------------- * Stub functions if we have no hardware-accelerated SHA-1. In this * case, sha1_hw_new returns NULL (though it should also never be * selected by sha1_select, so the only thing that should even be * _able_ to call it is testcrypt). As a result, the remaining vtable * functions should never be called at all. */ #elif HW_SHA1 == HW_SHA1_NONE static bool sha1_hw_available(void) { return false; } static ssh_hash *sha1_stub_new(const ssh_hashalg *alg) { return NULL; } #define STUB_BODY { unreachable("Should never be called"); } static ssh_hash *sha1_stub_copy(ssh_hash *hash) STUB_BODY static void sha1_stub_free(ssh_hash *hash) STUB_BODY static void sha1_stub_final(ssh_hash *hash, uint8_t *digest) STUB_BODY const ssh_hashalg ssh_sha1_hw = { sha1_stub_new, sha1_stub_copy, sha1_stub_final, sha1_stub_free, 20, 64, HASHALG_NAMES_ANNOTATED( "SHA-1", "!NONEXISTENT ACCELERATED VERSION!"), }; #endif /* HW_SHA1 */