/* * tree234.c: reasonably generic 2-3-4 tree routines. Currently * supports insert, delete, find and iterate operations. */ #include #include #include "tree234.h" #define mknew(typ) ( (typ *) malloc (sizeof (typ)) ) #define sfree free #ifdef TEST #define LOG(x) (printf x) #else #define LOG(x) #endif struct tree234_Tag { node234 *root; cmpfn234 cmp; }; struct node234_Tag { node234 *parent; node234 *kids[4]; void *elems[3]; }; /* * Create a 2-3-4 tree. */ tree234 *newtree234(cmpfn234 cmp) { tree234 *ret = mknew(tree234); LOG(("created tree %p\n", ret)); ret->root = NULL; ret->cmp = cmp; return ret; } /* * Free a 2-3-4 tree (not including freeing the elements). */ static void freenode234(node234 *n) { if (!n) return; freenode234(n->kids[0]); freenode234(n->kids[1]); freenode234(n->kids[2]); freenode234(n->kids[3]); sfree(n); } void freetree234(tree234 *t) { freenode234(t->root); sfree(t); } /* * Add an element e to a 2-3-4 tree t. Returns e on success, or if * an existing element compares equal, returns that. */ void *add234(tree234 *t, void *e) { node234 *n, **np, *left, *right; void *orig_e = e; int c; LOG(("adding node %p to tree %p\n", e, t)); if (t->root == NULL) { t->root = mknew(node234); t->root->elems[1] = t->root->elems[2] = NULL; t->root->kids[0] = t->root->kids[1] = NULL; t->root->kids[2] = t->root->kids[3] = NULL; t->root->parent = NULL; t->root->elems[0] = e; LOG((" created root %p\n", t->root)); return orig_e; } np = &t->root; while (*np) { n = *np; LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n", n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], n->kids[2], n->elems[2], n->kids[3])); if ((c = t->cmp(e, n->elems[0])) < 0) np = &n->kids[0]; else if (c == 0) return n->elems[0]; /* already exists */ else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) np = &n->kids[1]; else if (c == 0) return n->elems[1]; /* already exists */ else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) np = &n->kids[2]; else if (c == 0) return n->elems[2]; /* already exists */ else np = &n->kids[3]; LOG((" moving to child %d (%p)\n", np - n->kids, *np)); } /* * We need to insert the new element in n at position np. */ left = NULL; right = NULL; while (n) { LOG((" at %p: %p [%p] %p [%p] %p [%p] %p\n", n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], n->kids[2], n->elems[2], n->kids[3])); LOG((" need to insert %p [%p] %p at position %d\n", left, e, right, np - n->kids)); if (n->elems[1] == NULL) { /* * Insert in a 2-node; simple. */ if (np == &n->kids[0]) { LOG((" inserting on left of 2-node\n")); n->kids[2] = n->kids[1]; n->elems[1] = n->elems[0]; n->kids[1] = right; n->elems[0] = e; n->kids[0] = left; } else { /* np == &n->kids[1] */ LOG((" inserting on right of 2-node\n")); n->kids[2] = right; n->elems[1] = e; n->kids[1] = left; } if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; if (n->kids[2]) n->kids[2]->parent = n; LOG((" done\n")); break; } else if (n->elems[2] == NULL) { /* * Insert in a 3-node; simple. */ if (np == &n->kids[0]) { LOG((" inserting on left of 3-node\n")); n->kids[3] = n->kids[2]; n->elems[2] = n->elems[1]; n->kids[2] = n->kids[1]; n->elems[1] = n->elems[0]; n->kids[1] = right; n->elems[0] = e; n->kids[0] = left; } else if (np == &n->kids[1]) { LOG((" inserting in middle of 3-node\n")); n->kids[3] = n->kids[2]; n->elems[2] = n->elems[1]; n->kids[2] = right; n->elems[1] = e; n->kids[1] = left; } else { /* np == &n->kids[2] */ LOG((" inserting on right of 3-node\n")); n->kids[3] = right; n->elems[2] = e; n->kids[2] = left; } if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; if (n->kids[2]) n->kids[2]->parent = n; if (n->kids[3]) n->kids[3]->parent = n; LOG((" done\n")); break; } else { node234 *m = mknew(node234); m->parent = n->parent; LOG((" splitting a 4-node; created new node %p\n", m)); /* * Insert in a 4-node; split into a 2-node and a * 3-node, and move focus up a level. * * I don't think it matters which way round we put the * 2 and the 3. For simplicity, we'll put the 3 first * always. */ if (np == &n->kids[0]) { m->kids[0] = left; m->elems[0] = e; m->kids[1] = right; m->elems[1] = n->elems[0]; m->kids[2] = n->kids[1]; e = n->elems[1]; n->kids[0] = n->kids[2]; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; } else if (np == &n->kids[1]) { m->kids[0] = n->kids[0]; m->elems[0] = n->elems[0]; m->kids[1] = left; m->elems[1] = e; m->kids[2] = right; e = n->elems[1]; n->kids[0] = n->kids[2]; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; } else if (np == &n->kids[2]) { m->kids[0] = n->kids[0]; m->elems[0] = n->elems[0]; m->kids[1] = n->kids[1]; m->elems[1] = n->elems[1]; m->kids[2] = left; /* e = e; */ n->kids[0] = right; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; } else { /* np == &n->kids[3] */ m->kids[0] = n->kids[0]; m->elems[0] = n->elems[0]; m->kids[1] = n->kids[1]; m->elems[1] = n->elems[1]; m->kids[2] = n->kids[2]; n->kids[0] = left; n->elems[0] = e; n->kids[1] = right; e = n->elems[2]; } m->kids[3] = n->kids[3] = n->kids[2] = NULL; m->elems[2] = n->elems[2] = n->elems[1] = NULL; if (m->kids[0]) m->kids[0]->parent = m; if (m->kids[1]) m->kids[1]->parent = m; if (m->kids[2]) m->kids[2]->parent = m; if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; LOG((" left (%p): %p [%p] %p [%p] %p\n", m, m->kids[0], m->elems[0], m->kids[1], m->elems[1], m->kids[2])); LOG((" right (%p): %p [%p] %p\n", n, n->kids[0], n->elems[0], n->kids[1])); left = m; right = n; } if (n->parent) np = (n->parent->kids[0] == n ? &n->parent->kids[0] : n->parent->kids[1] == n ? &n->parent->kids[1] : n->parent->kids[2] == n ? &n->parent->kids[2] : &n->parent->kids[3]); n = n->parent; } /* * If we've come out of here by `break', n will still be * non-NULL and we've finished. If we've come here because n is * NULL, we need to create a new root for the tree because the * old one has just split into two. */ if (!n) { LOG((" root is overloaded, split into two\n")); t->root = mknew(node234); t->root->kids[0] = left; t->root->elems[0] = e; t->root->kids[1] = right; t->root->elems[1] = NULL; t->root->kids[2] = NULL; t->root->elems[2] = NULL; t->root->kids[3] = NULL; t->root->parent = NULL; if (t->root->kids[0]) t->root->kids[0]->parent = t->root; if (t->root->kids[1]) t->root->kids[1]->parent = t->root; LOG((" new root is %p [%p] %p\n", t->root->kids[0], t->root->elems[0], t->root->kids[1])); } return orig_e; } /* * Find an element e in a 2-3-4 tree t. Returns NULL if not found. * e is always passed as the first argument to cmp, so cmp can be * an asymmetric function if desired. cmp can also be passed as * NULL, in which case the compare function from the tree proper * will be used. */ void *find234(tree234 *t, void *e, cmpfn234 cmp) { node234 *n; int c; if (t->root == NULL) return NULL; if (cmp == NULL) cmp = t->cmp; n = t->root; while (n) { if ( (c = cmp(e, n->elems[0])) < 0) n = n->kids[0]; else if (c == 0) return n->elems[0]; else if (n->elems[1] == NULL || (c = cmp(e, n->elems[1])) < 0) n = n->kids[1]; else if (c == 0) return n->elems[1]; else if (n->elems[2] == NULL || (c = cmp(e, n->elems[2])) < 0) n = n->kids[2]; else if (c == 0) return n->elems[2]; else n = n->kids[3]; } /* * We've found our way to the bottom of the tree and we know * where we would insert this node if we wanted to. But it * isn't there. */ return NULL; } /* * Delete an element e in a 2-3-4 tree. Does not free the element, * merely removes all links to it from the tree nodes. */ void del234(tree234 *t, void *e) { node234 *n; int ei = -1; n = t->root; LOG(("deleting %p from tree %p\n", e, t)); while (1) { while (n) { int c; int ki; node234 *sub; LOG((" node %p: %p [%p] %p [%p] %p [%p] %p\n", n, n->kids[0], n->elems[0], n->kids[1], n->elems[1], n->kids[2], n->elems[2], n->kids[3])); if ((c = t->cmp(e, n->elems[0])) < 0) { ki = 0; } else if (c == 0) { ei = 0; break; } else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) { ki = 1; } else if (c == 0) { ei = 1; break; } else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) { ki = 2; } else if (c == 0) { ei = 2; break; } else { ki = 3; } /* * Recurse down to subtree ki. If it has only one element, * we have to do some transformation to start with. */ LOG((" moving to subtree %d\n", ki)); sub = n->kids[ki]; if (!sub->elems[1]) { LOG((" subtree has only one element!\n", ki)); if (ki > 0 && n->kids[ki-1]->elems[1]) { /* * Case 3a, left-handed variant. Child ki has * only one element, but child ki-1 has two or * more. So we need to move a subtree from ki-1 * to ki. * * . C . . B . * / \ -> / \ * [more] a A b B c d D e [more] a A b c C d D e */ node234 *sib = n->kids[ki-1]; int lastelem = (sib->elems[2] ? 2 : sib->elems[1] ? 1 : 0); sub->kids[2] = sub->kids[1]; sub->elems[1] = sub->elems[0]; sub->kids[1] = sub->kids[0]; sub->elems[0] = n->elems[ki-1]; sub->kids[0] = sib->kids[lastelem+1]; if (sub->kids[0]) sub->kids[0]->parent = sub; n->elems[ki-1] = sib->elems[lastelem]; sib->kids[lastelem+1] = NULL; sib->elems[lastelem] = NULL; LOG((" case 3a left\n")); } else if (ki < 3 && n->kids[ki+1] && n->kids[ki+1]->elems[1]) { /* * Case 3a, right-handed variant. ki has only * one element but ki+1 has two or more. Move a * subtree from ki+1 to ki. * * . B . . C . * / \ -> / \ * a A b c C d D e [more] a A b B c d D e [more] */ node234 *sib = n->kids[ki+1]; int j; sub->elems[1] = n->elems[ki]; sub->kids[2] = sib->kids[0]; if (sub->kids[2]) sub->kids[2]->parent = sub; n->elems[ki] = sib->elems[0]; sib->kids[0] = sib->kids[1]; for (j = 0; j < 2 && sib->elems[j+1]; j++) { sib->kids[j+1] = sib->kids[j+2]; sib->elems[j] = sib->elems[j+1]; } sib->kids[j+1] = NULL; sib->elems[j] = NULL; LOG((" case 3a right\n")); } else { /* * Case 3b. ki has only one element, and has no * neighbour with more than one. So pick a * neighbour and merge it with ki, taking an * element down from n to go in the middle. * * . B . . * / \ -> | * a A b c C d a A b B c C d * * (Since at all points we have avoided * descending to a node with only one element, * we can be sure that n is not reduced to * nothingness by this move, _unless_ it was * the very first node, ie the root of the * tree. In that case we remove the now-empty * root and replace it with its single large * child as shown.) */ node234 *sib; int j; if (ki > 0) ki--; sib = n->kids[ki]; sub = n->kids[ki+1]; sub->kids[3] = sub->kids[1]; sub->elems[2] = sub->elems[0]; sub->kids[2] = sub->kids[0]; sub->elems[1] = n->elems[ki]; sub->kids[1] = sib->kids[1]; if (sub->kids[1]) sub->kids[1]->parent = sub; sub->elems[0] = sib->elems[0]; sub->kids[0] = sib->kids[0]; if (sub->kids[0]) sub->kids[0]->parent = sub; sfree(sib); /* * That's built the big node in sub. Now we * need to remove the reference to sib in n. */ for (j = ki; j < 3 && n->kids[j+1]; j++) { n->kids[j] = n->kids[j+1]; n->elems[j] = j<2 ? n->elems[j+1] : NULL; } n->kids[j] = NULL; if (j < 3) n->elems[j] = NULL; LOG((" case 3b ki=%d\n", ki)); if (!n->elems[0]) { /* * The root is empty and needs to be * removed. */ LOG((" shifting root!\n")); t->root = sub; sub->parent = NULL; sfree(n); } } } n = sub; } if (ei==-1) return; /* nothing to do; `already removed' */ /* * Treat special case: this is the one remaining item in * the tree. n is the tree root (no parent), has one * element (no elems[1]), and has no kids (no kids[0]). */ if (!n->parent && !n->elems[1] && !n->kids[0]) { LOG((" removed last element in tree\n")); sfree(n); t->root = NULL; return; } /* * Now we have the element we want, as n->elems[ei], and we * have also arranged for that element not to be the only * one in its node. So... */ if (!n->kids[0] && n->elems[1]) { /* * Case 1. n is a leaf node with more than one element, * so it's _really easy_. Just delete the thing and * we're done. */ int i; LOG((" case 1\n")); for (i = ei; i < 2 && n->elems[i+1]; i++) n->elems[i] = n->elems[i+1]; n->elems[i] = NULL; return; /* finished! */ } else if (n->kids[ei]->elems[1]) { /* * Case 2a. n is an internal node, and the root of the * subtree to the left of e has more than one element. * So find the predecessor p to e (ie the largest node * in that subtree), place it where e currently is, and * then start the deletion process over again on the * subtree with p as target. */ node234 *m = n->kids[ei]; void *target; LOG((" case 2a\n")); while (m->kids[0]) { m = (m->kids[3] ? m->kids[3] : m->kids[2] ? m->kids[2] : m->kids[1] ? m->kids[1] : m->kids[0]); } target = (m->elems[2] ? m->elems[2] : m->elems[1] ? m->elems[1] : m->elems[0]); n->elems[ei] = target; n = n->kids[ei]; e = target; } else if (n->kids[ei+1]->elems[1]) { /* * Case 2b, symmetric to 2a but s/left/right/ and * s/predecessor/successor/. (And s/largest/smallest/). */ node234 *m = n->kids[ei+1]; void *target; LOG((" case 2b\n")); while (m->kids[0]) { m = m->kids[0]; } target = m->elems[0]; n->elems[ei] = target; n = n->kids[ei+1]; e = target; } else { /* * Case 2c. n is an internal node, and the subtrees to * the left and right of e both have only one element. * So combine the two subnodes into a single big node * with their own elements on the left and right and e * in the middle, then restart the deletion process on * that subtree, with e still as target. */ node234 *a = n->kids[ei], *b = n->kids[ei+1]; int j; LOG((" case 2c\n")); a->elems[1] = n->elems[ei]; a->kids[2] = b->kids[0]; if (a->kids[2]) a->kids[2]->parent = a; a->elems[2] = b->elems[0]; a->kids[3] = b->kids[1]; if (a->kids[3]) a->kids[3]->parent = a; sfree(b); /* * That's built the big node in a, and destroyed b. Now * remove the reference to b (and e) in n. */ for (j = ei; j < 2 && n->elems[j+1]; j++) { n->elems[j] = n->elems[j+1]; n->kids[j+1] = n->kids[j+2]; } n->elems[j] = NULL; n->kids[j+1] = NULL; /* * It's possible, in this case, that we've just removed * the only element in the root of the tree. If so, * shift the root. */ if (n->elems[0] == NULL) { LOG((" shifting root!\n")); t->root = a; a->parent = NULL; sfree(n); } /* * Now go round the deletion process again, with n * pointing at the new big node and e still the same. */ n = a; } } } /* * Iterate over the elements of a tree234, in order. */ void *first234(tree234 *t, enum234 *e) { node234 *n = t->root; if (!n) return NULL; while (n->kids[0]) n = n->kids[0]; e->node = n; e->posn = 0; return n->elems[0]; } void *next234(enum234 *e) { node234 *n = e->node; int pos = e->posn; if (n->kids[pos+1]) { n = n->kids[pos+1]; while (n->kids[0]) n = n->kids[0]; e->node = n; e->posn = 0; return n->elems[0]; } if (pos < 2 && n->elems[pos+1]) { e->posn = pos+1; return n->elems[e->posn]; } do { node234 *nn = n->parent; if (nn == NULL) return NULL; /* end of tree */ pos = (nn->kids[0] == n ? 0 : nn->kids[1] == n ? 1 : nn->kids[2] == n ? 2 : 3); n = nn; } while (pos == 3 || n->kids[pos+1] == NULL); e->node = n; e->posn = pos; return n->elems[pos]; } #ifdef TEST /* * Test code for the 2-3-4 tree. This code maintains an alternative * representation of the data in the tree, in an array (using the * obvious and slow insert and delete functions). After each tree * operation, the tree_valid() function is called, which ensures * all the tree properties are preserved (node->child->parent * always equals node; number of kids == number of elements + 1; * all tree nodes are distinct; ordering property between elements * of a node and elements of its children is preserved) and also * ensures the list represented by the tree is the same list it * should be. (This last check also verifies the ordering * properties, because the `same list it should be' is by * definition correctly ordered.) */ #include /* * Error reporting function. */ void error(char *fmt, ...) { va_list ap; printf("ERROR: "); va_start(ap, fmt); vfprintf(stdout, fmt, ap); va_end(ap); printf("\n"); } /* The array representation of the data. */ void **array; int arraylen, arraysize; cmpfn234 cmp; /* The tree representation of the same data. */ tree234 *tree; typedef struct { int treedepth; int elemcount; } chkctx; void chknode(chkctx *ctx, int level, node234 *node, void *lowbound, void *highbound) { int nkids, nelems; int i; /* Count the non-NULL kids. */ for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++); /* Ensure no kids beyond the first NULL are non-NULL. */ for (i = nkids; i < 4; i++) if (node->kids[i]) { error("node %p: nkids=%d but kids[%d] non-NULL", node, nkids, i); } /* Count the non-NULL elements. */ for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++); /* Ensure no elements beyond the first NULL are non-NULL. */ for (i = nelems; i < 3; i++) if (node->elems[i]) { error("node %p: nelems=%d but elems[%d] non-NULL", node, nelems, i); } if (nkids == 0) { /* * If nkids==0, this is a leaf node; verify that the tree * depth is the same everywhere. */ if (ctx->treedepth < 0) ctx->treedepth = level; /* we didn't know the depth yet */ else if (ctx->treedepth != level) error("node %p: leaf at depth %d, previously seen depth %d", node, level, ctx->treedepth); } else { /* * If nkids != 0, then it should be nelems+1, unless nelems * is 0 in which case nkids should also be 0 (and so we * shouldn't be in this condition at all). */ int shouldkids = (nelems ? nelems+1 : 0); if (nkids != shouldkids) { error("node %p: %d elems should mean %d kids but has %d", node, nelems, shouldkids, nkids); } } /* * nelems should be at least 1. */ if (nelems == 0) { error("node %p: no elems", node, nkids); } /* * Add nelems to the running element count of the whole tree * (to ensure the enum234 routines see them all). */ ctx->elemcount += nelems; /* * Check ordering property: all elements should be strictly > * lowbound, strictly < highbound, and strictly < each other in * sequence. (lowbound and highbound are NULL at edges of tree * - both NULL at root node - and NULL is considered to be < * everything and > everything. IYSWIM.) */ for (i = -1; i < nelems; i++) { void *lower = (i == -1 ? lowbound : node->elems[i]); void *higher = (i+1 == nelems ? highbound : node->elems[i+1]); if (lower && higher && cmp(lower, higher) >= 0) { error("node %p: kid comparison [%d=%s,%d=%s] failed", node, i, lower, i+1, higher); } } /* * Check parent pointers: all non-NULL kids should have a * parent pointer coming back to this node. */ for (i = 0; i < nkids; i++) if (node->kids[i]->parent != node) { error("node %p kid %d: parent ptr is %p not %p", node, i, node->kids[i]->parent, node); } /* * Now (finally!) recurse into subtrees. */ for (i = 0; i < nkids; i++) { void *lower = (i == 0 ? lowbound : node->elems[i-1]); void *higher = (i >= nelems ? highbound : node->elems[i]); chknode(ctx, level+1, node->kids[i], lower, higher); } } void verify(void) { chkctx ctx; enum234 e; int i; void *p; ctx.treedepth = -1; /* depth unknown yet */ ctx.elemcount = 0; /* no elements seen yet */ /* * Verify validity of tree properties. */ if (tree->root) chknode(&ctx, 0, tree->root, NULL, NULL); printf("tree depth: %d\n", ctx.treedepth); /* * Enumerate the tree and ensure it matches up to the array. */ for (i = 0, p = first234(tree, &e); p; i++, p = next234(&e)) { if (i >= arraylen) error("tree contains more than %d elements", arraylen); if (array[i] != p) error("enum at position %d: array says %s, tree says %s", i, array[i], p); } if (i != ctx.elemcount) { error("tree really contains %d elements, enum gave %d", i, ctx.elemcount); } if (i < arraylen) { error("enum gave only %d elements, array has %d", i, arraylen); } } void addtest(void *elem) { int i, j; void *retval, *realret; if (arraysize < arraylen+1) { arraysize = arraylen+1+256; array = (array == NULL ? malloc(arraysize*sizeof(*array)) : realloc(array, arraysize*sizeof(*array))); } i = 0; while (i < arraylen && cmp(elem, array[i]) > 0) i++; /* now i points to the first element >= elem */ if (i < arraylen && !cmp(elem, array[i])) retval = array[i]; /* expect that returned not elem */ else { retval = elem; /* expect elem returned (success) */ for (j = arraylen; j > i; j--) array[j] = array[j-1]; array[i] = elem; /* add elem to array */ arraylen++; } realret = add234(tree, elem); if (realret != retval) { error("add: retval was %p expected %p", realret, retval); } verify(); } void deltest(void *elem) { int i; i = 0; while (i < arraylen && cmp(elem, array[i]) > 0) i++; /* now i points to the first element >= elem */ if (i >= arraylen || cmp(elem, array[i]) != 0) return; /* don't do it! */ else { while (i < arraylen-1) { array[i] = array[i+1]; i++; } arraylen--; /* delete elem from array */ } del234(tree, elem); verify(); } /* A sample data set and test utility. Designed for pseudo-randomness, * and yet repeatability. */ /* * This random number generator uses the `portable implementation' * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits; * change it if not. */ int randomnumber(unsigned *seed) { *seed *= 1103515245; *seed += 12345; return ((*seed) / 65536) % 32768; } int mycmp(void *av, void *bv) { char const *a = (char const *)av; char const *b = (char const *)bv; return strcmp(a, b); } #define lenof(x) ( sizeof((x)) / sizeof(*(x)) ) char *strings[] = { "a", "ab", "absque", "coram", "de", "palam", "clam", "cum", "ex", "e", "sine", "tenus", "pro", "prae", "banana", "carrot", "cabbage", "broccoli", "onion", "zebra", "penguin", "blancmange", "pangolin", "whale", "hedgehog", "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux", "murfl", "spoo", "breen", "flarn", "octothorpe", "snail", "tiger", "elephant", "octopus", "warthog", "armadillo", "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin", "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper", "wand", "ring", "amulet" }; #define NSTR lenof(strings) int main(void) { int in[NSTR]; int i, j; unsigned seed = 0; for (i = 0; i < NSTR; i++) in[i] = 0; array = NULL; arraylen = arraysize = 0; tree = newtree234(mycmp); cmp = mycmp; verify(); for (i = 0; i < 10000; i++) { j = randomnumber(&seed); j %= NSTR; printf("trial: %d\n", i); if (in[j]) { printf("deleting %s (%d)\n", strings[j], j); deltest(strings[j]); in[j] = 0; } else { printf("adding %s (%d)\n", strings[j], j); addtest(strings[j]); in[j] = 1; } } while (arraylen > 0) { j = randomnumber(&seed); j %= arraylen; deltest(array[j]); } return 0; } #endif